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Automatic and Explainable Labeling of Medical
Event Logs with Autoencoding

Hugo De Oliveira, Vincent Augusto, Baptiste Jouaneton, Ludovic Lamarsalle,
Martin Prodel and Xiaolan Xie

Abstract—Process mining is a suitable method for knowledge
extraction from patient pathways. Structured in event logs,
medical events are complex, often described using various med-
ical codes. An efficient labeling of these events before applying
process mining analysis is challenging. This paper presents an
innovative methodology to handle the complexity of events in
medical event logs. Based on autoencoding, accurate labels are
created by clustering similar events in latent space. Moreover,
the explanation of created labels is provided by the decoding of
its corresponding events. Tested on synthetic events, the method
is able to find hidden clusters on sparse binary data, as well as
accurately explain created labels. A case study on real healthcare
data is performed. Results confirm the suitability of the method to
extract knowledge from complex event logs representing patient
pathways.

Index Terms—process mining; event log; healthcare data;
patient pathways; autoencoding;

I. INTRODUCTION

Data analytic regroups an extensive number of methods to
investigate data produced in various systems such as industry,
software engineering and healthcare. Knowledge extraction
from such data is a lever to improve performances, to predict
or simply to describe the reality of facts. Among different
types of data, event logs are challenging to analyze because
of the presence of time, the high variability of events, and the
complex relations between events. Thus, the use of widespread
data mining algorithm may not be fully straightforward for
some applications. A wise preprocessing step to capture mean-
ingful information may be necessary. Describing processes,
these data are present in the manufacture industry, in software
engineering and in healthcare [1]. To analyze event logs, a
data-driven approach named process mining has been proposed
[2]. Between data mining and process modeling, event logs are
impartially used to extra [3].

The French national health insurance database (SNIIRAM)
is a non-clinical claim database. Containing healthcare reim-
bursements of almost all French citizens, the amount of data
is colossal. 66 million inhabitants were part of this database in
2015 [4]. Among all reimbursement information contained in
the SNIIRAM, patients’ hospitalizations are provided. How-
ever, no precise medical information such as test results,
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imaging reports, or vital signs are available. Nevertheless,
such a database is useful to map patient pathways [5]–[8],
perform medical data clustering [9] and prediction tasks [10],
[11]. Regarding healthcare processes, the complexity is multi-
fold. Illustrations are, but not limited to, the presence of free
text, the granularity of events analyzed, and the occurrence
of multiple event simultaneously, leading to multiple codes
describing a given event. These codes, representing medical
activities of different types, could be numerous and often in-
herit of hierarchical structures [6]. Even if the hierarchy could
be useful to simplify codes and reduce the overall cardinality,
the choice of the accurate level in order to produce meaningful
events is not obvious, depends on the pathology or the health
process studied and often requires a clinical expertise. This
aspect of complexity is one of the main challenge regarding
non-clinical claim database, such as the SNIIRAM.

Therefore, the main contribution of the present paper is a
new methodology to analyze the complexity of events and
produce meaningful labels. Using autoencoding and clustering,
the proposed method creates artificial labels from initial data.
These labels are assigned to events, transforming the raw
event log by reducing the overall variability of events. The
method provides transparency for practitioners by giving an
interpretation for each created artificial label. In practice, the
contribution consists of a preprocessing methodology to treat
this particular complexity of events. As a result, available
process mining tools1 can be used starting from event logs
obtained via the proposed methodology.

This paper is organized as follows. An overview of related
works is given in Section II. Preliminary notations are pre-
sented in Section III. Section IV introduces the problem ad-
dressed in this paper. The proposed methodology is described
in Section V. To validate the method, a design of experiments
is presented in Section VI, followed by a case study based on
real-life healthcare data in Section VII. Finally, conclusions
and perspectives are given in Section VIII.

II. LITERATURE REVIEW

Healthcare data analysis constitutes a large field to test and
apply a wide spectrum of analytic methods. Among them,
machine learning and more recently deep learning methods
have been largely deployed. Electronic Health Records (EHR)
have permitted the development of new models and methods,
boosting the field publication activity [12], [13]. Among
the tasks addressed by deep learning, supervised learning
and concept embedding emerge for a majority of studies in

1Such as ProM, Disco, PM4Py or bupaR.



2

healthcare [14]. In spite of the need to develop high performing
predictive models, explainability has been highlighted as a key
issue for future model developments [14], [15]. Valuable for
practitioners and experts of the medical field, the explanation
of predictive results has already been addressed by deep
learning studies [16], [17].

In addition to supervised learning and concept embedding,
process mining is also a promising analytic method. By per-
forming process discovery on event log data, process mining
algorithms produce graphical and interpretative representations
of occurring processes. The field is active and recent pub-
lications are numerous [1], particularly in healthcare [18].
Initiatives of the research community to improve practices and
knowledge sharing illustrate the field activity.2 Recent topics
addressed are, but not limited to, privacy [19], clinical guide-
line [20], and data cleaning [21]. Regarding process discovery,
an optimal procedure to construct process models from raw
data bases has been proposed by Prodel et. al. in 2018 [6].
Applied to healthcare data event logs, the proposed method
has been adapted to take into account temporal information
during the optimization process [8].

Patients’ pathways analysis based on real-life healthcare
data is valuable to represent and understand how patients’ care
occurs in real-life. Even if deep representation has been ap-
plied on clinical pathways [22], process mining use graphical
process models as a support for representation. Thus, it makes
the method suitable to discover patients’ pathways from raw
data when the focus lies on interpretation. However, medical
data can be complex to analyze, due to the variety of differ-
ent medical codes used in claims databases (e.g. diagnoses,
procedures and drugs). As a result, the labeling of events is
a challenging step in data processing. A commune practice is
the definition of labels by hand, based on expert knowledge
[8]. The detection of hidden healthcare sub-processes has been
proposed, using Hidden Markov Models (HMM) [23]. The
presented method allows a reduction of complexity by the
enrichment of the log with HMM-derived states, reducing
complexity and saving experts time. A practical solution
proposed by Prodel et al. in 2018 [6] is the creation of labels
during the optimization, using the hierarchy of events from one
type of codes, such as main diagnosis. However, when multiple
codes from multiple coding systems characterize the events of
a process, the selection of the right aggregation level and the
combination of codes is not, to the best of our knowledge, a
treated problem.

Therefore, the main contribution of this paper is the proposal
of a general methodology to treat complex events such as
multiple medical activities, in order to apply process mining.
Following the definition of Lenz and Reichert [24], the pro-
posed method identifies the activities of the medical treatment
process by analyzing the coded events of the organizational
processes. The core of this methodology is based on recent
work in representation learning. A widely used method in
representation learning is autoencoding [25]. The general idea
behind autoencoding is the learning of a structure which can
encode and decode information while minimizing the loss of

2http://pods4h.com/

information. By compressing the data, a transformation of the
input representation is performed.

Thus, before formally introducing the problem and the
proposed methodology, preliminary notations are presented in
the following.

III. PRELIMINARIES

A formal description of the data involved is provided in the
following, including events, traces and event logs.

Definition 1: Event. Each event denoted e is a couple (c, t, a)
where:
• c is the related case ID of the event, with the id function
id(e) = c returning the case ID of event e;

• t ∈ T with T = N or R corresponds to the event
time also called time-stamp, with the event time function
time(e) = t returning the time-stamp of event e;

• a is a nonempty set called activity set, each element ai ∈
a being an activity.

Definition 2: Trace. A trace is a sequence of events denoted
as σ = e1, e2, . . . , em with m ∈ N∗ such that time(ek) <
time(ek+1) and ∀e, e′ ∈ σ, id(e) = id(e′). The size of the
trace |σ| is defined as the number of events in σ.

Definition 3: Event log. An event log is a set of traces
denoted as L = {σ1, σ2, . . . , σn} with n ∈ N∗. The size of
the event log |L| is defined as the number of traces in L. Its
length len(L), defined as len(L) =

∑
σ∈L |σ| gives the total

number of events composing L.
According to the previous definitions, an event log is a

group of traces, each trace being a succession of events
characterized by activities occurring at a given time-stamp,
composing an activity set.

Definition 4: Log activity set. Let L be an event log. The
log activity set of L is the nonempty set A defined as:
• A = {ai|∃σ ∈ L,∃e = (c, t, a) ∈ σ, ai ∈ a}
• ∀σ ∈ L,∀e = (c, t, a) ∈ σ, ∀ai ∈ a,∃!Aj ⊂ A|ai ∈ Aj .
Thus, the log activity set is composed of activities encoun-

tered in L, with every single activity of event log L belonging
to a unique subset Aj of A.

Proposition 1:

A =
⋃
j

Aj and
⋂
j

Aj = ∅ (1)

Proposition 2:

card(A) =
∑
j

card(Aj) (2)

Definition 5: Activity vector. Let e = (c, t, a) be an
event, the activity vector x of e is defined such that x ∈
EX = {0, 1}d, EX being the activity vector space, with
d = card(A). A mapping function vect() is also introduced,
defined as:

vect : A → EX

a 7→ vect(a) = x

with its inverse vect−1 : EX → A.
The previously defined functions allow a mapping between

an activity set and its corresponding activity vector. The

http://pods4h.com/
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case id time-stamp medical activities
0 0 {Z511; ZZNL053}
0 10 {Z511}
0 20 {Z5101; 9261771}
1 0 {Z511; 9261110}
1 5 {Z511; 9261110}
1 20 {Z511; 9261110}
1 50 {Z511; 9261771; ZZNL053}

(a) Activity set representation.

case id time-stamp Z511 Z5101 ZZNL053 9261771 9261110
0 0 1 0 1 0 0
0 10 1 0 0 0 0
0 20 0 1 0 1 0
1 0 1 0 0 0 1
1 5 1 0 0 0 1
1 20 1 0 0 0 1
1 50 1 0 1 1 0

(b) Activity vector representation.

TABLE I: Example of an event log of patient pathways.

activity vector x of an event is the equivalent representation of
an activity set using 1-of-k coding from all possible activities
from A to the activity vector space EX . Therefore, a given
event e could be defined as e = (c, t, a) or e = (c, t, x)
knowing vect and vect−1 without any meaning loss regarding
the log activity set.

Definition 6: Activity matrix. The activity matrix of an event
log L is defined as MX = (xi)i∈J1,len(L)K with dim(MX) =
len(L)× d.

The activity matrix MX of an event log L gives a binary
representation of activity sets, which is a common representa-
tion in machine learning.

Example 1: Let us define an event log L = {σ1} with one
trace σ1 = e1, e2 having two events such that e1 = (c1, t1, a1)
and e2 = (c2, t2, a2) with:
• A = A1 ∪ A2 with A1 = {A1, B1} and A2 =
{A2, B2, C2};

• case ids c1 = c2 = c;
• time-stamps t1 = 0, t2 = 10;
• activities a1 = {A1, B2}, a2 = {A1, B1, A2, C2}.

According to the previous definitions:
• d = card(A1) + card(A2) = 5;
• x1 = (1, 0, 0, 1, 0) and x2 = (1, 1, 1, 0, 1).
Example 2:
Table I presents a short event log related to patient path-

ways analysis using data as found in claims database. Each
row is a hospitalization event. Events with the same case
ID are ordered by increasing time stamp and represent a
trace, which is a patient’s hospitalization history. Medical
activities are of three different categories: diagnosis, medical
procedures and drugs, coded using standard notations ICD-
10 (International Classification of Diseases 10th revision),
CCAM (Classification Commune des Actes Médicaux) and
UCD (Unité Commune de Dispensation), respectively. Accord-
ing to previous definitions, A = Adiag ∪Amed.proc.∪Adrugs,
with Adiag = {Z511; Z5101}, Amed.proc. = {ZZNL053} and
Adrugs = {261771; 9261110}. Moreover, d = card(Adiag) +
card(Amed.proc.) + card(Adrugs) = 5. Representation using
activity set and its equivalent using activity vector are pre-
sented in Table Ia and Table Ib, respectively.

Thus, event log notations as well as activity vector and
matrix formalization have been introduced. The following
definitions introduce the problem setting.

IV. PROBLEM DEFINITION

Definition 7: Label function and set. Given an event log L,
a label function λ is a function such that:

λ : A → L (3)

with L being the label set.
The label function maps activities of an event log L to L,

a set of possible labels for each activity vector.
Definition 8: Explaining function. Given an event log L and

its label set L, an explaining function η on L is a function:

η : L → A (4)

The explaining function allows a mapping of a label l to
interpretative elements a from the log activity set : a ⊂ A.

Definition 9: Activity clustering problem. Lets L be an event
log with its log activity set A and its activity matrix MX , with
dim(MX) = len(L) × d. The activity clustering problem on
L is defined as the search of the triple (L, λ, η) such that:
• L is a label set, L 6= ∅;
• Kmin ≤ card(L) ≤ Kmax, with Kmin,Kmax ∈ N∗;
• Kmax � d;
• λ is a label function;
• η is an explaining function.
The main objective here is to find an accurate triple (L, λ, η)

for the considered event log L. This problem can be seen as a
clustering problem, with L being the set of cluster labels and
λ the clustering function. The particularity here is for the input
data MX to be sparse and of high dimensionality d in terms
of features. The label set L should be finite, its cardinality
(number of elements) being reasonable. A high cardinality of
L will induce difficulties in process mining readability, also
encouraging overfitting regarding A. This consideration leads
to the proposed upper bound condition Kmax � d. But a small
cardinality for the label set will lead to a lack of information
and medical meaning, motivating the lower bound Kmin.
Moreover, as explainability is an essential constraint when
dealing with medical pathways analysis, elements of L should
keep a medical meaning, justifying the search of the explain
function η. Given these considerations, it is assumed in this
paper that there exist some relevant clusters hidden in medical
activities of event log L. This assumption suggests that some
combinations of elements of A which could characterize well
a sufficient number of events e could be found.

In the following, a methodology based on autoencoding is
proposed to find a relevant label set and a label function from
a given event log.

V. PROPOSED METHODOLOGY

A. Overview

To solve the activity clustering problem for an event log
L and find an accurate triple (L, λ, η), an autoencoding
method is proposed. The idea is to transform space data
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from EX to a latent space EZ of reduced dimensionality,
where similar elements are close to each other. This trans-
formation is done using an autoencoding architecture, with
an encoder f : EX → EZ and a decoder g : EZ → EX .
In the latent space, because the dimensionality is reduced,
applying clustering methods is meaningful. Latent clustering
is proposed to assign for each element z a label through a
function h : EZ → L. Thus, cluster labels defined through
clustering in latent space will constitute the label set L defined
in Definition 7:

λ : A vect(a)−−−−→ EX
f(x)−−−→ EZ

h(z)−−−→ L (5)

To construct the explaining function η, the function h−1 :
L → EZ first returns for each cluster label l, the set of
corresponding vectors in latent space Zl. Then, each activity
z ∈ Zl can be decoded from EZ to EX using the decoding
function g learned during the autoencoder training phase. This
results in a set of activity vectors Xl, from which an average
vector X̄l is computed. Finally, X̄l is interpreted as a set of
activities using vect−1 function:

η : L h−1(l)−−−−→ EZ
g(Zl)−−−→ EX

vect−1(X̄l)−−−−−−−→ A (6)

Consequently, the proposed method is composed of three
steps: (1) autoencoder training, (2) latent space clustering,
and (3) clusters’ related activities decoding. These steps are
presented in more detail in the following sections.

B. Autoencoder training

To perform clustering on sparse, binary, high-dimensional
activity vectors, the data is transformed into a new space where
variables are continuous and the dimensionality is lower. This
transformation is performed using an autoencoder, trained on
an activity matrix. In this paper, three methods for autoencoder
training are investigated.

1) Autoencoder: An autoencoder (AE) is composed of
two functions f and g, named the encoding and decoding
functions, respectively. The encoder transforms a vector x
from the input space into a new vector z from the latent space,
its dimensionality being drastically reduced. The decoder takes
the vector z from the latent space and decode it back to the
input space, resulting in a new vector x′. The training of a
classic autoencoder is done by minimizing the reconstruction
error, usually the binary cross entropy loss function. The
dimensionality reduction allows a concentration of information
while keeping the useful information in latent space for the
reconstruction of input data. In this paper, encoder and decoder
are constructed using symmetric feed-forward, fully connected
neural networks.

2) Denoising autoencoder: A denoising autoencoder
(DAE) is constructed using the same architecture as for an
AE. A noisy vector x̃ is created from x, which is encoded and
then decoded. The loss function remains unchanged, while the
goal of training is to be robust against artificially added noise
and to keep useful information to decode data without noise.

3) Variational autoencoder: A variational autoencoder
(VAE) is a particular autoencoder where the learned variables
are parameters of a distribution. The encoder f is an inference
network q(x|z) and the decoder g a generative network p(z|x).
The reparameterization trick makes the training of the network
possible using gradient descent optimization. The loss function
here is the inverse of the expected lower bound ELBO

defined as ELBO = Eq(z|x)

[
log p(x,z)

q(z|x)

]
. In practice, the

single sample estimate log p(x|z) + log p(z)− log q(z|x) with
z sampled from the inference network is optimized [26].

C. Latent space clustering

Once an autoencoder is trained using activity matrix, a
representation of every activity vector in latent space EZ
can be obtained. In EZ , observations are characterized by
a reasonable number of continuous features. As a result,
applying clustering in this space is meaningful. K-means
algorithm is used to learn the function h : EZ → L and
create K clusters of similar observations in latent space. The
parameter K corresponds to the final number of labels in L :
K = card(L), respecting Kmin ≤ K ≤ Kmax (Definition 9).
To find such an accurate value of K, one possible criterion
could be to maximize the mean silhouette score [27], defined
as:

S =
1

len(L)

∑
z∈MZ

bz − az
max(az, bz)

(7)

with

• az : the mean distance between z and all other points of
the same cluster;

• bz : the mean distance between z and all other points of
the nearest next cluster.

D. Clusters’ activities decoding

Once the latent space clustering has constructed a function
h : EZ → L, the label function λ : A → L is fully defined. A
label is assigned to each activity set of event log L, which can
be used in the final process model as a node label. To construct
the explaining function η : L → A, a methodology based
on the decoding of each cluster’s activities is proposed. The
hypothesis formulated here is that for each cluster defined in
latent space EZ , averaging the output of its activities decoding
gives an overview of the cluster’s meaning. In practice, the
vect−1 function needs a threshold to convert an activity vector
into decoded activities. The analysis of activity vectors can
lead to a judicious choice for the threshold, as presented in
Remark 1, Section VI.

To summarize this section, the presented methodology al-
lows for the analysis of activity sets from event logs and
defines a set of labels that can be used for process mining.
Each event of the event log has a label defined through
the label function, λ, and every label is interpreted by the
explaining function η. A summary of preliminary notations is
proposed in Table II.
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name notation name notation
activity ai log activity set A

activity set a activity vector x

time-stamp t activity matrix MX

event e activity vector space EX
trace σ encoder f

event log L decoder g

label set L latent vector z
label function λ latent matrix MZ

explaining function η latent space EZ

TABLE II: Notations summary.

VI. DESIGN OF EXPERIMENTS

In this section, a design of experiment on synthetic data is
presented. The objectives of such an experiment are multiple:
(1) to verify the accuracy of the methodology in identifying
hidden patterns (clusters) in event logs; (2) to demonstrate the
veracity of the decoder in explaining clusters’ labels; (3) to
compare performances of autoencoding methods with direct
clustering on sparse data; and (4) to benchmark autoencoding
methods with one another.

A. Data description

The input data used in this paper are event logs, composed
of events for which accurate labels are searched, according to
the problem defined in Definition 9. Thus, labels hidden in the
data were represented using groups of activities, among which
vectors will be generated. Such a construction was motivated
by data experts observations regarding non-clinical claims
data: similar hospitalizations are often described by codes from
a same “set”, which can be approximated using clinicians
knowledge. As an example, a stay for a given operation can be
fill in the database using one code representing the operation,
another for medical imaging procedures, some codes related to
particular diagnosis related to complications of the operation
or to the medical condition of the patient. Thus, there exist
similarities between two stays for the same operation, because
some codes are issued from a same “set”, but they are rarely
identical.

Considering these remarks, synthetic data were generated
representing an activity matrix as defined in Definition 6,
where each row represented an activity vector and each
column a 1-of-k representation of activities. The number of
different labels hidden in the data (i.e. the number of clusters
to find) is referred to as κ. For each label k ∈ J1, κK,
Nk vectors were generated such that Nk = N (µN ,

µN
5 ),

µN = 2500
κ . The number of characteristic activities for

each label k is referred to as MC
k ∈ N∗, constructed such

that MC
k = N (µC ,

µC
5 ) with µC = α × β × µN . The

number of all different activities involved is referred to as
M . For each activity vector of a given label k, a number
Ma = α × µN ∈ N∗ of activities was randomly chosen to
construct it. The number Ma corresponds to the number of
activities randomly chosen among characteristic activities. For
these activities, the corresponding attribute value was set to 1,
keeping 0 otherwise. An overlapping ratio γ is also introduced,
representing the quantity of activities of a label shared with
the nearest one. Moreover, a number Nnoisy = 250 of noisy

𝑁

𝑀

𝑁𝑘

𝑀𝑘
𝐶

𝑀𝑎

𝛾

𝑁𝑛𝑜𝑖𝑠𝑦

Fig. 1: Example of generated data. Here, κ = 5, α = 0.05,
β = 2 and γ = 0.1, leading to S̃ = 0.9 with each white pixel
being a value of 1 and black pixels being a value of 0.

events was generated. These noisy events were composed of
activities among all possible activities in the constructed data
set, with no particular pattern related to a given hidden label k.
As a result, the total number of traces (i.e. the number of rows)
is N = Nnoisy +

∑κ
k=1Nk. The parameters that have been

chosen in the design of experiments lead to an approximated
sparsity S̃ between 0.9 and 0.99. An example of synthetic data
generated is presented in Figure 1.

B. Experiment description

The autoencoder methods AE, DAE, and VAE, presented in
Section V-B, were implemented and compared in terms of per-
formances. Neural networks used are feed-forward networks,
composed of four fully connected layers of size 10× dlatent,
5 × dlatent and dlatent, the latter being the dimensionality
of the latent space defined as dlatent = 8. For DAE, noise
was defined as randomly selecting elements in vectors and
changing their values (from 0 to 1 or 0 to 1). 1% of noise is
added in every vector. For VAE, dlatent couple of parameters
of Gaussian distributions were learned as latent variables. The
inverse single sample Monte Carlo estimate of the ELBO was
used as the loss function to minimize during training. For
each parameter combination of the data, autoencoder training
was done using a symmetric architecture between the encoder
and the decoder. Dropout and L-2 regularization were used
for each layer to prevent the training from overfitting. The
chosen optimizer for training was Adam, with mini-batch of
size 32. The total number of epochs was set to 1000. Of the
overall data, 80% was used for training, while 20% was kept to
evaluate validation error for early stopping (with a patience of
25 iterations). After autoencoder training, K-mean clustering
in latent space was applied using all training and validation
data, K being fixed by maximizing mean silhouette score for
K ∈ JKmin,KmaxK with Kmin = 2 and Kmax = 15.

Performances were evaluated regarding clustering on the
one hand, and explainability on the second hand. To evaluate
clustering performances, an automatic procedure constructed
a confusion matrix between hidden labels and found clus-
ters, maximizing the accuracy (the sum of the diagonal) by
permuting columns only (found clusters) to align proposed
clusters with potential corresponding ones in hidden ones. The
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accuracy of resulting confusion matrix was then computed,
defined as the ability of a method to accurately assign the
right label to each event. To evaluate the ability of the
method to explain found clusters, the explaining F -score Fη is
introduced. Let k ∈ J1, κK = Ktrue be the label of the cluster
hidden in data, and c : k 7→ c(k) ∈ Kpred being a function
returning the corresponding cluster label according to previ-
ously described confusion matrix optimization. The average
of decoded elements from the cluster c(k) is computed, and
its activity set apredc(k) is compared to characteristic activities
of the corresponding label atruek . To quantitatively analyze the
decoding performances, the explaining F -score is defined such

as: Fη =
2×Rη×Pη
Rη+Pη

with Rη =
∑
k∈Ktrue a

true
k

⋂
apred
c(k)∑

k∈Ktrue card(atruek )
the ex-

plaining recall and Pη =
∑
k∈Kpred a

true
k

⋂
apred
c(k)∑

k∈Kpred card(apred
c(k)

)
the explaining

precision. These expressions are analogous to classical binary
classification metrics. A high explaining recall means a high
ability of the explaining function to find corresponding activi-
ties with hidden activities of the identified labels. Furthermore,
a high explaining precision corresponds to a decoding that
keeps interesting activities without being too general. Ideally,
each discovered label corresponds to a hidden one. This is
not necessarily the case, as the number of discovered and
hidden clusters could be different. Fewer predicted than hidden
clusters will impact the explaining recall, and more predicted
than true clusters will impact explaining precision.

Remark 1: As mentioned in Section V-D, the threshold
will have significant impact in the previously defined metrics.
In the design of experiments conducted here, an automatic
approach was used. For a cluster l, a list of all decoded
values from the average decoding vector X̄l was constructed.
All elements of this list were ordered in descending order.
By differentiation of this curve another list of values was
obtained. The minimum value of the resulting curve was
used to automatically define a judicious threshold for keeping
activities in the explaining set of the related cluster.

For every combination of parameters, 10 data sets were
constructed. Columns (activities) were shuffled, right before
the shuffling of rows (events). The proposed method was
applied using the previously described autoencoders (AE, DAE
and VAE) as well as a direct K-mean clustering without
autoencoding step, tested as a baseline (referred to as BASIC).
Performances were analyzed through mean and standard devi-
ation of clustering and explaining metrics. All algorithms and
experiments were conducted using Python 3.7 and Tensorflow
1.14. A schematic description of experiments is presented in
Figure 2.

C. Results

Results3 are summarized in Table III. A total of 24 ex-
periments of increasing difficulty were conducted. For each
combination of parameters, the accuracy and the Fη score
of the tested methods are presented. Results show that the
autoencoding methods outperform the direct clustering in

3Detailed results regarding the design of experiments of Section VI, as
well as the case study described in Section VII can be found as supplementary
materials on the following website: https://artemis-emse-laparo.hevaweb.com/

𝜅, 𝛼, 𝛽, 𝛾

Data generation

Autoencoder 
training

Clustering accuracy

× 𝟏𝟎

Shuffle rows and columns

AE, DAE & VAE BASIC

Direct 
clustering

Latent 
variables

2D t-SNE projection of found labels (left) vs real labels (right)

Noise

Label 
assignation

Confusion matrices construction

Labels explanationExplainability F-score

Fig. 2: Schematic representation of the design of experiments.

sparse high-dimensional space (except regarding experiments
15 and 21 where DAE performances are inferior). Therefore,
autoencoding plays an important role in data transforma-
tion for the proposed methodology. Furthermore, the results
highlight that VAE always outperforms the other methods
regarding both accuracy and Fη . Event though the standard de-
viation increases for difficult experiments, VAE shows a lower
variation compared to the other methods. As a conclusion,
results motivate the choice of VAE as part of the proposed
method to obtain accurate clusters and explain them.

VII. CASE STUDY

After proving the accuracy of the method on synthetic data,
this section is dedicated to demonstrate the relevance of the
method on real healthcare data. In that purpose, a medical
case study is presented, were process mining was deployed to
extract knowledge about patients’ hospital pathways.

A. Overview

A laparotomy is an abdominal surgery consisting of a large
incision of the abdomen, sometime necessary to investigate
abdominal pain. Incisional hernia (IH) is one of the possible
complications following laparotomy. These complication con-
sists in a protrusion of the tissues of the abdomen through
the abdominal muscle. The repair on an IH is a common
surgery, which can lead to chronic pain and decreased quality
of life. Colorectal surgeries, bariatric surgeries and abdominal
aortic aneurysm are laparotomy surgeries that may lead to IH
[7]. In this case study, we focused on patients developing
an IH after a laparotomy operation. The objective was to
apply the previously defined methodology to label raw medical
event logs before applying process mining. A process mining
study using manual labeling was also performed, to illustrate
the relevance of the methodology to automatically define
interesting labels.

B. Methods

The data4 were extracted from the SNIIRAM database. All
anonimized patients with a first laparotomy operation in 2010,

4Access to an extraction of the SNIIRAM database was provided by the
French CNIL under the agreement number DR-2019-147.

https://artemis-emse-laparo.hevaweb.com/
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ACCURACY Fη
Exp. BASIC AE DAE VAE BASIC AE DAE VAE

κ α β γ AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD
1 5 0.05 2 0.00 0.55 0.06 0.66 0.16 0.71 0.05 0.90 0.01 0.71 0.13 0.80 0.27 0.95 0.11 1.00 0.00
2 5 0.05 2 0.10 0.55 0.09 0.66 0.16 0.71 0.08 0.89 0.01 0.68 0.17 0.82 0.32 0.95 0.14 1.00 0.00
3 5 0.05 2 0.25 0.56 0.07 0.68 0.16 0.72 0.04 0.89 0.03 0.71 0.17 0.82 0.25 0.92 0.12 0.97 0.09
4 5 0.05 5 0.00 0.38 0.06 0.59 0.16 0.61 0.18 0.85 0.03 0.37 0.14 0.73 0.27 0.77 0.31 1.00 0.00
5 5 0.05 5 0.10 0.37 0.04 0.68 0.14 0.57 0.18 0.86 0.03 0.37 0.11 0.83 0.26 0.67 0.37 1.00 0.00
6 5 0.05 5 0.25 0.43 0.06 0.59 0.19 0.63 0.15 0.85 0.01 0.47 0.13 0.67 0.35 0.80 0.29 1.00 0.00
7 5 0.10 2 0.00 0.51 0.07 0.69 0.13 0.70 0.07 0.88 0.01 0.65 0.13 0.86 0.23 0.91 0.15 1.00 0.00
8 5 0.10 2 0.10 0.52 0.07 0.63 0.16 0.70 0.08 0.89 0.01 0.63 0.15 0.80 0.27 0.93 0.16 1.00 0.00
9 5 0.10 2 0.25 0.54 0.09 0.68 0.16 0.70 0.12 0.88 0.01 0.69 0.13 0.84 0.25 0.90 0.20 0.94 0.12
10 5 0.10 5 0.00 0.39 0.07 0.57 0.16 0.64 0.15 0.82 0.02 0.40 0.08 0.68 0.26 0.77 0.25 1.00 0.00
11 5 0.10 5 0.10 0.36 0.05 0.60 0.18 0.69 0.13 0.83 0.01 0.36 0.07 0.72 0.25 0.90 0.25 0.97 0.10
12 5 0.10 5 0.25 0.45 0.09 0.64 0.17 0.63 0.17 0.84 0.02 0.41 0.16 0.79 0.27 0.80 0.28 1.00 0.00
13 10 0.05 2 0.00 0.50 0.06 0.61 0.18 0.62 0.15 0.87 0.04 0.62 0.10 0.72 0.29 0.84 0.24 0.98 0.06
14 10 0.05 2 0.10 0.54 0.06 0.62 0.22 0.66 0.14 0.88 0.02 0.71 0.09 0.73 0.37 0.88 0.25 0.97 0.10
15 10 0.05 2 0.25 0.53 0.14 0.61 0.22 0.38 0.23 0.86 0.02 0.72 0.20 0.76 0.35 0.44 0.37 0.94 0.11
16 10 0.05 5 0.00 0.22 0.05 0.45 0.24 0.70 0.04 0.82 0.04 0.22 0.10 0.48 0.37 0.93 0.09 0.95 0.06
17 10 0.05 5 0.10 0.23 0.07 0.39 0.21 0.52 0.23 0.83 0.02 0.24 0.16 0.36 0.33 0.61 0.35 0.96 0.05
18 10 0.05 5 0.25 0.22 0.04 0.31 0.20 0.42 0.23 0.83 0.02 0.17 0.08 0.24 0.30 0.41 0.38 0.93 0.05
19 10 0.10 2 0.00 0.46 0.08 0.58 0.19 0.66 0.04 0.86 0.03 0.58 0.11 0.65 0.26 0.89 0.13 1.00 0.00
20 10 0.10 2 0.10 0.50 0.05 0.58 0.17 0.61 0.17 0.86 0.02 0.72 0.08 0.75 0.30 0.81 0.27 0.97 0.10
21 10 0.10 2 0.25 0.51 0.11 0.53 0.22 0.44 0.22 0.86 0.02 0.69 0.21 0.68 0.36 0.52 0.38 0.94 0.12
22 10 0.10 5 0.00 0.20 0.02 0.32 0.19 0.53 0.19 0.82 0.02 0.16 0.05 0.31 0.27 0.65 0.33 0.95 0.05
23 10 0.10 5 0.10 0.21 0.03 0.32 0.18 0.49 0.24 0.82 0.02 0.17 0.07 0.30 0.24 0.61 0.41 0.92 0.06
24 10 0.10 5 0.25 0.24 0.06 0.33 0.17 0.50 0.20 0.80 0.04 0.21 0.10 0.28 0.31 0.56 0.31 0.89 0.09

TABLE III: Clustering and explainability performance, measured by accuracy and Fη , respectively. For all parameters
combinations, average and standard deviation over 10 replications are presented. Best values are highlighted in bold.

followed by an IH within 5 years after the operation were
selected. This resulted in a total number of 7, 906 patients
included in the study, for which all hospitalization information
was extracted. Each patient’s hospitalization was transformed
into a trace of his ordered medical activities. Thus, the activity
set was structured as follows:

A = AMD

⋃
AAD

⋃
AMP

⋃
AD

⋃
ATAD (8)

where:
• AMD is the set of main diagnoses, the reasons of the

hospitalization (MD, using ICD-10 coding system);
• AAD is the set of additional diagnoses (AD, using ICD-10

coding system);
• AMP is the set of medical procedures (MP, using French

CCAM coding system);
• AD is the set of delivered drugs (D, using French UCD

coding system linked to ATC - Anatomical Therapeutic
Chemical - classes);

• ATAD is the set of drugs under temporary authorization
for delivery in French hospitals (using French LPP - Liste
des Produits et Préstations - coding system).

Moreover, for each activity code, hierarchical knowledge
(codes of upper levels in the hierarchy) was added as part of
the corresponding activity set. This procedure enables relations
between activity codes of a same group during autoencoding.
It also enriches the explainability of clusters, by providing
hierarchical knowledge and setting the level of precision in
coding depending on clusters, as shown in the following
results.

Stays related to dialyses or chemotherapy, which are known
to appears very frequently, have been filtered. Codes appearing
less than 50 times were also filtered, resulting in keeping
95.0% of codes while decreasing the size of the log activity

Cluster label Activity label Set (level)
2 Postoperative venting of the anterior abdominal wall MP (lvl. 4)

Ventral hernia MD (lvl. 2)
6 Diagnostic acts on the circulatory system MP (lvl. 2)

Diagnostic acts on the digestive system MP (lvl. 2)
7 Therapeutic acts on the digestive system MP (lvl. 2)

10 Endoscopy of the alimentary canal MP (lvl. 3)
12 Radiography of the digestive system MP (lvl. 3)
13 Encounter for attention to artificial openings MD (lvl. 2)

Therapeutic acts on the colon MP (lvl. 3)
14 Therapeutic acts on digestive system MP (lvl. 2)

Therapeutic acts on the anus MP (lvl. 3)
Therapeutic acts on the abdominal wall MP (lvl. 3)

TABLE IV: Explanation of clusters appearing on process
model: relevant decoded activities with corresponding activity
set and level in the hierarchy.

set by 85.7%. The final event log constructed for the study
contained, for 7906 traces (patients), 57533 events (stays) and
2228 unique activity codes. The previously defined method-
ology was conducted on the resulting activity matrix (of size
57533 × 2228), using VAE as autoencoder. The number of
clusters used was K = 15, which qualitatively appears as
a wise trade-off between explainability of clusters and final
process model readability. The process mining framework
used was the one proposed in [8], designed for application
to medical event logs. The maximum number of nodes, edges
and positions for process model optimization was fixed to 15,
25 and 5, respectively.

C. Results

Results obtained by automatic labeling (Figure 3a) were
compared with a process model of the same dimensionality,
constructed with the same process mining procedure but start-
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Fig. 3: Comparison of process models obtained using automatic labeling (left) vs manual labeling (right).

ing from an event log with manually defined labels according
to authors’ prior knowledge about the pathology (Figure 3b).
The process models read from left to right, the size of
nodes and edges being, for each process model, proportional
to the number of patients represented. Explanation results
regarding clusters obtained and visualized in Figure 3a are
detailed in Table IV. According to Figure 3, similarities are
observed between the process models. Most frequent medical
procedure codes related to laparotomy are subcategories of
the “Therapeutic acts on the digestive system” code in the
hierarchy. Thus, the related cluster (label 7) appears at the
beginning of the pathways. Label 2, which contains codes
related to IH, appears in the following of the pathway, as well
as label 14 (combining codes related to laparotomy and IH).
Also, stays related to diagnostic procedures (labels 6 and 12)
and more precisely to an endoscopy of the alimentary canal
(label 10) occupy a significant place in the process analyzed.
These stays were not considered during manual labeling but
were pointed out by the automatic labeling procedure based on
raw data. They may be related to patient’s medical control or
investigation regarding suspicion of complication after opera-
tion. This example illustrates that other interesting information
can be extracted from raw data with minimal initial input from
the user. However, by comparing the replayability score (which
gives a quantitative fitness measure of the resulting process
models), a gap was observed between automatic (42, 7%)
and manual (77.4%) labeling. The main explanation may be
provided by the first laparotomy node (representing 3, 802 vs
7, 906 patients, respectively). In practice, 549 different medical
procedure codes, from different chapters of the hierarchy,
were selected by medical experts to identify laparotomy in
the database. Even if most of the codes are gathered in label
7, remaining laparotomy stays were grouped in other less
frequent clusters, which do not appear in the final process
model because of the size constraint in optimization. Thus,

even if a quantitative replayability gap remains between the
two presented methods, the qualitative interpretation resulting
from the pathway analysis remains similar, as most of the
interesting events were pointed out. Moreover, the final process
model and the explanation of clusters furnish an interesting
base for discussion with medical experts.

VIII. CONCLUSION

In this paper, a methodology to handle the complexity
of event logs regarding activities was presented. Based on
autoencoding, artificial labels to characterize these events
are created, which can be used to apply process mining.
Explainability of each label is possible through decoding,
which allows the practical application of this method in fields
like healthcare where transparency is essential. A design of
experiments was presented, designed to mimic non-clinical
claims databases regarding authors’ knowledge. The ability of
the method to both create relevant clusters and explain them
accurately was demonstrated. In particular, the Variational
Auto-Encoder shows better performances than others tested
autoencoders, motivating the use of such learning methods for
further applications. Finally, a case study has been presented,
illustrating the potential of the methodology when applied on
real healthcare data. The presented method sounds promising
as a preprocessing solution for process mining, to handle
the complexity of medical activities in non-clinical claims
databases and of other similar databases.

Further work will focus on the deployment of the method
in new case study, to experience the method and generalize its
utilization. Particularly, a focus on providing interactive tools
to explore the results and facilitate discussions with clinical
experts will be made. As the complexity of medical event
logs depends on the database, other complexities could be
considered in further studies. As an example, the integration
of free text with structured medical information to create per-
tinent medical labels could be interesting to consider in future
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works. As noted by Helm et al [28], a lack of sufficient coding
in existing case studies remains. Therefore, addressing such
complexities in the method will be interesting for practical
uses on case studies with insufficiently coded data. Also, the
present methodology is a preprocessing step, applied before
deploying a process discovery algorithm (in our example,
based on optimization). An interesting subject could be the
fusion of both steps, by integrating the labeling step directly
during the optimization procedure of creating the final process
model. Also, as the K-mean algorithm was used to perform
clustering in the latent space, future work will focus on testing
other clustering algorithms. On a larger scope, future works
will focus on the use of the proposed methodology to perform
supervised learning on complex event logs. The proposal of
a transparent classification algorithm is of interest, particu-
larly for patients pathways data. Furthermore, the bridging of
process mining and deep learning is an interesting research
track. The use of recent advancements in deep learning for
process analysis and prediction seems promising, in particular
if process mining is used as an interface between model
learning and human understanding.
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