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An optimization-based process mining approach for explainable
classification of timed event logs

Hugo De Oliveira1,2, Vincent Augusto1, Baptiste Jouaneton2, Ludovic Lamarsalle2,
Martin Prodel2 and Xiaolan Xie1,3

Abstract— This paper addresses the problem of supervised
classification of time event logs of two classes: positive and
negative population. The key idea of this paper to explain
classification is to determine some process model that fits
well the positive event logs and poorly the negative ones.
More specifically, we introduce formal definitions of event logs,
process models and a replayability score that measures the
fitness of a process model for a given event log. We then
set the event log classification as an optimization problem
for the determination of a process model that maximizes its
replayability for the positive population and minimizes its
replayability for the negative one. A tabu search algorithm is
then proposed to solve this problem. The proposed algorithm is
compared with three state-of-the-art classification algorithms on
test cases of various complexity. It is shown to provide superior
performances and a graphic representation of the process model
of the positive event logs.

I. INTRODUCTION

Data is a powerful resource. Different structures of data
can be found, within a large spectrum of complexity. In the
field of supervised learning, machine learning algorithms for
classification have been widely used. The paradigm for state-
of-the-art classification algorithms is matrix-shaped input
data: each observation (row) is a vector of features (column).
Once trained, classifier’s predictions for new observations are
based on feature similarity with training observations.

However, when data is structured in event logs, each
observation is an ordered list of events and no longer a
single vector of features. Distinctive characteristics (patterns)
can be of different types, as for example a special event’s
occurrence, an event preceding another or a typical time
between two events. Data engineering exists in order to
transform an event log into a feature matrix (“flattening”
process). This data preprocessing step is challenging because
potential distinctive patterns of the event log data need to be
kept for the classifier. Furthermore, it might lead to high
dimension and sparse matrices, especially when considering
time between events.

Even if predictive performance is the predominant crite-
rion for model approval, human understanding is a key lever
for acceptance and practical application of decisions. This
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CIS, F - 42023 Saint-Étienne France (e-mails: hugo.de-oliveira@emse.fr;
augusto@emse.fr; xie@emse.fr).

2H. De Oliveira, B. Jouaneton, L. Lamarsalle and M. Prodel are with
HEVA, 186 avenue Thiers, F-69465, Lyon, France (e-mails: bjouane-
ton@hevaweb.com; llamarsalle@hevaweb.com; mprodel@hevaweb.com).

3X. Xie is also with the Antai College of Economics and Management,
Shanghai Jiao Tong University, China.

is the case in healthcare, where the identification of patients
with pathways being suspicious of developing future medical
complications is valuable. It offers the opportunity to identify
at-risk patients and to respond with personalized medical
care and prevention. However, ensuring a high predictive
performance is challenging, as patients’ pathways are com-
plex: high number of different medical events, variability of
pathways’ length, variability of time between events... The
imbalance between groups of patients with and without a
given complication is also a recurrent problem. Even if some
preprocessing methods such as over/under-sampling exist in
the literature, performances can be substantially impacted.

To tackle these scientific challenges, we propose in this
paper an explainable method for classification of time event
logs of two classes: positive and negative population. The
main idea to predict and explain is to construct a process
model that fits well the positive event logs and poorly the
negative ones. The proposed framework which relies on time
grid process models [1], has the following characteristics: (1)
designed for event log data; (2) robust to imbalanced classes;
(3) explainable through the obtained process model, which
represents the knowledge extracted from the event log of the
positive class.

This paper is organized as follows. Section II presents a
brief literature review related to classification using event
logs. Important definitions and notations are presented in
Section III. In Section IV, the problem settings and the
proposed methodology is introduced. Section V presents
a design of experiments on simulated data to assess the
proposed methodology performances. Finally, a conclusion
and future perspectives are given in Section VI.

II. LITERATURE REVIEW

Collecting real-life process data results in time-dependent
event logs. Many fields are concerned such as healthcare,
manufacturing industry, software engineering or telecommu-
nication [2]. The use of unsupervised methods on event logs
is helpful to extract knowledge from data. For that purpose,
process mining has become state-of-the-art. The primary
objective of Process Mining is to do process discovery, i.e.
to represent a summarized model of the event log [3]. It has
been used in healthcare to map care processes and clinical
pathways [4]. For example, Prodel et al. [5] used linear
integer programming to discover patients’ pathways from
hospital data. In 2018, authors presented a meta-heuristic
to perform optimal discovery of clinical pathways [6]. An



enhancement has been proposed by De Oliveira et al. [1] to
introduce time in optimal process models.

The use of process mining frameworks to perform predic-
tions has been already presented in the literature. Examples
are numerous, as for example the prediction of the time
before the occurrence of an event in a process, or the
probability of a given task to be performed [7]. Each of
these tasks could be performed using different methods. In
the case of next activity prediction, Ferilli et al. presented
two methods based on the WoMan framework [8]. The
implementation of a predictive model in each node of a
process model to predict future steps taking into account
patients’ characteristics has also been proposed in [9].

Binary classification applied on event logs data has been
addressed in the literature. If time is neglected and only
a succession of events is analyzed, the classification of
event log data problem is similar to sequence classification.
For that, three types of studies can be identified [10]: (1)
featured-based classification (extracting features from an
event log to create a matrix input for a classifier model);
(2) distance-based classification (using a similarity measure
between sequences); (3) model-based classification. The two
first types of approaches are used in bioinformatics for DNA
(deoxyribonucleic acid) alignment, and based on models
defined by [11], [12] in particular. Improvements of these
methods are explored in the literature [13]. The third type
gathers statistical models as Hidden Markov Models [14],
[15].

For supervised prediction on event log data, a data pre-
processing phase is generally needed: applying existing pre-
diction algorithms on event logs is not straightforward, as
the event log needs to be transformed into a feature matrix.
This transformation is done automatically using features
extraction or using experts’ knowledge. Healthcare is a field
of interest, as patients’ pathways are defined by succession of
medical events, time between events being a key indicator
of care. State-of-the-art machine learning approaches have
been widely used for prediction in healthcare. Case studies
found in the literature are of various type [16], as prediction
of diseases [17], mortality [18], prevention tests [19] and
readmission [20], [21]. Medical features are generally se-
lected by experts, but the longitudinal structure of patients’
pathway is either lost during feature extraction or leads to
a sparse representation of data [22]. Moreover, algorithms
like Decision Tree or Logistic Regression are preferred by
practitioners due to their explainability.

As a result, to the best of our knowledge, no classification
algorithm has been designed for event log data, with a
particular focus on learning explainability. This focus carries
potential applications, such as healthcare and particularly
patient’s pathway constitutes the initial motivation of the
development of such a methodology. The explainability of
predictions for medical experts and decision makers is es-
sential, especially when time is a possibly distinctive feature.

III. PRELIMINARIES ON EVENT LOGS AND PROCESS
MODELS

A. Event log

Definition 1: (Event). An event denoted e is defined as a
couple (a, t) where a ∈ A is an element of a finite set A of
labels corresponding to the event class of e, and t ∈ T with
T = N or R is the event time or time-stamp. An event e is
also defined by the labeling function label(e) = a and the
timing function time(e) = t.

Definition 2: (Trace). A trace is a sequence of events σ =
e1, e2, . . . , em with m ∈ N∗ such that ek ∈ A × T and
time(ek) < time(ek+1).

Definition 3: (Event log). An event log is a set of traces
L = {σ1, σ2, . . . , σn} with n ∈ N∗. An event log contains all
input data of this paper. It is assumed that each label appears
at least once in the event log L, i.e. ∀a ∈ A : ∃σ ∈ L, e ∈ σ
| e = (a, t).

Definition 4: (Event diversity). The event diversity dive
is defined as dive = |A|. This descriptor gives information
about the variability of the event log in terms of labels.

B. Process models

Definition 5: (Time grid process model). A time grid
process model of a given log L is a four-uplet TG-PsM =
(N,E,L, T ) where:
• N is a set of nodes partitioned into K disjoint subsets

called layers, i.e. N = N1 ∪ · · · ∪Nk, Nk ∩Nl = ∅;
• E ⊂ N ×N is a set of edges such that (x, y) ⊂ E with
x ∈ Nk, y ∈ Nl implies k < l, i.e. the process model
is acyclic with edges going from lower layers to higher
layers;

• L : N → A is the labeling function of the nodes.
• T : E → T×T associates a time interval [a(x,y), b(x,y)]

to each edge (x, y) ∈ E.
Interesting properties of such a process model are as

follows. A same label can appear at different positions in
the model. Constraints for edges link lower positions to
strictly higher ones. This produces oriented process models,
with no backward edge and possibly a same label found
in lower an higher positions. Moreover, multiple edges can
be found between two nodes, each edge having a different
time characteristic. This time characteristic on edges serves
to consider time during the optimization process.

In the following, all process models are supposed to be
time grid process models, as defined in Definition 5.

C. Replayability

Definition 6: (Replayability). The replayability function is
denoted R, and returns the replayability score:

R(TG-PsM, σ) ∈ [0, 1] (1)

which is the representativeness of the trace σ by the process
model TG-PsM . By extension, the replayability score dis-
tribution of an event log L is the set of replayability score
values for each trace in L:

R(TG-PsM, L) = (R(TG-PsM, σ))σ∈L (2)



The replayability is used in [5], [6], [1] to evaluate the
ability of a process model to represent a given trace. The
result of the procedure is a replayability score between 0 and
1, where 1 corresponds to the best possible representation
of a trace by a process model. The following elements are
positively taken into account in the replayability: (1) nodes
matching trace’s events; (2) edges matching event transitions;
(3) time characteristic of edges matching time-stamp of
event logs; (4) no central event of the trace skipped. As the
replayability score measures the ability of a process model to
represent a given trace, the analysis of the replayability score
distribution points out the representativeness of a process
model regarding the entire event log. Further details about
the replayability for time grid process models are given in
[1].

IV. PROCESS MODEL-BASED CLASSIFICATION OF EVENT
LOGS DATA

The proposed approach is an optimization-based method,
at the crossroad between machine learning, process mining
and operational research. In this section, we formally define
the problem settings and describe the methodology, with a
particular focus on the optimization process involved.

A. Problem setting

The problem here consists of having two labeled event
logs L0 and L1, and learn patterns from this data in order
to predict for new, unlabeled traces. In other words, the
problem addressed here is a binary classification problem,
with data involved being event log of traces (and not sets
of labeled vectors described by features as in classic binary
classification).

Lets define a binary classed event log:

Ltrain = (Ltrain0 , Ltrain1 ) (3)

where traces from Ltraink are of class k for k ∈ {0, 1}. For
a given process model TG-PsM , let

Rtrain0 = R(TG-PsM, Ltrain0 ) (4)

and
Rtrain1 = R(TG-PsM, Ltrain1 ) (5)

be the replayabilities of traces of Ltrain0 and Ltrain1 , respec-
tively. Resulting replayability distributions can be visualized
on a single plot, as shown in Figure 1. Supposing that the
TG-PsM better represents traces from the positive class
than traces from the negative one, replayability scores from
Rtrain1 will be generally higher than replayability scores
from Rtrain0 . The process of training a TG-PsM consists
in creating such a process model.

B. Process model-based classification

The process model-based classification algorithm is com-
posed of 2 steps:

1) Train: construct a TG-PsM from Ltrain to get re-
playability distributions Rtrain0 and Rtrain1 ;

0 1

Replayability

Number of traces

𝓡0
𝑡𝑟𝑎𝑖𝑛 = 𝓡(𝑇𝐺-𝑃𝑠𝑀, 𝐿0

𝑡𝑟𝑎𝑖𝑛)

𝓡1
𝑡𝑟𝑎𝑖𝑛 = 𝓡(𝑇𝐺-𝑃𝑠𝑀, 𝐿1

𝑡𝑟𝑎𝑖𝑛)

θ

Fig. 1: Replayability graph of a process model TG-PsM on
training data (Ltrain0 , Ltrain1 ) with threshold θ for classifica-
tion.

2) Predict: for a new trace σ, compute its replayability
R(TG-PsM, σ) and return the corresponding pre-
dicted class by comparing it to a given threshold θ.

The choice of the threshold θ is a widespread issue for
binary classifiers, to predict in practice for every individuals.
To find the best split between the two replayability distribu-
tions, the threshold which minimizes the gini impurity is
chosen. One can infer that the construction of the process
model (the training of TG-PsM ) is the key to improve
classification performances. The main idea here is to build a
process model which produces distinct distributions for both
training classes on the replayability graph. A Tabu search is
used, motivated by previous work [6], [1]. Before detailing
the search algorithm, two objective functions are described.

C. Objective functions for process model optimization

Two objective functions are presented, each involving a
different measure of process model quality. The average
replayability function is denoted as:

R(TG-PsM, L) =
1

|L|
∑
σ

R(TG-PsM, σ) (6)

1) RepOpt: The first objective function consists in search-
ing a final solution which maximizes the mean replayability
of the event log Ltrain1 (positive class):

R(TG-PsM, Ltrain1 ) (RepOpt)

One can notice that elements of Ltrain0 stay unused during
the optimization process. This objective function was used
in process discovery for unsupervised process mining [1].

2) DiffOpt: Instead of maximizing the replayability of
the traces of the positive class, we maximize the difference
between the means of the two classes. The idea is to construct
a graph that best replays traces of Ltrain1 and that replays
badly traces of Ltrain0 .

R(TG-PsM, Ltrain1 )−R(TG-PsM, Ltrain0 ) (DiffOpt)

Expectations with this objective function is the evacuation
of shared patterns between positive and negative classes,
while keeping those specific to the positive one.



The two previously defined objective functions (RepOpt)
and (DiffOpt) constitute the core of the local search proce-
dure used to create optimal process models. This procedure
is detailed thereafter.

D. Tabu search for process model optimization

The proposed methodology to fit a process model TG-
PsM on train data Ltrain is an optimization process based
on a local search. Starting from a random solution (i.e. a
process model), a neighborhood of solutions is created. Each
neighbor is a slightly modified version of the current process
model (2 possible moves: add a new promising node or
randomly delete a node). Each neighbor is then evaluated
by computing the objective function (RepOpt) or (DiffOpt).
The best neighbor is kept as the current solution and added
to a fixed sized first-in-first-out list of tabu solutions. Tabu
solutions cannot be selected when creating a neighborhood.
This process is iterated until a stopping criterion is reached (a
total maximum number of iterations or a maximum number
of iterations without any improvement). Resulting process
model is the best evaluated solution encountered during the
entire search.

Required parameters for the optimization procedure are
the constraints (the maximum number of nodes UN , the
maximum number of edges UE and the maximum position in
the process model pmax) and search parameters (the neigh-
borhood size, the tabu list size, and the stopping criteria).
The set of time intervals for edges is also an input parameter.
Pertinent time intervals are constructed using Kernel Density
Estimation, previously proposed in [1].

V. NUMERICAL EXPERIMENT

The classification methodology is validated through the
following design of experiments. Event logs (L0, L1) =
(Ltrain0 , Ltest0 , Ltrain1 , Ltest1 ) are build with different hidden
patterns, the objective being to learn from training event logs
and accurately predict for test ones.

A. Data generation

Two graphs G0 and G1 are constructed, constituted of
nodes arranged in layers having a maximum number of
identical positions equal to pm. For each position p ∈
J1, pmK, the corresponding layer is composed of n = dive
different nodes. Then, a proportion of shared patterns is
removed, by deleting cpat∗|N | randomly chosen nodes from
G1 and corresponding edges. An illustration for G0 and G1

is shown on the left of Figure 2.
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Fig. 2: Schematic representation of the design of experi-
ments.

A trace σ is created by starting from the lower position
of the graph, and by adding to the trace an event with the
same label as a randomly selected node of the next increasing
position. The time-stamp of the new event is added to the
previous time-stamp; it is a time value randomly selected for
L0 and L1 following respectively U(0, 400) and N (200, 25).
At each step the process can be stopped with a probability
p = P(ncurrent)

pm
, where ncurrent is the current node of

G, corresponding to the last addition to σ. Such event log
construction process ensures the presence of a pattern in
G1, in terms of labels, transitions and time. The probability
of stopping the construction process ensures a variability in
traces’ lengths. The higher cpat is, the smaller G1 and the
more specific the process model will be. Event logs dimen-
sions are noted N = |Ltrain0 | and P = |Ltrain1 |. The design
of experiments consists in testing different configurations for
dive, pm and cpat. A summary of parameters for the design
of experiment is presented in Table I.

TABLE I: Search parameters and constraints used for design
of experiments.

Data parameters Value
Number of traces N = 1800 and P = 200

Diversity of events dive ∈ [10, 50, 100]

Maximum length of generated traces pm ∈ [10, 25, 50]

Event pattern coefficient cpat ∈ [0.90, 0.75]

Time transition patterns G0: U(0, 400)
G1: N (200, 25)

Graph parameters Value
Maximum number of nodes UN = 0.2× dive × pmax

Maximum number of edges UE = 2× UN

Maximum number of positions pmax = |σ|max

Tabu search parameters Value
Neighborhood size 15
Size of Tabu list 10

Max. number of iterations 500
Max. number of iterations 15

without improvement

B. Evaluation metrics

ROC (Receiver Operating Characteristic) curve is the true
positive rate (tpr) in function of false positive rate (fpr). This
curve is obtained by varying the threshold for prediction (θ
for process model classifier). The AUC (Area Under the
Curve) is chosen as the performance measure, justified by
the presence of imbalanced classes.

C. Benchmark of binary classifiers

The process model-based classifier is compared with three
state-of-the-art machine learning algorithms for binary clas-
sification: Decision Tree (DT), Random Forest (RF) and
feed-forward Multi-layer Perceptron (MLP). These methods
expect matrix-shaped input data, so a “flattening” prepro-
cessing is applied to the event log: features are created by
combining every possible event’s labels with corresponding
time-stamps encountered in the event log. For each trace
having a given event at a given time stamp, the corresponding



feature value is set to 1, 0 otherwise. The advantage of
this preprocessing approach is to provide the 3 machine
learning models with the most accurate data possible. The
inconvenience is the high dimension and sparsity of input
data. Because imbalanced classes are an issue for binary
classification algorithms, data balancing has been applied
before fitting DT, RF and MLP. An oversampling of the
minority class was applied using the SMOTE algorithm [23].
Moreover, a high-dimension grid of hyperparameters was
defined, and a random search on it was performed. A 3-fold
cross-validation was used on the training set to determine
the best hyperparameter combination for each data set. The
previously described design of experiment is summarized in
Figure 2. Calculations were done in python 3.6, using
scikit-learn library for DT, RF and MLP methods.

D. Results

1) Quantitative results: For each descriptor combination,
median and standard deviation of AUC on test sets for 10
replications are presented in Table II. The best average AUC
score is highlighted in bold.

Our method with objective function (DiffOpt) globally
outperforms DT, RF and MLP in most settings. The gap
between proposed methods and state-of-the-art algorithms
increases with the increase of dive for cpat = 0.90. When
patterns in event logs of the positive class are less specific
(cpat = 0.75), the general performances decreases and
variability increases. (DiffOpt) seems robust regarding the
increase in diversity of events (dive) and the increase in
traces’ size (pm). Other methods are negatively impacted
by the increase in diversity and trace size which results in
reduced AUC performances.

TABLE II: Benchmark of AUC for 5 methods: average and
standard deviation.

Data DT RF MLP (RepOpt) (DiffOpt)
cpat dive pm AVG STD AVG STD AVG STD AVG STD AVG STD

0.90 10 10 0.96 0.01 0.96 0.01 0.99 0.01 0.99 0.01 1.00 0.00
25 0.95 0.01 0.95 0.01 1.00 0.00 0.99 0.02 0.99 0.02
50 0.96 0.01 0.96 0.01 1.00 0.00 0.99 0.02 0.98 0.01

50 10 0.95 0.02 0.95 0.02 0.97 0.02 0.98 0.01 1.00 0.00
25 0.95 0.02 0.95 0.02 0.97 0.01 0.97 0.01 0.99 0.00
50 0.95 0.03 0.95 0.03 0.98 0.02 0.97 0.01 0.99 0.00

100 10 0.95 0.01 0.95 0.01 0.96 0.01 0.98 0.01 0.99 0.00
25 0.92 0.05 0.92 0.05 0.97 0.01 0.98 0.02 0.99 0.00
50 0.90 0.07 0.90 0.07 0.97 0.02 0.97 0.01 0.99 0.00

0.75 10 10 0.88 0.05 0.88 0.05 0.94 0.03 0.95 0.05 0.97 0.02
25 0.89 0.04 0.90 0.04 0.95 0.04 0.95 0.06 0.96 0.02
50 0.85 0.06 0.86 0.06 0.93 0.04 0.94 0.04 0.91 0.06

50 10 0.88 0.03 0.88 0.03 0.86 0.06 0.90 0.03 0.95 0.02
25 0.87 0.04 0.85 0.06 0.87 0.05 0.91 0.04 0.94 0.01
50 0.88 0.03 0.86 0.06 0.85 0.08 0.87 0.03 0.94 0.02

100 10 0.77 0.10 0.78 0.06 0.86 0.03 0.87 0.05 0.93 0.02
25 0.65 0.06 0.64 0.07 0.80 0.11 0.81 0.04 0.92 0.02
50 0.64 0.07 0.63 0.06 0.84 0.05 0.72 0.05 0.86 0.07

2) Qualitative and explainable results: The interpretabil-
ity is a crucial motivation in this study. Two examples
of process models obtained after training (using (DiffOpt)
objective function) are displayed in Figures 3 and 5. Process
models are read from left to right, following increasing node

positions. Circles represent nodes of the model, and flux
from circles represent edges. Node size and edge size are
proportional to the number of traces from Ltrain1 replayed
during the replayability game. Each obtained process model
graphically highlights distinctive patterns, mined during the
training optimization. Thus, for simulated event log with
high pattern coefficient (cpat = 0.9) and narrow dimensions
(dive = 10 and pmax = 10), the resulting process model
is simple (Figure 3). However, its power to distinct traces
is strong, as highlighted by AUC performances (AUC =
1.00± 0.00).

Fig. 3: Example of process model obtained using (DiffOpt),
with cpat = 0.9, dive = 10 and pmax = 10.

To illustrate the prediction method, an example is pre-
sented in the following.

Example 1: An event log containing 2 traces σA and σB
is presented in Figure 4. We want to predict if these traces
are of class 0 or 1, according to the process model of
Figure 3. After training on Ltrain1 and Ltrain0 , the process
model TG-PsM maximizes (DiffOpt). Thus, the mean re-
playability of traces of Ltrain1 (0.98) is much higher than the
mean replayability of traces of Ltrain0 (0.32). The threshold
minimizing the gini impurity on the two training replayability
distributions is θ = 0.40. By computing the replayabilities of
both traces, it appears that σA is well replayed (0.80), while
σB replayability is pretty low (0.25). After a comparison to
the threshold θ, class 1 and class 0 are attributed to σA and
σB , respectively.

id time-stamp event

A 0 label_5

A 12 label_4

A 25 label_0

A 28 label_5

A 31 label_8

B 0 label_8

B 15 label_9

B 42 label_0

B 51 label_4

ഥ𝓡(𝑇𝐺-𝑃𝑠𝑀, 𝐿0
𝑡𝑟𝑎𝑖𝑛) = 0.32

ഥ𝓡 𝑇𝐺-𝑃𝑠𝑀, 𝐿1
𝑡𝑟𝑎𝑖𝑛 = 0.98

Predictions (𝜃 = 0.40)

𝓡(𝑇𝐺-𝑃𝑠𝑀, 𝜎𝐴) = 0.80 > 𝜃 → 1
𝓡(𝑇𝐺-𝑃𝑠𝑀, 𝜎𝐵) = 0.25 < 𝜃 → 0

Fig. 4: Event log of σA and σB (left) and predictions (right).

A more complex pattern extraction is presented in Fig-
ure 5, with cpat = 0.75, dive = 10 and pmax = 50.
The process model is characterized by two central events
(“label 6” and “label 9”), surrounded by other spread out
and less specific ones. As the process model definition
carry time characteristics on edges, potential distinctive time
patterns are also extracted. Time-transitions for the class
1 followed N (200, 25) (and U(0, 400) for class 0). Thus,
examples of time interval retained by the model (for example
[88, 264] and [96, 289] in Figures 5), validate the ability of
the method to display hidden time patterns.



Fig. 5: Example of process model obtained using (DiffOpt),
with cpat = 0.75, dive = 10 and pmax = 50.

VI. CONCLUSION

In this article, a new method for binary classification on
timed event logs is proposed. Numerical experiments on syn-
thetic data are presented, the robustness of the method being
tested on event logs of increasing complexity. Quantitative
results demonstrate the ability of the (DiffOpt) method to
give outstanding performances in terms of AUC. Compar-
isons with state-of-the-art machine learning methods show
the competitiveness of the proposed binary classifier when
directly applied on imbalanced event logs with no use of
over/under-sampling on training data. As process models
carry distinctive patterns discovered during the training pro-
cess, displaying them graphically illustrate future predictions.

Limitations and opportunities for future work are the
following. Multi-class classification is not directly treated in
this paper, but one can switch from binary to multi-class
classification through “one-versus-all” settings. The current
model cannot be updated with new traces batch. It must be
entirely rebuilt. However, starting a new optimization process
with already trained model as the initial solution could be
a good strategy. The simulated event logs used here were
designed to mimic patterns which will be interesting to found
in clinical pathways extracted from claim databases. As the
presented methodology is promising on synthetic data, future
work will focus on practical healthcare case studies.

REFERENCES

[1] H. De Oliveira, V. Augusto, B. Jouaneton, L. Lamarsalle, M. Prodel,
and X. Xie, “Optimal process mining of timed event logs,” Information
Sciences, vol. 528, pp. 58 – 78, 2020.

[2] A. R. C. Maita, L. C. Martins, C. R. L. Paz, L. Rafferty, P. C. K.
Hung, S. M. Peres, and M. Fantinato, “A systematic mapping study
of process mining,” Enterprise Information Systems, vol. 12, no. 5,
pp. 505–549, 2018.

[3] W. M. P. van der Aalst, “Introduction,” in Process Mining: Discovery,
Conformance and Enhancement of Business Processes, pp. 1–25,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[4] T. G. Erdogan and T. Ayca, “Systematic mapping of process mining
studies in healthcare,” IEEE Access, vol. 6, pp. 1–1, 04 2018.

[5] M. Prodel, V. Augusto, X. Xie, B. Jouaneto, and L. Lamarsalle,
“Discovery of patient pathways from a national hospital database using
process mining and integer linear programming,” in CASE, pp. 1409–
1414, 2015.

[6] M. Prodel, V. Augusto, B. Jouaneton, L. Lamarsalle, and X. Xie,
“Optimal process mining for large and complex event logs,” IEEE
Transactions on Automation Science and Engineering, vol. 15, no. 3,
pp. 1309–1325, 2018.

[7] W. M. P. van der Aalst, Operational Support, pp. 301–321. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016.

[8] S. Ferilli and S. Angelastro, “Activity prediction in process mining
using the WoMan framework,” Journal of Intelligent Information
Systems, vol. 53, pp. 93–112, 2019.

[9] M. Prodel, V. Augusto, X. Xie, B. Jouaneton, and L. Lamarsalle,
“Stochastic simulation of clinical pathways from raw health
databases,” in 2017 13th IEEE Conference on Automation Science
and Engineering (CASE), pp. 580–585, Aug 2017.

[10] Z. Z. Xing, J. Pei, and J. K. Eamonn, “A brief survey on sequence
classification,” SIGKDD Explorations, vol. 12, pp. 40–48, 11 2010.

[11] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, no. 3, pp. 443 – 453, 1970.

[12] T. Smith and M. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195
– 197, 1981.

[13] B. Chowdhury and G. Garai, “A review on multiple sequence align-
ment from the perspective of genetic algorithm,” Genomics, vol. 109,
no. 5, pp. 419 – 431, 2017.

[14] Y. Byung-Jun, “Hidden markov models and their applications in
biological sequence analysis,” Current Genomics, vol. 10, no. 6,
pp. 402–415, 2009.

[15] S. Blasiak and H. Rangwala, “A hidden markov model variant for
sequence classification.,” IJCAI International Joint Conference on
Artificial Intelligence, pp. 1192–1197, 01 2011.

[16] H. De Oliveira, M. Prodel, and V. Augusto, “Binary classification on
french hospital data: Benchmark of 7 machine learning algorithms,”
in 2018 IEEE International Conference on Systems, Man, and Cyber-
netics (SMC), pp. 1743–1748, 10 2018.

[17] M. Nilashi, O. Ibrahim, H. Ahmadi, and L. Shahmoradi, “An analytical
method for diseases prediction using machine learning techniques,”
Computers & Chemical Engineering, vol. 106, 06 2017.

[18] A. Salcedo-Bernal, M. Villamil-Giraldo, and A. Moreno-Barbosa,
“Clinical data analysis: An opportunity to compare machine learning
methods,” Procedia Computer Science, vol. 100, pp. 731 – 738,
2016. International Conference on Health and Social Care Information
Systems and Technologies 2016.

[19] N. Herazo-Padilla, V. Augusto, B. Dalmas, X. Xie, and B. Bongue,
“Screening a portfolio of pathologies by subject profiling and medical
test rationing,” in 2019 15th IEEE Conference on Automation Science
and Engineering (CASE), pp. 424–430, Aug 2019.

[20] O. Ben-Assuli, R. Padman, M. Leshno, and I. Shabtai, “Analyzing
hospital readmissions using creatinine results for patients with many
visits,” Procedia Computer Science, vol. 98, pp. 357 – 361, 2016.
The 7th International Conference on Emerging Ubiquitous Systems
and Pervasive Networks (EUSPN 2016).

[21] D. Hooijenga, R. Phan, V. Augusto, X. Xie, and A. Redjaline,
“Discriminant analysis and feature selection for emergency department
readmission prediction,” in IEEE Symposium Series on Computational
Intelligence, SSCI 2018, Bangalore, India, November 18-21, 2018,
pp. 836–842, 2018.

[22] M. Vandromme, J. Jacques, J. Taillard, A. Hansske, L. Jourdan, and
C. Dhaenens, “Extraction and optimization of classification rules for
temporal sequences: Application to hospital data,” Knowledge-Based
Systems, vol. 122, pp. 148 – 158, 2017.

[23] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, p. 321–357, Jun 2002.


