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Sleep stages classification using cardio-respiratory variables

Asma GASMI*2, Vincent AUGUSTO! , Paul-Antoine BEAUDET?,
Jenny FAUCHEU? | Claire MORIN* | Xavier SERPAGGI ® and Franck VASSEL 2

Abstract— Analysis of sleep is important in order to detect
health issues and try to prevent them. In particular, sleep
dysfunctions may be the first signs of cognitive frailties for
elderly persons. The polysomnography (PSG) is considered the
golden standard to perform a comprehensive sleep analysis,
as it is based on several sensors placements. However, for
longitudinal study of sleep that is required to prevent frailty
for elderly persons, such medical equipment is not suitable
since it is very invasive. Recent technological advances in
sensors allow to gather data with a good precision with less
intrusive equipment. The main objective of this study consists
in developing a new algorithmic approach to analyse sleep
using data from low intrusive sensors. In this study we focus
on sleep phase detection, i.e. wake, Non-Rapid Eye Movement
(NREM) and Rapid Eye Movement (REM). We consider the
following sources of data: heart beat rate, as well as user
data such as gender, age, etc. The problem is considered as a
supervised classification machine learning problem. We propose
a benchmark of several machine learning algorithms and
compare their performances against the medical gold standard,
the PSG. To do so, we use a data-set collected from a published
clinical trial. Support Vector Machine (SVM) algorithm globally
outperforms all other methods with a 76.5% agreement with
the PSG. As a direct perspective of this study, we plan to
add other sources of data using custom sensors to improve
the performance of the prediction.

Sleep stages, machine learning, supervised classification,
sleep architecture, polysomnography

I. INTRODUCTION

Sleep analysis is a promising research field to delay
frailty for elderly people and prevent serious health problems.
Previous studies [6] underline the good correlation existing
between sleep disorders and cognitive frailty, the former
being both a source and a consequence of the latter. In
this context, polysomnography is acknowledged as the gold
standard [12] to assess sleep quality. It allows monitoring
brain, heart, muscle, and breathing activity, and therefore
deciphering the different sleep stages and the duration of
sleep, as well as possible events of sleep disorder (apnea,
restless legs syndrome, parasomnia...).
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However, PSG is a very intrusive and costly tool that
cannot allow a longitudinal follow-up of patients. Different
substitutes are currently developed and tested for a non-
intrusive, accurate and inexpensive assessment of the sleep
quality. Among them, ballistocardiograph is a promising
tool. It allows a distant monitoring of the patient heart
and breathing activity, since the sensor is placed under the
mattress of the bed. Several studies report clinical studies and
related post-processing to assess the sleep quality provided
by the BCG against the gold standard. These studies can be
classified depending on the number of raw data and derived
parameters included to detect the sleep stages, as well as on
the classification chosen for the sleep stages.

In this study, we chose the most common sleep classifica-
tion, split in three stages [3], [4], defined as:

1) wake (representing less than 2% of the total sleep
duration), characterised by slow muscle activity and
slow eye movement.

2) NREM, characterised by a decreased heart rate, an
absence of eye movement, muscle relaxation, and a
slow breathing, as well as specific brain activities. It
usually represents 75-80% of the total sleep duration;

3) REM, characterised by an intense brain activity, an
absence of muscle activity, rapid and irregular breath-
ing, increased heart and breathing rates, and quick eye
movements. It represents 20-25% of the total sleep
duration.

Table 1 summarises studies which aim at characterising
the sleep using cardio-respiratory variables from the BCG or
ECG and these three sleep stages. In past clinical trials, most
of the methods were tested on a small number of subjects
(less than twenty). Most of studies achieve around 75%
precision comparing to PSG results. Only [18] has been able
to reach a fairly good precision (85%) but it was only tested
on 5 subjects while using as many as 78 features in their
method. [14] also performs well (76.10%) but the method
could not be implemented within a commercial product.
Similar conclusions can be drawn for [19].

The main objective of this work is to design a non-
invasive way of sleep stages classification that has a precision
exceeding 70% while using the minimum number of features
possible. We propose in this paper a supervised classification
method in association with data that could be driven from
ballistocardiograph (BCG).

This paper is organised as follows. We present in Section II
the methods based on the use of cardio-respiratory variables
that could be driven from BCG. Results are given and



TABLE I
PREVIOUS RELATED WORK

Article Num. of Classes Sensor Type Classifier Row Input Accuracy
subjects
Migliorini et al. 11 REM/NREM/WAKE Hydraulic signals+  Quadratic-wavelet ~ LF/HF/ Ratio  76.10%
2010 [14] 4 load cells signal  discrete transform  (HF/LF)
(frequency mode)

Hrihara & Watan- 21 REM/NREM/WAKE ECG Threshold respiration/ and  51,60%
abe 2012 [13] heart rate time

domain features/

abdominal force
Kasper et al. 2012 8 REM/NREM/WAKE ECG Threshold HR spectral power  57,80%
[9]
Park et al. 2014 20 REM/NREM/WAKE BCG (with 3  Analytic compres- HF/LF/DFA/HRV 66,24%
[15] different types of  sion

Sensors)

Kagawa et al. 10 REM/NREM/WAKE BCG (radar) DWk-NN image proceeding 57,10%
2016 [16]
Surantha et al. 16 REM/NREM/WAKE ECG SVM and PSO SDNN / RMSSD  73,26%
2017 [17] / SDSD / NNS50/

pNNSO / AVNN

Geometrical /

HRV  Triangular

Index Poincare /

SD1 / SD2 / ratio

SD1/SD2
Chen et al. 2018 15 REM/NREM/WAKE ECG Hidden Markov  row ECG channels  79,90%
[19] Models (60 features)
Yiet al. 2019 [18] 5 REM/NREM/WAKE BCG (hydraulic SVM and KNN body position,  85%

bed sensor) abdominal
position, heart
rate variation,

respiration rate

discussed in Section III. Section IV gives some conclusions
and perspectives.

II. SLEEP STAGES CLASSIFICATION

A. Empirical method approach

Each stage of sleep is characterised by a certain variation
on the cardio-respiratory variables. From a medical point of
view, the variation of the heart rate is observable from the
distance between two R-peaks (also noted the RR interval).
Different cardio-respiratory features can be derived from
the RR interval, the heart beat and the respiration rate, as
summarised in Table II. These features serve as basis for
defining a series of conditions allowing the classification of
sleep stages. The latter follows from an empirical algorithm
that we developed based on the work of Kurihara and
Watanabe [13].

This algorithm is detailed in Figure 1. It combines the
conditions of Table II to define the occurrence of each sleep
stage, hence the importance of a correct determination of
the a; coefficients of Table III. A sensitivity analysis was
conducted, and revealed a limited influence of coefficients a3
and a5, which were therefore set to the values reported in the
literature. For the three other coefficients, a design of experi-
ment was conducted where the sensitivity of each remaining
coefficient was tested individually, since the coefficients are
independent from each other. Finally, three sets of parameters
were kept, and are reported. Note that the coefficients a; were
determined from tests and results in the literature.

TABLE I
'VARIABLES DEFINITION

Definition

RR interval for every second
mean value of RR interval
for the whole night

Main Features
R — RInterval
R — RIntervalmean

HBM Heartbeat mean value for every 30s
HBmean Heartbeat mean value for the whole night
HBstakaHRV Heart rate variability

for every 30s
HBstmean The mean value of the heart rate

variability for the whole night
R R-algorithm given in [13]

RR Respiration rate
RRmean Respiration rate mean value for
the whole night
RRst Respiration rate variation
RRStmean Respiration rate variation mean value

for the whole night

TABLE III
CONDITIONS FOR CLASSIFIERS

Cl HBM < a1 X HBmean
Ca R(k‘) (S [IRE]\/I]

C3 | RR < RRmean

Cy | HRst < as X HBStmean
Cs | RRst < a3 X RRstmean
Cs HBM < a4 X HBmean
C7 | RRst < as X RRstmean
Cs | RRI > RRImean

We consider that the NREM phase could be detected if
the conditions Cq, C3, C4 and C5 described in Tableé III



are satisfied. Otherwise, if conditions C5, Cg, C7 and Cg
are satisfied, the REM phase is confirmed. We assume that
every other state is wake.

Calculation of
the parameters

Fig. 1.

The 3 phases classification algorithm

Finally three sets of parameters were kept and are reported:

e Setl: a1 =1.1,a2=03,a3 =13, a4, =1.2,a5 =14

o Set2: a1 =0.8,a0,=03,a3=13, a4, =14,a5 =14

o Set3: a; = 11, ag = 03, as = 13, ay = 14, as = 1.4

We have combined the results of the three algorithms
by creating a vote system. This voting system respects the
majority rule. In the case of a different result, the results
from the one with the highest precision for detecting the
REM phase (which is the less represented stage), is chosen.
Since REM is the least detected phase, and since algo2 is
the best one in detecting it, we added a condition in case of
conflict, if algo2 recognises the epoch as a REM epoch then
algo2 prevails.

B. Classification Method Using Machine Learning Ap-
proaches

Five classical machine learning algorithms were selected
to improve the sleep stages determination, namely: support
vector machine (SVM), Multinomial Logistic regression
(Rlogic), k-nearest neighbours (KNN), Classification And
Regression Trees (CART) and Naive Bayes (NB).

We considered that the features were the variables defined
earlier in Table II. The target is the phase detected by the
PSG for each epoch. Hence, the considered problem is a
supervised classification problem with 3 outcomes (wake,
NREM, REM). We use 80% of the collected data was used
to train the machine learning algorithm. Figure 2 shows the
steps of the classification algorithm we use in this paper.

The sleep algorithms resulting from these five machine
learning processes were validated on the same set of data
that they were trained in.

We built the concordance matrix to compare the classifica-
tion between the PSG and the tested algorithm by counting
the number of times each phase appeared for an epoch of 30s,
compared to the ones of PSG. The percentage of agreement
by phase; equal to numbers of epochs that the algorithm
predicted that it is the phase; over the numbers of epochs
that the phase; was given by the PSG. The percentage of

Data Processing

Calculation of parameters

¥

Save the parameters in a CSV-file

Train the algorithm on 80% of the
parameters from CSV-file + the stage
classification from PSG

Test the algorithm by predict the result for the
20% remaining of the parameters and compare
it to the result from the PSG

Fig. 2. Classification method using Machine learning

agreement is obtained by dividing the number of epochs that
the algorithm was right, by the total number of epochs.

We consider the recall. We compute the F1-Score which
is a measure that combines precision and recall with their
harmonic mean, called F-measure or F-score
such that the precision here is the percentage of agreement
with PSG.

III. RESULTS AND DISCUSSION
A. Data

We used data collected from the clinical trial “St. Vincent’s
University Hospital / University College Dublin!”. This
database contains 25 full overnight polysomnograms from
adult subjects with suspected sleep-disordered breathing. The
subjects were all aged over 18 with no heart disease or
dysfunction, and they did not take any kind of drug that
could trouble the heart rate.

The first step consists in reassembling all the data collected
to same sampling frequency (in this case we use 1Hz as
frequency). Then a check on the data must be done to
see if one of the main three variables is not available but
could be calculated. In our case, the respiration was not
available, so a calculation based on the thorax movements
was performed. If all the 3 inputs are available, we proceed to
the estimation of the derived parameters. The parameters are
stored chronologically for every 30s epoch. We have chosen
an epoch of 30s because the PSG that gave the classification
divided the night into 30s epochs.

B. Results of tests using the empirical method

The results of the empirical algorithm detailed in Figure
1 together with each set of parameters (see Table II) are
gathered in Table IV. One notes the poor global capacity of
this algorithm to properly detect to NREM stage (only half
of the NREM epochs are correctly classified), and the picture
is even worse for the REM phase, with an agreement being
far less than 25%.

!doi: https://doi.org/10.13026/C26CTD



A graphical representation is proposed in Figure 3. The
occurrence of each sleep stage as detected by the PSG is
plotted with black dots. Then, the results provided by each set
of parameters is represented by one colour line of markers.
The marker is a dot in case the sleep stage is correctly
detected, a cross otherwise. One notices that this empirical
algorithm tends to detect the NREM phase instead of the
REM, while the wake stage is properly identified.

Due to the clinical importance of the REM phase, one
chooses the second set of parameters as the option to be
chosen in conflict cases for the classification method based
on a voting system.

- Al

A2 classification
A3 classification
+ _ PSG classification

REM PSG -
REM A1
REM A2 v ow . + b4+ -
REM A3 . . -

NREM PSG -
NREM A1
NREM A2 #

NREM A3 + s "o

Sleep Stage

Wake PSG
Wake A1
Wake A2
Wake A3

00h00 01n00 02n00 03n00 04n00 05h00 06h00
Hour of Sleep

Fig. 3. Hypnograms of different algorithm in comparison with the one got
by the PSG based on the brain activities

Figure 3 shows that none of the three algorithms has
succeeded in detecting the REM phase correctly. Most of
them either detect it wrongly or detect nothing at all. By
considering all the nights, the precision is 57.89% , 50.72%
and 60.11% respectively for Al, A2 and A3. Although Al
and A3 have higher total precision in respect of A2, it was
showed that the latter performs better in detecting REM
phase.

Figure 4 shows the results of the Voting system algorithm.
We outline some improvement regarding the detection of the
REM phase. By using such Voting system, we have increased
the total precision by 3%. Table IV summarises the precision
of each algorithm per phase and the total one.

TABLE IV
AGREEMENT PERCENTAGE OF THE DIFFERENT ALGORITHMS

Algol | Algo2 | Algo3 | Voting
Algorithm
% of agreement on NREM | 74,66 75,17 74,66 75,72
% of agreement on WAKE | 45,28 291 53,57 46,74
% of agreement on REM 1,52 23,02 0,05 10,32
% of total agreement 57,89 50,72 60,11 63,41

C. Results of tests using Machine Learning methods

As explained earlier, the data set was collected during a
clinical trial done over 25 subjects having a high probability
to suffer from breathing sleep issues. This data set counts
20,708 epochs of 30 seconds. Only 4,142 Epochs were kept

Sleep Stage

00n00 1h00 02h00 03h00 04h00 05h00 06h00
Hour of Sleep

Fig. 4. Hypnograms of the voting algorithm in comparison with the one
got by the PSG based on the brain activities

to test the prediction algorithm. The aim was to find a better
precision than existing works from the literature using less
features.

Figure 5 shows that the best algorithm was SVM with
67.55%. To better understand this result, an agreement by
phase matrix is given in Figure 10. This matrix presents
the agreements between the PSG and the tested algorithm.
Although this method performs well, especially for the
NREM phase, we see that it failed to detect perfectly the
minor classes. For instance, the total of REM phase did not
exceed 12% of the total agreement.

0.775 4

0.750
0.725 4

0.700 4

0.675 &l

0.650 4

0.625
0.600 li

KNN CART NB SVM Rlogic

=

Fig. 5. Precision of each method

The precision, Fl-score and recall resulting from the
predicted classification are presented in Table V.

Against the previous works, our method is very satisfying
since it has more than the average number of studied subjects
and it has one of the best precision compared to the results
given by PSG. We find out that [18] performs better for sleep
stage classification. However, the latter was only tested on
five subjects in contrast to our work that was tested on 25
subjects. This method used 78 features while we used only
17.

The total precision of the predicted classification is
76.50%. 1t is considered as an acceptable percentage com-
paring to the literature by practitioners. However, we aimed



Wake - 506 409 30 2000
c
3 1500
o
g
@ NREM 1 148 78
L
%]
9 - 1000
wn
a
REM A 50 298 241 500
L - B
N
*® & &
Predicted classification
Fig. 6. Confusion matrix without normalisation for the SVM
2500
Wake - 5 940 0
2000
c
S
& 1500
B NREM 1 0
K
L=
? - 1000
a.
REM - 0 589 0 F 500
. . . Lo
& & e
& & &

Predicted classification

Fig. 7. Confusion matrix without normalisation for the Logistical Regres-
sion

to improve our results by creating a voting system that
considers the best three methods.

According to our tests, the three most precise algorithms
are SVM (76,50%), CART (66,97%) and K-nearest neigh-
bours (72.11%).

IV. CONCLUSIONS AND PERSPECTIVES

This article presents a new approach to estimate sleep
stage classification using only cardio-respiratory variables
that can be obtained from a contact-less BCG sensor. The
method was tested using a collected data set of 25 subjects
presenting symptoms of breathing sleep apnea. Inspired from
the previous publications on this topic, a choice of parameters
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Fig. 9. Confusion matrix without normalisation for the CART method

was made. These parameters were driven from the cardio-
respiratory variables.

We started by creating an empirical decision tree, based
on the combination of conditions proven in previous research
works. By modifying the coefficients in these conditions, we
obtained three algorithms that achieved more than 50% of
agreement with the results driven by the PSG using brain
activities. A system of vote was designed between these
three algorithm resulting in a better score agreement (up to
63.41%).

By using five machine learning methods, we found that
SVM is the most precise technique in this application with
a total agreement of 76.50%, compared to the classification
given by the PSG.

In our future works we aim to improve this method by
including other parameters such as body movements and
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TABLE V
ACCURACY SCORE FOR ALL THE TESTED MACHINE LEARNING
METHOD
Wake | NREM | REM | Global
KNN precision 0.64 0.78 0.59 0.72
recall 0.56 0.86 0.45 0,73
f1-score 0.60 0.82 0.51 0,71
CART | precision 0.54 0.77 0.44 0.67
recall 0.51 0.77 0.47 0,67
f1-score 0.52 0.77 0.46 0.67
NB precision 0.58 0.69 0.30 0.61
recall 0.13 0.81 0.43 0.60
fl-score 0.22 0.74 0.36 0.57
SVM precision 0.72 0.77 0.69 0.76
recall 0.54 091 0.41 0.75
fl-score 0.61 0.84 0.51 0.74
RL precision 0.83 0.63 0.00 0.59
recall 0.01 1.00 0.00 0.63
f1-score 0.01 0.77 0.00 0.49

mass distribution. We plan to conduct tests on healthier
subjects: an upcoming clinical trial, whose main aim is to
place a BCG sensor in a medical bed alongside with scaling
sensors, will to help us reach better results. This trial is part
of a project aiming to link the sleep disorders with issues on
cognitive impairment and deterioration in memory quality.
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