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Remi Bouvier2 and Xiaolan Xie1, Fellow, IEEE

Abstract— With the global population growing older and
more vulnerable, healthcare systems are considering new ap-
proaches to maintain people autonomous in their own homes.
Recent advances in pervasive computing technologies have
opened up new opportunities to unobtrusively monitor human
behavior at home. Sensors data related to the activities of daily
living (ADLs) performed by the inhabitant can be collected and
labeled manually or by using activity recognition algorithms.
The purpose of this work is to propose an approach for
detecting changes (drift) in the inhabitant behavior in order
to detect potential changes in the health-state of the inhabitant.
Based on unsupervised clustering, our approach use activity
starting time and duration as key features to detect changes
between time periods. Variations from one behavior to another
one can be identified for subsequent review or intervention
by a healthcare professional. The relevance and the nature of
the change are asserted using the clustering validation metric
called Silhouette. Case study experiments on real life and
simulated datasets suggest that some user’s behavior can go
through smooth or abrupt changes and that these changes can
be highlighted using our approach.

I. INTRODUCTION

Industrialized countries are experiencing deep social and
economic changes affecting their demography. According to
the United Nations Population Fund (UNFPA) [1], the global
population of elderly people aged 60+ years is expected
to rise to around 2 billion by 2050, outnumbering the
number of children. Such demographic changes will lead to
a growing demand for assistance requiring public and private
healthcare. Furthermore, elderly people need a unique care
approach due to the complexity of their health situation. The
increasing shortage in healthcare workers could have a huge
impact on the healthcare economy. To avoid this situation,
the current healthcare system must move from a reactive
paradigm to a more proactive one such as prevention through
health monitoring at home.

Recent advances in pervasive computing technologies
have opened up new opportunities such as smart homes.
A smart home refers to a residence equipped with non-
intrusive sensors that detect specific events happening in
the residence (e.g., motion, door openings, sleep duration,
etc.). Information related to the Activities of Daily Living
(ADLs) performed by the inhabitant is collected to monitor
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its behavior over time. Elderly people behavior tend to
be consistent over time. Gerontologists believe detecting
long-term behavioral changes (Behavioral Drift) on activities
of daily living (ADLs) (bathing, sleeping, eating, ...) and
Instrumental ADLs (IADLs) (cooking, taking medication,
use phone,...) is the best procedure to prevent deterioration of
the health condition [2], [3]. Behavioral drifts may indicate
a need for more effort to perform everyday tasks or reveal
the onset of disorders like Alzheimer or dementia.

Extensive research has been reported on smart homes
on behavior monitoring with different applications such as
behavior and activity recognition [4]–[7], anomaly detection
[8]–[10] and behavior prediction [11]–[13]. The scientific
challenge related to anomaly detection consists in differenti-
ating the inhabitant “normal” behavior from the “abnormal”
one. By using low-level sensors (movements and door entry
points sensors) to monitor the activities of elderly people
living at home, [10] proposed an approach to detect and
predict abnormal behavior using visualization, clustering
and neural networks. The purpose was to alert the elderly
caregiver in case an abnormality has been detected or is
predicted in the near future which can be seen as short-
term anomalies. [8] defines outliers or anomalies activities
as an activity with extremely high or low systolic value as
compared to the rest of the data using the z-score. As for
most work done on anomaly detection, [8], [10] focus on
abnormal events, or short-term changes but not on behavior
drift which can be seen as a long-term change. Changes in the
inhabitant behavior are not necessarily abnormal behaviors
and on the other side, a succession of abnormal behaviors
can be the sign of a new behavior emerging and these are
not covered in the present literature on smart homes.

The literature is scarce regarding long-term behavioral
changes or behavioral drift detection in the context of smart
homes. However, drift detection in business processes using
process mining or machine learning has been tackled in [14]–
[17]. Regarding human behavior as a process of activities,
process mining techniques to detect drift could be applied
in this context. [15] proposed an approach to detect drift
using clustering: by comparing traces from a business log,
trace clustering allowed the detection of mainstream and
deviating behaviors in a process. Similarly, [18] proposed
an approach to detect behavioral drifts in a smart home. The
idea was to analyze the behavioral impact of health events.
The method consisted of segmenting the activity event log
in weeks and comparing the different weeks to the first
week (considered as the normal behavior). They used the
symmetric Kullback-Leibler (KL) divergence distance metric



and an arbitrarily chosen threshold, a distance above the
threshold would signal drift in the behavior. This approach
gave outstanding result when they correlate the behavioral
drift detected to related health events. A major limitation of
this work is the constraint of having a “reference week” to
perform the comparison.

In this paper, we focus our attention on activities of daily
living (ADLs) in order to detect behavioral drift of the
inhabitant living in the smart home. Historical data of the
inhabitant is used to identify the different behaviors without
any assumptions on their nature. Detection of behavior drift
relies on the clustering of time periods to differentiate
mainstream and deviating behaviors.

This paper is organized as follows. Section II briefly
introduces necessary definitions. Section III describes our
behavioral drift detection approach. An application of our
method on synthetic generated datasets is presented in Sec-
tion IV and an application on a real-life case study is
presented in Section V. Conclusions and perspectives are
given in Section VI.

II. PRELIMINARIES

In this section, we introduce the main concepts and
notations used in this paper.

Definition 2.1 (Event): An event e is denoted as the tuple
e = (a, t, d) where a is the event activity, t the starting
timestamp of the event and d its duration. Let E be the event
universe, i.e. the set of all possible event identifiers.

Definition 2.2 (Event Log): An event log L =
〈e1, e2, ..., en〉 is a finite sequence of events L ⊆ E∗
such that each event appears at most once in the entire log.

Definition 2.3 (Activity Event Log): An activity event
log La = 〈e1, e2, ..., en〉 is an event log such as
∀ e ∈ La, activity(e) = a. The activity event
log describes the behavior of the inhabitant for a specific
activity.

Definition 2.4 (Time Window Log): A time window log
(or just time window) wi = 〈ei1, ei2, ..., eini〉 is an event log
with ni events, extracted from an input event log L (wi ⊆ L)
such that the sublog duration is constrained by a window size
parameter Tw (tini

− ti1 ≤ Tw).
Definition 2.5 (Time Window Similarity Matrix): Let W

be a set of time windows, MW = (W×W)→ [0, 1] denotes
the similarity matrix of W . For time windows wi, wj ∈ W ,
MW(i, j) represents the similarity between the time windows
wi and wj .

Definition 2.6 (Time Window Clustering): LetW be a set
of time windows. A time window cluster over W is a subset
ofW . A time window clustering TC ⊆ P(W) (where P(W)
denotes all the possible subsets ofW) is a set of time window
clusters over W . We assume every time window to be part
of one unique cluster, i.e. clusters overlap is not allowed.

The input data of our problem is an ordered sequence
of events describing the activities done by the smart home
inhabitant during a certain time period. To do so, the smart
home is equipped with multiple sensors recording the life
of the inhabitant. The data collected are sensors data, which

is an event log of sensors activation and deactivation and is
complex to use for behavioral drift detection. These data are
either manually annotated using activities label or labeled by
using activity recognition algorithms [4], [6], [19] to obtain
activity event logs.

To reduce the complexity of the problem we focus on each
activity’s behavior independently, i.e. the behavior changes
related to multiple activities are beyond the scope of this
paper. We analyze behavior drifts on each activity to catch
how their starting time and/or duration change through time.
The method presented in this paper only deals with activities
event log (c.f. Definition 2.3).

In [20], authors identified four classes of drifts in business
process behaviors: (i) Sudden Drift (sudden substitution of
an existing behavior with a new one); (ii) Recurring Drift
(a set of behaviors reappear after some time); (iii) Gradual
Drift (gradual substitution of an existing behavior with a
new one); (iv) Incremental Drift (substitution of a behavior
with a new one through intermediate behaviors). Recurring
and incremental drift can be modeled as successive sudden
drifts. In this paper, we assume that the period of change
between behaviors is a fixed point and gradual drift detection
is beyond the scope of this paper.

Time is a key point in our daily life and is a fundamental
source of information on the inhabitant lifestyle. In their
work, [9], [10] used activities start time and duration as
features to discriminate normal and abnormal behaviors.
Multiple aspects of the inhabitant lifestyle can be subject to
changes but since we focus on each of the inhabitant activity
independently, we are going to describe behavior change as
changes on either of these two features : (i) activity starting
time (changes on an activity starting time, e.g. when the
inhabitant starts going to bed later than usual or changes
his medication time); (ii) activity duration (changes on an
activity duration, e.g. when the inhabitant sleeps less or take
more time to perform some ADLs such as bathing, cooking,
...).

III. METHODOLOGY

In this paper, we propose a new approach to detect changes
in the inhabitant lifestyle manifested as sudden drifts over a
period of time. To detect behavior drifting point in the input
activity event log, we split the event log into overlapping time
window logs of fixed duration Tw each, as shown in Figure 1.
The starting time window w0 contains events that occurred
between t0 ≤ t ≤ t0 + Tw. The sliding interval duration
is Tp: we map it to the circadian rhythm (24 hours) [21].
The i-th time window contains events that occurred between
t0 + i.Tp ≤ t ≤ t0 + i.Tp + Tw. The time window logs
created can contain overlapping data; an event can belong
to more than one time window log. In the case presented in
Figure 1, we have one drifting point between Behavior 1 and
Behavior 2. Such sudden drift is presented in Figure 2.

A. Time Windows Clustering

Clustering algorithms partition data into a certain number
of groups (clusters, subsets, categories). The most common
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definition of clustering describes a cluster by considering
its internal homogeneity and external separation meaning
that data points in the same group should be close to each
other, while data points in different groups should not. The
proximity of data points can be expressed in different ways.
Given an input activity event log La on the activity a, let
Wa be the set of time window logs extracted from La using
a sliding time window. When the clustering is performed,
a change is identified when two consecutive time window
logs wi and wi+1 are put in different behavior clusters. In
order to achieve the clustering, we need a proximity metric
(distance/similarity) between time windows. The work of
[22] outlines three different approaches to compute data point
proximity in this context: (i) raw-data-based, (ii) features-
based and (iii) model-based. The model-based approach
assumes that the data follow a predefined model and the
distance/similarity metric is defined on how close the data
point suits the model. Since we have no assumption on
the model behind our data, this approach cannot be used
in this context. We implemented the two approaches left,
features-based clustering and the raw-data-based clustering.
To validate the clustering quality, we used the Silhouette
Index (SI) metric as described in III-C. The raw-data-based
approach gave significantly better results than features-based,
so we decided to present here only the successful approach
described in III-B.

B. Raw-data-based clustering

In this approach, the similarity between time windows is
computed from raw data using a similarity metric. Then, the
clustering relies on the Markov Clustering (MCL) algorithm
[23], which has been successfully applied in other fields like
computational genomics [24] and process mining [15], [16].
Such algorithm is a fast and scalable cluster algorithm for
graphs, where each node is a data point (time window) and
the edge’s weights are the similarity between data points. In
our case, the input of the MCL algorithm is a time window
similarity matrix (Cf. Definition 2.5). The computation of

the similarity matrix is separated from the actual clustering,
hence different methods can be used for both parts.

1) Similarity matrix computation: Let
wi = 〈ei1, ei2, ..., eini〉 be a time window with ni

events. Depending on which aspect of the activity we
want to look at (starting time/duration) we extract the
time window distribution array Di (relative starting times
/ durations) from wi. If we consider the activity starting
time aspect, Di = 〈tri1, tri2, ..., trini

〉 (with trij the relative
timestamp of the event eij), but if we consider the activity
duration aspect, Di = 〈di1, di2, ..., dini

〉 (with dij the
duration of the event eij). The similarity between time
windows is defined on how close the distributions Di are.

We propose to compute the distance between the distri-
bution using histograms intersection. This method is widely
use for images clustering and classification [25]. It calculates
the similarity of two probability distributions issues from
empirical data with possible value of the intersection lying
between 0 (no overlap) and 1 ()identical distributions).
Given a pair of time window distribution arrays Di and
Dj , of time windows wi and wj , we compute their respec-
tive normalized histograms Hi and Hj , each containing n
bins, the similarity sim between wi and wj is defined as
sim = Hi ∩ Hj =

∑n
k=1 min(Hi(k), Hj(k)). Figure 3

shows an example of histogram intersection of an activity
starting time on two different time windows w1 and w2. The
activity has a earlier starting time during w1 than w2, which
gives a similarity score of 0.25.

Fig. 3: Example of histogram intersection

2) Graph clustering: Once a similarity matrix is built
using the similarity between all time window logs, it is
represented as a weighted graph where each node is a time
window and edges are the similarity value between time
windows. The way this graph is built makes it suitable to



graph clustering algorithms such as the MCL algorithm. For
detailed information on the MCL algorithm please refer to
[24].

C. Clustering Validation
Since the inhabitant behavior changes are not known a

priori, the validity of the changes detected by our approach
should be assessed using appropriate criteria, irrespective
of the clustering methods. As one of the most used metric
for clustering, the Silhouette Index [22] has been selected
to assess the clustering quality regardless of the chosen
algorithm.

The distance metric here is the opposite of the similarity
metric defined earlier: dist(wi, wj) = 1− sim(wi, wj). For
each time windows w ∈ W , let u(w) be the average distance
between w and all other time windows within the same
cluster. It is a measure expressing how well the assignment of
w to its cluster is. Let v(w) be the smallest average distance
of w to all points in any other cluster, of which w is not
a member. It expresses the dissimilarity between w and the
other clusters. A time window Silhouette index is defined as
s(w) = v(w)−u(w)

max(u(w),v(w)) with −1 ≤ s(w) ≤ 1. Lower values
of u(w) imply the time windows is well matched to its cluster
while higher values of v(w) means that w badly matches
other clusters. So a good clustering means a value of s(w)
close to 1. A value of s(w) close to -1 means that another
cluster will be a better match to w. We define the Silhouette
index SI of the clustering as the average Silhouette of all
the time windows, so the closer SI is from 1, better is the
clustering.

IV. NUMERICAL EXPERIMENT

To assert the validity of our approach, it is necessary to
compare the drifts detected to the ones actually present in the
inhabitant’s behavior. Due to the lack of that kind of data,
we decided to generate synthetic datasets with induced drift
on different levels, from mild and smooth drifts to severe
and abrupt ones.

A. Dataset Generation
The goal here is to model the behavior of the inhabitant

in the house for a specific activity. However, a model based
on the “average” behavior for an activity would be repetitive
and would not look natural. For example, the activity Eating
can be done in the morning (Breakfast) or in the evening
(Dinner) and these ways of performing the same activity can
have their own behavioral changes. To build a more realistic
and not fixed behavior model of a resident, we introduce the
concept of daily pattern: one way of performing the activity
on a daily basis which has properties that distinguish it from
others (e.g., breakfast, lunch, dinner).

For an activity ai, we assume that the inhabitant has a set
of daily patterns R = {r1, ..., rn}. Thus, each day a subset
of R is performed according to each daily pattern respective
properties and this subset is called a daily behavior. A daily
behavior Q ⊆ R is an ordered subset of daily patterns char-
acterizing the behavior of the inhabitant during a day. For ex-
ample, the set of daily patterns {breakfast, lunch, dinner}

is a daily behavior describing the days when the inhabitant
had these three meals, but he could have another daily be-
havior like {breakfast, early dinner} describing the days
when he missed lunch but took an early dinner.

Let Q = {r1, ..., rk} be a daily behavior of the inhabitant.
We use a graph to model the execution of Q. Let GQ be the
graph representing the daily behavior Q. It can be formally
defined as the graph GQ with k + 2 states, k daily patterns
plus an initial (I) and final state (F).

The States I and F denote respectively the entry and
the final state of the graph. Each transition exiting from
the entry state denotes the probability of starting the day
with a specific pattern, except for the transition to F which
denotes the probability of doing none of the patterns of Q.
An example of the graph representing a daily behavior with
three daily patterns is presented in Figure 4.

I r1 r2 r3 Fp01

p02

p03

p0F

p1F

p12

p13

p2F

p23 p3F

Fig. 4: Graph model of a daily behavior Q = {r1, r2, r3}

For the inhabitant overall behavior, we use a Markov
chain graph as a simulation model as depicted in Figure 5.
The node O is the entry node, it marks the beginning of
the next day and the end of the previous one. Let assume
our inhabitant has m different daily behaviors Qi (with
1 ≤ i ≤ m), depending on the timestamp t, the inhabitant has
a probability pi(t) of performing the daily behavior Qi for
the current day. After the daily behavior is performed, the day
ends and a new one starts. To respect the Markov property
we have : ∀t,

∑m
i=1 pi(t) = 1. The drift in the behavior is

represented in pi(t); when the inhabitant changes his daily
habits, the probability of the new daily behavior increases.
So the behavioral drift is generated by tuning the evolution
of the pi(t) with 1 ≤ i ≤ m.

start Q1<i<m

pi

1

Fig. 5: Markov graph of the simulation model

B. Design of experiment

Table I describes an example of an inhabitant eating habits
. For instance, the breakfast habit occurs on average at
8h30am with a standard deviation of 15mn and the meal
lasts on average 20mn with a standard deviation of 8mn.



TABLE I: Patterns of the eating behavior

Pattern Name Starting Time Dis-
tribution

Duration Distribu-
tion

Breakfast Nt(8h30, 15mn) Nd(20mn, 8mn)
Lunch Nt(13h25, 30mn) Nd(40mn, 10mn)
Dinner Nt(18h50, 45mn) Nd(25mn, 5mn)
Brunch Nt(11h30, 15mn) Nd(20mn, 7mn)

Early Dinner Nt(17h30, 25mn) Nd(40mn, 10mn)

We consider the two daily behaviors Q1 = {Breakfast,
Lunch, Dinner} and Q2 = {Brunch, Early Dinner} with the
respective daily probability p1(t) and p2(t). We generate
200 event logs. Half of the logs (100 logs) do not have any
behavioral drift (∀ t, p1(t) = p2(t) = 0.5). The other half
of the logs have a probability function varying as shown in
Figure 6. The evolution of the probabilities are based on
sigmoid function which is supposed to describe the natural
evolution of an inhabitant behavior through time. The closer
p1(t) and p2(t) are at timestamp t = 0, milder is the drift and
thus harder to detect. We choose a range of initial values for
(p1(0), p2(0)) ∈ {(0.95, 0.05); (0.9, 0.1); ...; (0.55, 0.45)} to
cover different levels of drift.

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

0.2

0.4

0.6

0.8

1.0
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p1(t)

p2(t)

Fig. 6: Daily behavior probability evolution over time

C. Results

The first experiment intends to test the ability of our
method to detect a drift among the set of event logs. We
used a sliding window size of three weeks (Tw = 21 days).
Results presented in Table II allow for validation of the
quality of our approach. Each row corresponds to a type of
dataset (with or without drift), each column corresponds to
the classification done by our approach. Among 200 datasets
treated, 100 with drift and 100 without, 162 are correctly
classified and 38 are not, which gives an F1-score of 0.79.

TABLE II: Drift detection on synthetic datasets

Detected

Yes No

A
ct

ua
l Yes 71 29

No 9 91

We evaluate the quality of the drift detected using the
Silhouette metric and the results are depicted in Figure 7. The
distribution is quite narrow and the mean silhouette value is

0.76. This means that on average, the quality of the drift
detected by our approach on these datasets is asserted.

Fig. 7: Silhouette distribution of the drifts detected among
synthetic event logs

V. REAL-LIFE CASE STUDY

Experiments were performed on the Aruba dataset [19]. It
describes an elderly woman carrying out daily activities in
a smart home, without any kind of supervision or scripted
scenario. The dataset lasts for 220 days and 11 activities
were recorded. Each activity was processed separately using
a sliding window size of three weeks (Tw = 21 days). We
applied the behavioral drift detection method for the activities
starting time and the activities duration. Among the changes
detected, there is a drift detected on the “Eating” activity
starting time as shown in Figure 8 with a silhouette value of
s = 0.53.

(a) Behavior drift over time

(b) Behaviors density distribution

Fig. 8: Drift Detection results for the “Eating” activity
starting time on Aruba Dataset

The Figure 8a depicts the way the inhabitant eating
behaviors appear over time. The Table III gives more details
on the different eating behaviors. We can notice that over
time, she had her first meal of the day earlier and earlier:
from an average of 11.10am on Behavior#0 to an average



TABLE III: Different behaviors detected on the “Eating”
activity in the Aruba dataset

Behavior # Duration (days) Interpretation

0 40 µ1 : 11.08am, σ1 : 1h58mn
µ2 : 6.10pm, σ1 : 1h58mn

1 43 µ1 : 10.33am, σ1 : 1h25mn
µ2 : 5.45pm, σ1 : 1h47mn

2 83 µ1 : 9.42am, σ1 : 1h18mn
µ2 : 5.14pm, σ1 : 1h56mn

3 33 µ1 : 8.11am, σ1 : 54mn
µ2 : 6.06pm, σ1 : 1h08mn

of 8.11am on Behavior#3. The same goes for her second
meal, from an average of 6.10pm on Behavior#0 to an av-
erage of 5.14pm on Behavior#2, and for the last behavior
detected she went back to eating at 6.06pm. This can also be
observe on the behavior density distributions on Figure 8b,
we can notice that the behavior density distributions are
shifting to the left (for earlier starting time).

VI. CONCLUSIONS AND PERSPECTIVES

Human behavior is a complex mechanism constantly
subjects to variations due to biological and environmental
factors. We proposed in this paper a novel approach to detect
behavioral drift in the activities performed by a resident. The
focus was in clustering time window logs extracted from the
inhabitant activity log. The two main features used for the
clustering are activity starting time and duration. The clusters
detected allowed the identification of the inhabitant different
behaviors.

Experiments based on synthetic datasets with induced drift
and a real-life case study show that inhabitant behavior is
constant during a certain period of time and then change,
and that change can be identified by our approach.

In previously published works [8]–[10], the focus is on de-
tecting abnormal behaviors: short periods of time (an event,
a day, ...) where the inhabitant behavior deviates from the
“normal” behavior. Instead, our approach does not assume a
“normal” behavior but try to identify the inhabitant different
behaviors and thus the period of change between them.
Moreover, our approach allows for an overall visualization
of the inhabitant behavior changes through time.

A current limitation of the proposed approach is that the
inhabitant activities are processed separately. In future work,
we intend to analyze the drift on all activities at once.
We will also investigate the addition of more features for
the clustering of behaviors such as the inhabitant activity
level (number of activities performed during a period of
time) and the inhabitant idle time (time spent performing
no activities). Further evaluation of the changes detected
and their relationships to health or care intervention are also
under consideration.
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