
HAL Id: emse-03128586
https://hal-emse.ccsd.cnrs.fr/emse-03128586

Submitted on 2 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Process Mining of Timed Event Logs
Hugo de Oliveira, Vincent Augusto, Baptiste Jouaneton, Ludovic Lamarsalle,

Martin Prodel, Xiaolan Xie

To cite this version:
Hugo de Oliveira, Vincent Augusto, Baptiste Jouaneton, Ludovic Lamarsalle, Martin Prodel, et
al.. Optimal Process Mining of Timed Event Logs. Information Sciences, 2020, 528, pp.58-78.
�10.1016/j.ins.2020.04.020�. �emse-03128586�

https://hal-emse.ccsd.cnrs.fr/emse-03128586
https://hal.archives-ouvertes.fr

Optimal Process Mining of Timed Event Logs

Hugo De Oliveiraa,b,∗, Vincent Augustoa, Baptiste Jouanetonb, Ludovic Lamarsalleb, Martin Prodelb,
Xiaolan Xiea,c

aMines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, Centre CIS, F - 42023 Saint-Etienne France
bHEVA, 186 avenue Thiers, F-69465, Lyon, France

cAntai College of Economics and Management, Shanghai Jiao Tong University, China

Abstract

The problem of determining the optimal process model of an event log of traces of events with temporal
information is presented. A formal description of the event log and relevant complexity measures are detailed.
Then the process model and its replayability score that measures model fitness with respect to the event log
are defined. Two process models are formulated, taking into account temporal information. The first, called
grid process model, is reminiscent of Petri net unfolding and is a graph with multiple layers of labeled nodes
and arcs connecting lower to upper layer nodes. Our second model is an extension of the first. Denoted the
time grid process model, it associates a time interval to each arc. Subsequently, a Tabu search algorithm
is constructed to determine the optimal process model that maximizes the replayability score subject to
the constraints of the maximal number of nodes and arcs. Numerical experiments are conducted to assess
the performance of the proposed Tabu search algorithm. Lastly, a healthcare case study was conducted to
demonstrate the applicability of our approach for clinical pathway modeling. Special attention was paid on
readability, so that final users could beneficially use the process mining results.

Keywords: process mining, event log, time modeling, tabu search, healthcare data, patient pathways.

1. Introduction

The digital revolution affects all industries and businesses and produces a huge amount of data. Numerous
decision aid analytical methods and tools are available to take advantage on relevant data. Machine Learning
methods have been widely used. Supervised and unsupervised learning for knowledge discovery, when applied
to matrix data where each row is an observation characterized by features in columns, have spread over.

Knowledge discovery from healthcare data, such as patient lifetime hospitalization history is presently
not optimal yet crucial. Therefore, we want to find common patterns, process models, or care pathways of
hospitalization histories for cohorts honed to a specific time periods. Such studies are important to detect
relevant “causal” relationships or transitions, to check the conformance of practice to guidelines, etc. An
example of a causal relation could be “most patients of a given surgery had the same prior underlining
condition or past medical event”.

Traditional machine learning techniques are not well suited to generate process models from data. Process
mining well suited for this purpose, and has been first formalized in 2004 [14], followed by developments
in various fields [7] including healthcare [1]. Temporal information such as the time between two events
and the number of repetitions of a given event in the past are particularly important in process modeling
and prediction. In healthcare, a second hospital visit shortly after the first, unfortunately is likely to be
an undesirable complication or result of the earlier admission. A patient having been hospitalized several
times for a given disease or had a much longer prior hospital stay before recovery is more likely to need a

∗Corresponding author
Email address: hdeoliveira@hevaweb.com (Hugo De Oliveira)

Preprint submitted to Elsevier April 5, 2020

non-standard surgery than a patient having no or just one past hospitalization. Unfortunately, such features
are rarely taken into account by process mining approaches. For example, repeated events are prohibited
for the sake of visibility and time is not considered during model construction. A previous study on the
understanding of process models found that the average connector degree and density are two identified
factors which induce negative effects on comprehension (at a fixed size) [11].

Starting from these limitations regarding time consideration and comprehension, an extension of exist-
ing optimal process mining theory is presented. Thus, the main scientific contribution of this paper is the
mathematical formalization of a new ascending and time-dependent process mining approach, structured
on a grid for a better representation and understanding. Reminiscent of Petri net unfolding [2], ascending
representation forbids loops and confusing backward transitions, whereas the time-dependent feature con-
siders time patterns of event logs during optimization. Descriptors are introduced, characterizing event logs
complexity and process models structure. The replayability indicator [10] is slightly modified and acts as a
key performance indicator to evaluate the resulting process models. Finally, a new Tabu search procedure
for process mining optimization is presented, tested and validated through a series of designed experiments
as well as a real-life healthcare case study.

The rest of this paper is organized as follows. A literature review focused on recent work in process mining
with a particular focus on healthcare is presented in Section 2. General definitions of event log representation
are given in Section 3. A mathematical formulation of the new process models and optimization problems is
presented in Section 4. Section 5 describes the process discovery methods involved and Section 6 details in
depth computational experiments designed to test methods on different simulated event logs. A case study
based on real data is presented in Section 7. Finally, conclusion and perspectives are given in Section 8.

2. Literature Review

The raison d’être of Process mining is to discover, monitor and ameliorate actual processes as they occur
by extracting knowledge from event logs readily available in I.T. systems. Process mining is situated between
Big Data and Data Mining on one side, and Business Process Modeling and Analysis on the other. The field
of process mining can be divided in 3 main areas: process discovery, conformance checking and extension of
a model [13].

Recently, two systematic studies mapped out Process Mining [7, 1], which are valuable to describe the
scope and the dynamics of this field. Maita et al. regrouped in their study 705 papers about process mining
from 2005 to 2014 [7]. The number of publications addressing process mining has significantly increased
from 2005 to 2014. “Discovery” is the main purpose for the use of process mining (71% of papers), with
“graph structure-based techniques” being the most common intersection. For studies mentioning a specific
application domain, “Medicine and Healthcare” is the second most frequent domain just after the overall
sector “Enterprise”. Moreover, “clinical analysis pathway” ranks third as data sources used for case studies
or experiments. Importantly, the majority of these studies does not mention any process mining tool being
used. For the rest, ProM is the most often mentioned with in-house frameworks a distant second.

A similar work [1] on healthcare studies considers 172 papers from 2005 to 2017. Observations detail a
rapid expansion of the field, giving new opportunities for further research and practice. Process discovery
appears as the most important activity of process mining when applied to healthcare. Studies on “Health-
care process” (93) are more common than “Clinical pathway” (59). Furthermore, studies corresponding to
“Multiple hospital” data are less frequent (14) compared to “Single hospital” data (130). The same obser-
vation is true for studies regarding “Multiple department” data (13) and “Single department” data (122).
Finally, the number of studies which propose a new tool, model or metric is low (17%). This limited body
of relevant papers in our field seems to imply the originality of our contribution.

Since the later systematic review on healthcare, new process mining contributions applied to healthcare
have been proposed. Kusuma et al. compiled a literature review of process mining in cardiology [5].
Promising opportunities to assist medical experts in care analysis were shown, although few formal process
mining methodologies were included. Litchfield et al. [6] introduced a study protocol to apply process
mining to primary care in the UK for the first time. The use of orthodox process mapping in addition to
data-driven process mining is presented as useful to identify differences and similarities.

2

Similar works on patient pathways mining were published using discrete optimization [8] and simulation
[9]. The most related paper to our work is of Prodel et al. in 2018, where a mathematical formulation of
the problem was presented, along with a Tabu search optimization process to search for best process model.
In addition, to reduce the computation time for large-scale data sets, they used a Monte Carlo sampling
method. As healthcare data often contains hierarchical structure (ICD-10 codes for example), this data
characteristic for labels was considered during the optimization process [9]. The large scale problematic and
the hierarchical structure of labels were also addressed.

There are two limitations. First, qualitative representation of pathways with repeated events is not
readily understood by decision makers and clinicians. Indeed, a repeated event pattern in the event log will
be represented by a loop, which does not take into account the linear characteristic of patient pathways.
More importantly, the time is not considered during the optimization process. The including of time as a
parameter could be beneficial to highlight hidden time patterns contained in the event log.

Therefore, two extended process mining approaches are presented in this paper. New descriptors to
characterize data sets and newly formulated process models are also presented. The Tabu search used by
Prodel et al. [10] is tested and compared to other methods. Moreover, an improved version of the Tabu
Search algorithm adapted to new process model is suggested.

3. Event, Trace and Log

This section provides a formal description of data involved including events, traces and event logs.

Definition 1. (Event). Each event denoted e is a couple (a, t) where a ∈ A is an element of a finite set A
of labels corresponding to the event class of e, and t ∈ T with T = N or R corresponding to the event time
also called time-stamp. An event e is then equivalently defined by the two following functions:

• label(e) = a called labeling function;

• time(e) = t called timing function.

Definition 2. (Trace). A trace is a sequence of events denoted as σ = e1, e2, . . . , em with m ∈ N∗ such that
ek ∈ A× T and time(ek) < time(ek+1). A trace leads to the following functions:

• trace(ek) denoting the trace ID of each event;

• position(ek) = k denoting the order of the event in the trace;

• |σ| = m denoting the length of the trace.

Definition 3. (Event log). An event log is a set of traces denoted as L = {σ1, σ2, . . . , σn} with n ∈ N∗. An
event log contains all input data of this paper. Without loss of generality, we assume that each label appears
at least once in the event log L, i.e. ∀a ∈ A : ∃σ ∈ L, e ∈ σ | e = (a, t). The set of possible combinations of
labels and positions in L is:

Alab,pos =
⋃

σ=e1,...,em∈L
{(label(e1), 1), . . . , (label(em),m)}

Definition 4. (Causal relations). For each trace σ = e1, . . . , em in L, all pairs of labels (label(ek), label(el))
such that 1 ≤ k < l ≤ m are called causal relations and pairs (label(ek), label(ek+1)) are called direct causal
relations. Let TC be the set of all causal relations and TDC be the set of direct causal relations.

Definition 5. (Timed causal relations). All triplets (label(ek), label(el), time(el) − time(ek)) such that
(label(ek), label(el)) ∈ TC (or TDC) are called timed causal relations (or direct timed causal relations). Let
T tC and T tDC be the set of all timed causal relations and the set of direct timed causal relations.

Definition 6. (Diversity measures). The event log L has the following diversity measures:

• event diversity dive = |A|;
• event-position diversity dive,p = |Alab,pos|;

3

Event log definitions
Label set: A

Event: ek = (a, t)
a ∈ A, t ∈ T with T = N or R

Trace: σ = e1, ..., em
Log: L = {σ1, ..., σn}
Label: label(ek) = a
Time: time(ek) = t

ID: trace(ek)
Position: position(ek) = k

Relation sets
Causal relations set: TC = {(label(ek), label(el))}1≤k<l≤m

σ=e1,...,em∈L
Direct causal relations set: TDC = {(label(ek), label(ek+1))}1≤k<m

σ=e1,...,em∈L
Timed causal relations set: T tC = {(label(ek), label(el), time(el)− time(ek))}1≤k<l≤m

σ=e1,...,em∈L
Timed direct causal relations set: T tDC = {(label(ek), label(ek+1), time(ek+1)− time(ek))}1≤k<m

σ=e1,...,em∈L
Descriptors

Traces length description:
|σ|mean, |σ|std, |σ|max, |σ|min

Event diversity: dive = |A|
Event-position diversity: dive,p = |Alab,pos|
Causal relation diversity: divcausal = |TDC |

Timed causal relation diversity: divt−causal = |T tDC |

Table 1: Event log notations.

• causal relation diversity divcausal = |TDC |;
• timed causal relation diversity divt−causal = |T tDC |.

Proposition 1. If A 6= ∅ and |σ| > 1 for at least one trace σ, then 1 ≤ dive ≤ dive,p ≤
∑
σ∈L |σ| and

1 ≤ divcausal ≤ divt−causal ≤
∑
σ∈L(|σ| − 1)

Proof. Trivial by definitions.

The diversity measures characterize the log’s complexity: a high diversity means an increased number of
different elements in terms of labels and causal relations. Also, the distribution of trace lengths is a valuable
predictor to assess event logs’ complexity (let |σ|mean, |σ|std, |σ|max and |σ|min be its mean, standard
deviation, maximum and minimum values, respectively). Notations of event logs are summarized in Table 1.

Example 1. Table 2 shows a short event log related to patient hospitalization pathways. Each row is a
hospitalization event. Events with the same ID are ordered by increasing time stamp and represent a trace.
Each trace is a patient’s hospitalization history. Each first event of a patient has a timestamp set to 0. By
clustering hospitalization by main diagnosis, the set of labels is as follows :

• Alab = {I500, I44.2, I621, G935, E149, I272}.

Alternative event clustering is possible by taking into account more detailed information such as the duration
and secondary treatments during the hospitalization.

Thus, event-position set is as follows:

• Alab,pos = {(I500, 1), (I44.2, 2), (I621, 3), (G935, 4), (E149, 2), (I272, 3), (I500, 4), (I44.2, 5)}.

4

ID time-stamp duration main diagnosis DRG
0 0 8 I500 05M092
0 30 0 I44.2 05C142
0 72 1 I621 01M311
0 103 3 G935 01M131
1 0 2 I500 05M092
1 5 0 E149 10M02T
1 93 2 I272 05M172
1 145 1 I500 05M092
1 180 8 I44.2 05C142

Table 2: An example of an event log of patient pathways.

Basic and timed transitions are:

• TC = {(I500, I44.2), (I500, I621), (I500, G935), (I44.2, I621), (I44.2, G935), (I621, G935), (I500,
E149), (I500, I272), (I500, I500), (E149, I272), (E149, I500), (E149, I44.2), (I272, I500), (I272,
I44.2))}

• TDC = {(I500, I44.2), (I44.2, I621), (I621, G935), (I500, E149), (E149, I272), (I272, I500))};
• T tC = {(I500, I44.2, 30), (I500, I621, 72), (I500, G935, 103), (I44.2, I621, 42), (I44.2, G935, 73),

(I621, G935, 31), (I500, E149, 5), (I500, I272, 93), (I500, I500, 145), (I500, I44.2, 180), (E149,
I272, 88), (E149, I500, 140), (E149, I44.2, 175), (I272, I500, 52), (I272, I44.2, 87), (I500, I44.2,
35))};

• T tDC = {(I500, I44.2, 30), (I44.2, I621, 42), (I621, G935, 31), (I500, E149, 5), (E149, I272, 88),
(I272, I500, 52), (I500, I44.2, 35))}.

Finally, diversity descriptors are:

• dive = 6; dive,p = 8; divcausal = 6; divt−causal = 7.

4. Grid Process Model Optimization Problem

This section is dedicated to discover process models that best fit the event logs given in Section 3.
For this purpose, first the concepts of grid process models and time grid process models are introduced.
Subsequently, the fitness measure is introduced to measure how well a process model captures the causal
relations of an event log. We terminate by a formal definition of the process model optimization problem.

4.1. Grid Process Models

Definition 7. (Grid process model). A grid process model of a given log L is a triplet G-PsM = (N,E,L)
where:

• N is a set of nodes partitioned into K disjoint subsets called layers, i.e. N = N1∪· · ·∪Nk, Nk∩Nl = ∅;
• E ⊂ N ×N is a set of edges such that (x, y) ⊂ E with x ∈ Nk, y ∈ Nl implies k < l, i.e. the process

model is acyclic with edges going from lower layers to higher layers;

• L : N → A is the labeling function of the nodes.

From the above definition, one can also define the position function P(x) = k, if x ∈ Nk. As a result,
(x, y) ⊂ E implies P(x) < P(y).

The main difference from the previous process model definition in [10] is the possibility for an event to
appear at various positions in a trace. For example, an event happening both at the beginning and at the
end of a patient pathway could now be described in the process model by two nodes, one with low and
the other with a high position. In this case, loops on the same node and backward edges are not allowed
anymore. An example of a G-PsM and its process model equivalent are given in Figure 1.

5

A C A

P: 1 2 3

CB

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

(a) Grid process model.

A C

B

𝑒1
𝑒2

𝑒3

𝑒4

𝑒5

(b) Equivalent classic process model.

Figure 1: Example of a grid process model and its classic process model equivalent.

Example 2. The Figure 1a shows a grid process model G-PsM = (N,E,L) with:

N = (n1, n2, n3, n4, n5) E = (e1, e2, e3, e4, e5)

L(n1) = A P(n1) = 1 e1 = (n1, n3)
L(n2) = B P(n2) = 1 e2 = (n1, n4)
L(n3) = C P(n3) = 2 e3 = (n2, n3)
L(n4) = A P(n4) = 3 e4 = (n3, n4)
L(n5) = C P(n5) = 3 e5 = (n3, n5)

An equivalent classic process model is presented in Figure 1b, without duplicated label nodes, allowing loops
and backward transitions.

4.2. Time Grid Process Models
To the best of our knowledge, in existing process mining approaches, time-related information is added

after model discovery and remains descriptive. Significantly, we provide a new approach to include time-
related information within the optimization process of building a process model.

Definition 8. (Time grid process model). A time grid process model of a given log L is a four-uplet
TG-PsM = (N,E,L, T) where:

• (N,E,L) is a grid process model with eventually multiple edges between nodes;

• T : E → T × T associates a time interval [a(x,y), b(x,y)] to each edge (x, y) ∈ E.

As shown in Figure 2, using this definition, previous unique edges between two nodes in G-PsM are
replaced by multiple possible edges in TG-PsM , each of them having its own time interval. Definition 8
ensures that a given causal relation, with a given time value between two events, will be characterized
by a unique possible edge with same starting and ending node in the process model. The uniqueness of
characterization will be useful for graph construction and replayability defined thereafter.

Example 3. The Figure 2 shows a time grid process model TG-PsM = (N,E,L, T) with:

N = (n1, n2, n3, n4) E = (e1, e2, e3, e4, e5, e6, e7)

L(n1) = A P(n1) = 1 e1 = (n1, n2) T (e1) = [10, 24]
L(n2) = B P(n2) = 2 e2 = (n1, n2) T (e2) = [30, 35]
L(n3) = C P(n3) = 2 e3 = (n1, n2) T (e3) = [45, 62]
L(n4) = A P(n4) = 3 e4 = (n2, n4) T (e4) = [0, 5]

e5 = (n2, n4) T (e5) = [5, 25]
e6 = (n3, n4) T (e6) = [2, 50]
e7 = (n3, n4) T (e7) = [75, 100]

6

𝑒1 ∶ [10,24]

𝑒2 ∶ [30,35]

𝑒3 ∶ [45,62]

A B A

P: 1 2 3

C

𝑒4 ∶ [0,5]

𝑒5 ∶ [5,25]

𝑒6 ∶ [2,50]

𝑒7 ∶ [75,100]

Figure 2: Example of a time grid process model.

G-PsM TG-PsM

G-PsM = (N,E,L) TG-PsM = (N,E,L, T)
N = N1 ∪ · · · ∪Nk N = N1 ∪ · · · ∪Nk
L(x) ∈ A, x ∈ N L(x) ∈ A, x ∈ N
P(x) = k, x ∈ Nk P(x) = l, x ∈ Nl

T ((x, y)) = [a(x,y), b(x,y)], (x, y) ⊂ E
DivN = |{L(n)}n∈N | DivN = |{L(n)}n∈N |

DivE = |{(L(x),P(x),

L(y),P(y))}(x,y)⊂E |

Table 3: Process model related notations.

4.3. Process Model Complexity Characterization

The larger a process model is, the better it represents traces from an event log, but the drawback is that
the more convoluted it becomes for someone to understand. Building a process model while controlling its
complexity is crucial. A process model’s complexity is described by its number of nodes |N | and edges |E|.
Process model diversities are defined similarly to event log diversities (Definition 6).

Definition 9. (Node and edge diversities). For a process model G-PsM or TG-PsM , the node diver-
sity is DivN = |{L(n)}n∈N |. For a time grid process model TG-PsM , the edge diversity is DivE =
|{(L(x),P(x),L(y),P(y))}(x,y)⊂E |.

Diversity descriptors characterize the variety of nodes and edges of a process model. A high diversity
means that only few nodes (or edges) have the same label, whereas a low diversity indicates many similarly
labeled nodes (or edges). For instance, in the G-PsM of Figure 1a, |N | = 5, DivN = 3 and |E| = 5, and
in the TG-PsM presented in Figure 2, |N | = 4, DivN = 3, |E| = 7 and DivE = 3. This simple example
highlights the increase of |E| for TG-PsM compared with that of G-PsM . Notations of the process models
are summarized in Table 3.

4.4. Replayability

To evaluate the capacity of a process model to represent a trace, a new replayability score has been
devised to match the newly defined grid process models. Initially, preliminary definitions are required.

Definition 10. (Replayability). An event e is said replayed by a process model G-PsM if label(e) = L(x) for
some node x of G-PsM . A causal relation (ek, el) is said basic replayed by G-PsM if label(ek) = L(x) and
label(el) = L(y) for some edge (x, y) of G-PsM . A timed causal relation (ek, el, time(el)− time(ek)) is said
time-replayed by an TG-PsM if label(ek) = L(x), label(el) = L(y) and time(el)− time(ek) ∈ [a(x,y), b(x,y)]
for some edge (x, y) of the TG-PsM .

7

Algorithm 1 Grid and Time grid replayability games.
1: Initialization
2: z ← 0, δ ← 0, φ← 0, m← 0
3: Find cm the first replayed event of σ
4: If no event of σ replayed:
5: return z, δ, φ
6: Else:
7: Set Nactual as the node which replayed cm
8: z ← z + 1
9: Trace crossing

10: While m < |σ|:
11: If cm+1 can be replayed in G-PsM by a node Nnext with P(Nactual) < P(Nnext):
12: z ← z + 1, Nactual ← Nnext (with the lowest position)
13: If no edge exists between Nactual and Nnext (or if the transition between (cm, cm+1) cannot be time replayed

(Time grid replayability game)):
14: φ← φ+ 1
15: m← m+ 1
16: Skipped elements analysis
17: If at least one element of σ has been skipped (not been replayed between replayed elements):
18: δ = 1
19: Conclusion
20: return z, δ, φ

Remark 1. For any transition in a trace we have, by definition, {time replayability} ⇒ {basic replayability}
but {basic replayability}; {time replayability}.

To calculate the replayability of a trace, an algorithmic procedure is presented, named Grid replayabil-
ity game (or Time grid replayability game) (Algorithm 1). The grid replayability game starts from cm,
with m being the index of the first event of σ replayed in G-PsM (line 3). If cm is replayed by several nodes
of G-PsM , the node with the lowest position is chosen (line 7). The next event cm+1 of σ possibly replayed
by G-PsM is sought, with a strictly superior node position than the previous node which replayed cm (lines
11–12). If the transition (cm, cm+1) is not basic-replayed by G-PsM , the transition is said strongly-forced.
If the transition ((cm, cm+1), tm,m+1) is not time-replayed by TG-PsM , the transition is said time-forced
(lines 13–14). This process is repeated until the last replayable event is reached (line 10). If at least one
event of σ has not been replayed while being in between two replayed events, it is said skipped (lines 17–18).

The strictly ascending condition of Definition 7 ensures that transitions are achieved by increasing po-
sitions during the replayability game. Thus, some events of σ might not be replayed during the game,
even if they would have been according to Definition 10. Based on these new replayability games, adapted
replayability score functions are introduced.

Definition 11. (Replayability score). Considering the Grid replayability game, the replayability score of a
sequence σ in a G-PsM or TG-PsM is defined as follows:

R(G-PsM, σ) or R(TG-PsM, σ) = (
z

|σ|
− α ∗ δ − β ∗ φ

|σ|
)+

where:

• z is the number of events of σ replayed by G-PsM ;

• δ a binary variable equal to 0 if no event of σ is skipped;

• φ is the number of (timed) strongly-forced transitions;

• α, β are weighting factors.

Proposition 2. For a given trace σ, a process model TG-PsM and a G-PsM obtained with nodes and simple
edges of TG-PsM :

R(TG-PsM, σ) ≤ R(G-PsM, σ) (1)

Proof. Proposition 2 translates the strictest character of the time grid replayability compared to grid re-
playability, for fixed coefficients.

8

4.5. Problem Formulation for Process Model Discovery

Let L be an event log, the process model optimization problem consists in determining an optimal grid
process model G-PsM defined on L, maximizing the replayability and under some process model complexity
constraints.

(GridOpt) max
G-PsM=(N,E,L)

R(G-PsM, L) (2)

with R(G-PsM, L) =
1

|L|
∑
σ∈L

R(G-PsM, σ)

subject to

E ⊆ N ×N (3)

max(P(x)x∈N) ≤ pmax (4)

|N | ≤ UN (5)

|E| ≤ UE (6)

where R(G-PsM, σ), R(G-PsM, L) ∈ [0, 1], pmax ∈ N∗ is the maximum position for the process model
construction, UN ∈ N∗ and UE ∈ N are the process model node and edge complexity bounds, respectively.

The problem of determining an optimal time grid process model, denoted as TimeGridOpt is similar,
with the following supplementary constraint:

∀e ∈ E, T (e) ∈ TE(e) (7)

where TE(e) = ([aj , bj])j∈N∗ is a pre-defined set of disjointed intervals, with ∀e ∈ E, ∀I = [a, b] ∈ TE(e),
a, b ∈ N and a < b.

The purpose of this constraint is to have accurate but specific values of time intervals for each edge. Thus,
we first define judicious intervals for each edge, before optimization of the time grid replayability score. For
example, let x and y be two nodes of a time grid process model TG-PsM . After looking at all possible
causal transitions (L(x),L(y)) in event log L, we obtain D the distribution of corresponding time values.
Let m− and m+ be the maximum and minimum values of D, respectively. An optimal solution in terms of
complexity and replayability is to take the single edge with the full interval [m−,m+]. Inconveniently, this
does not highlight time particularities and specific intervals. This is why dividing the interval [m−,m+] in
relevant sub-intervals {[xi, yi]}i where mini xi ≥ m−, maxi yi ≤ m+ and

⋂
i{[xi, yi]} = ∅ would prove more

advantageous.
For both problems, an optimal process model has to be found in terms of nodes (with their labels and

positions) and (time-) edges (basic or with a specific time interval). Complexity being a hard constraint, it
can be useful to first define an optimal solution without complexity constraints, to illustrate the complexity
of a potential optimal model.

Proposition 3. For any log L with pmax = maxσ∈L|σ|, UN = dive,p and UE =
∑
σ∈L(|σ| − 1), there exists a

process model G-PsM such that R(G-PsM,L) = 1.

Proof. All traces are perfectly replayed in a process model with Alab,pos as the set of nodes and arcs con-
necting nodes of position p to position p+ 1 corresponding to direct causal relations from events of position
p in some trace.

The Figure 3 shows an example of the process models described previously, withAlab = {A,B,C,D,E, F}
and |σmax| = 6.

9

A

B

C

A A

D

C

D

E

C

F

D

E

B

C

D

E

C

F

E

F

E

1 |σ|maxpositions

Figure 3: Example of a process model described in Proposition 3.

4.6. Property of the Replayability Game

Proposition 4. (Optimized edges configuration property) For any given process model (G-PsM or TG-PsM)
and for any trace σ, the nodes reached during the replayability game are independent of the edges of the
process model.

Proof. Trivial as, at each step of the replayability game, the closest event of σ with label equal to the label
of a node of higher position gives the next node. This is independent of arcs.

5. Optimization and Process Discovery

This section presents five algorithms : Random Search (RS), Frequent Model (FM), Spring Search (SS),
Tabu Search (TS) and Tabu Search with Optimal Edges (TSOE). These algorithms are used to solve the
optimization problems GridOpt and TimeGridOpt (defined through Equation 2). Among them, one heuristic
(SS) and two meta-heuristics (TS and TSOE) are tested, modifying a current graph solution (or creating a
neighborhood of new solutions). Transformation of the current solution is done by achieving some moves of
nodes and edges. Before presenting these methods, the data preparation process is detailed in the following.

5.1. Data Preparation

To select nodes or edges to add (or delete) during the optimization process, a function fn : A×J1, pmaxK→
N is defined. For each tuple (l, p) with l ∈ A and p ∈ J1, pmaxK, a value corresponding to its number of
appearances within the event log is assigned. An event’s position is either its real position in its trace if
|σ|max ≤ pmax, or a rescaled value to ensure all positions to be between 1 and pmax if |σ|max > pmax.
Similarly, a function fe : TC → N is defined regarding appearance of transitions in event log. An extension
for TG-PsM is also proposed, considering transitions and time intervals to compute fe values. In the
following, “promising” is employed to characterize a node n = (l, p) or an edge e = (x, y) (with T (e) for
TG-PsM) with a high value for fn(l, p) or fe(L(x),L(y)). These functions are useful to select promising
nodes or edges to add during the optimization process.

10

Algorithm 2 Tabu search with Optimized Edges (TSOE) for GridOpt.
1: Step 1 – Initialization
2: Select an initial random unconnected solution: s∗0
3: Create the best connected solution s0 from s∗0
4: Compute Grid replayability game for each patient
5: Identify among possible edges the most frequently used
6: Add these edges to the final model: s0
7: Compute replayability for the initial solution: R(s0, L)
8: Update the best known solution: sbest ← s0
9: Create initial Tabu list of unconnected solutions : TL = [s∗0]

10: Step 2 – Iteration
11: Generate from current unconnected solution s∗ a neighborhood of unconnected non-tabu solutions : N∗

H(s∗)
12: Generate best connected solutions from N∗

H(s∗) : NH(s∗)
13: Compute replayability of each element of NH(s∗)
14: Select the new solution as the neighbor with the highest value of replayability: snew

15: Update current solution : s← snew

16: Update Tabu list: TL← TL+ [s∗new]
17: If R(sbest, L) < R(s, L):
18: sbest ← s
19: Step 3 – Repeat step 2 until a stopping criterion is reached

5.2. Spring Search (SS) for GridOpt

A simple greedy heuristic, called Spring search (iterative jumps) is initially utilized to solve the GridOpt
problem. During the search, new solutions are proposed by iteratively increasing and decreasing the size of
a solution, which brings diversity Each iteration consists of four steps: (1) delete all edges of the current
solution, (2) delete K non-promising nodes, (3) add K new promising nodes, and (4) add UE edges (the edge
complexity bound), selected from the subset of possible edges (depending on nodes present in the G-PsM).
At the end of an iteration, the obtained G-PsM becomes the current solution.

5.3. Tabu search (TS) for GridOpt

Similarly to [10], a Tabu search is implemented to solve GridOpt. Because the strictly ascending condition
increases the dependence of edges towards nodes, only one move is used to generate neighborhoods. At each
iteration, a neighborhood is made of non-tabu neighbors which are obtained from the current solution in 4
steps : (1) delete a non-promising node and its surrounding edges, (2) consider the number of deleted edges
as a budget X to reassign, (3) add a promising new node, and (4) add X new promising edges respecting the
strictly ascending condition. Each neighbor is evaluated by computing replayability, and the best neighbor
is kept as current solution.

5.4. Tabu Search with Optimized Edges (TSOE) for GridOpt

According to Proposition 4, edges do not intervene in the choice of the next node reached during the
replayability game. Considering a solution without edges G-PsM∗, the replayability R(G-PsM∗, σ) of a
trace σ ∈ L will have all possible transitions from a node x to a node y forced during the replayability game.
If an edge from x to y is added to the solution, the replayability score R(G-PsM∗, L) = 1

|L|
∑
σ∈LR(G-

PsM∗, σ) will increase, by a coefficient c(x,y) = β
|L|

∑
σ∈L

fφ(σ,(x,y))
|σ| , with fφ(σ, (x, y)) = 1 if transition (x, y)

has been forced during the replayability game of σ, 0 otherwise. Thus, by computing c(x,y) for every possible
transition (x, y), keeping top-UE transitions produces the best-edge configuration from G-PsM∗, respecting
constraint (6) of Equation 2.

From these observations, an adapted version of Tabu Search is defined, consisting in searching only for
solutions without edges, and then for every solution in evaluating the best edges to add for an optimized
replayability score. This method’s advantage drastically reduces the search space to graphs without edges.
Tabu Search with Optimized Edges is further detailed in Algorithm 2.

11

Kernel Density Estimation

𝑦𝑚𝑎𝑥
𝑖

0 𝑚𝑎𝑥(𝑡𝑖𝑚𝑒-𝑠𝑡𝑎𝑚𝑝)
𝑥𝑚𝑎𝑥
𝑖

𝑥𝑚𝑎𝑥
𝑖 + 𝜖𝑥𝑚𝑎𝑥

𝑖 − 𝜖

Cluster i

Figure 4: Illustration of KDE clustering.

5.5. TSOE for TimeGridOpt

Before solving TimeGridOpt, accurate but specific values of time intervals TE(e) for possible edges
e ∈ E need to be defined. First, causal transitions of event logs are analyzed to determine corresponding
time distributions. Thus, a 1-D clustering method based on Kernel Density Estimation (KDE) is used to
construct the set of possible edges to add during the process model optimization. KDE is the construction
of an estimate of the density function from observed data, using a kernel function [12]. Applied to each
time distribution, the resulting function will be used to define clusters by considering local maxima of the
function as centers of clusters. For each maximum, an interval [xmax − ε, xmax + ε] is defined, as shown in
Figure 4. A low value of ε gives small and precise clusters; a high value decreases precision, replays more
transitions and increases the global replayability score.

Finally, the approach is the same as for TSOE GridOpt, except that edges to add come with the most
suited time interval as found by 1-D clustering. For an unconnected solution, the algorithm will choose the
top-UE timed-edges to get the final process model solution.

6. Computational Experiments

6.1. Log Generation

The following design of experiments, to test and compare the performances of the previously defined
algorithms on various event logs, is presented here. Event logs of various sizes were generated to match
real-life variability in data sets. All experiments were performed on an Intel Core i7 processor (2.8 GHz),
16 GB RAM, and Windows 10 OS. The algorithms were coded in Python 3.6.

6.1.1. Log Generation for GridOpt (without time)

Event logs are generated from process models, which must be created first. Three parameters are required
to create a G-PsM : (i) a maximum position pmax, (ii) an event diversity dive, and (iii) an event-position
diversity dive,p. For a given combination of these three, a fully connected G-PsM is randomly created
with all the edges respecting the strictly ascending condition. Then, traces are generated by selecting a
graph’s node (with higher probability for nodes at lower positions) and following a path in the model until
a terminal node is reached (a node without any outgoing edge). A number Nnoise = Z ∗

∑
σ |σ| of noisy

random elements (not in the graph) is added to traces, at random positions. We arbitrarily set Z = 0.1
(10% of noise in event logs). Resulting traces make a log.

12

6.1.2. Log Generation for TimeGridOpt (with time)

Logs are generated in the same way as for GridOpt, except that edges of generated models are now split
in two categories:

• Without time pattern (each transition resulting from this type of edge will have a time between events
respecting uniform law U(a, b));

• With time patterns (a set {N (µi, s
2
i)}i∈N∗ of Gaussian distributions is defined, each transition following

one of these laws, randomly selected).

The goal of the optimization is now to highlight temporal patterns in the discovered model with multiple
timed edges. The following distributions are used for the log generation:

1. No time pattern U(0, 400);
2. Simple time pattern ({N (200, s2)};
3. Double time pattern ({N (100, s2),N (300, s2)};
4. Triple time pattern ({N (100, s2),N (200, s2),
N (300, s2)});

with s the standard deviation. The allocation of edges to patterns (1-4) is uniform. For double or triple time
patterns, the choice among distributions is equiprobable. The value of s is set to 25, to test the robustness
of the method for time with variability while keeping patterns identifiable. The edge constraint UE is set to
80 (4 × UN) to allow the model to add multiple edges. Other parameters are set as for previous design of
experiments. For KDE clustering, ε = 0.05×max(time-stamp) to have a precise time interval for edges.

6.2. Design of Experiments

For each of 15 combinations of (dive,p, dive, pmax) used to create logs, 10 random G-PsM are created.
From each G-PsM , a log of 1,000 traces is generated. 5 methods are then applied to solve the problem:
Random search (RS), simple Frequency model (FM) obtained by only taking most frequent nodes and edges,
Spring search (SS), Tabu search (TS) and Tabu Search with Optimized Edges (TSOE). Figure 5 summarizes
the design of experiments at hand. For the search algorithms, stopping criteria are the maximum number
of iterations (x = 250) or the number of iterations without improvement (x = 25). The neighborhood’s
size for TS and TSOE is empirically set to 15, based on previous tests showing small variability in the best
obtained solution’s replayability. Similarly, the Tabu list’s size is set to 15. The size constraints (number
of nodes, number of edges and maximal position) are constant throughout the entire experimental design
to always get an interpretative and comprehensive model. Constant parameters and constraint values are
summarized in Table 4. Configurations of the design of experiments are listed in the left part of Table 5.
For TimeGridOpt, configurations 2, 4 and 15 are tested.

6.3. GridOpt Results

The Figure 6 shows the evolution of replayability during the optimization process for each method,
specifically applied to configurations 2 and 15. Graphs used to generate event logs are also tested on noised
data to compare results of different methods with the initial model used for trace generation, without size
limitations (“ROOT” in the figure). Median replayability among 10 event logs for each configuration is
presented versus the number of iterations (maximum value for the number of iterations of each method is
set to the minimum stopping criterion among 10 replications). ROOT and FM models are obtained by non-
iterative methods, their means are displayed by horizontal lines on the same figure for comparison purposes.
For RS, an improving solution is rarely obtained, and the stopping criterion is more quickly reached compared
to other iterative methods. The margin for improvement during search is small for complex data sets as
visible by comparison of Figure 6b and Figure 6a. Furthermore, the gap between ROOT model and search
solution strongly increases from Figure 6a to Figure 6b.

Event log description for GridOpt, design of experiments and resulting replayability of the best mined
models are given in Table 5. Computation times are presented in Table 6. Neighborhood searches (TS and
TSOE) systematically outperform other methods (including the heuristic SS and the frequency model FM).

13

15 configurations (𝑑𝑖𝑣𝑒,𝑝;𝑑𝑖𝑣𝑒; 𝑝𝑚𝑎𝑥)

10 random graphs
for event log

creation

Event log
(1 000 traces, 10% noise)

RS

FM

SS

TS

TSOE

ROOT

Replayability
(AVG & STD)

Time

Performances

Figure 5: Schematic representation of the design of experiments.

Replayability parameters

β 0.1
γ 0.1

Search parameters

K (SS) 2
Neighborhood’s size (TS and TSOE) 15

Size of Tabu list 15
Max. number of iterations 250

Max. number of iterations without improvement 25

Constraints

Number of nodes UN 20
Number of edges UE 40 (2×UN)

Maximal position pmax min(10, |σ|max)

Table 4: Search parameters and constraints used for design of experiments.

TSOE outperforms TS on 9 out of 15 data configurations, especially when dive = 5. Otherwise, TSOE and
TS perform equally. TSOE scores ranges from 0.26 to 0.90. Lower values (< 0.30) are obtained for complex
data configurations (dive,p = 300 and dive = 100), due to the model size constraints. The unconstrained
model used for event log generation (ROOT, where |N | = dive,p) systematically scores at 0.90± 0.01.

Visual representations of the best models mined by TSOE are presented in Figure 7. Visualization of a
process model is possible via a tablet application developed by the company HEVA for that purpose. Each
graph is read from left to right, increasing positions. Circles represent nodes of the model, and flux from
circles represents edges. The size of nodes and edges are proportional to the number of traces replayed by
them during the replayability game. The first qualitative observation is the repetition of events with the
same label (Figure 7a), with Label 1 or Label 4. The strong decrease in replayability score from Figure 7a
to Figure 7b is visible in the decrease in node and edge size, as fewer traces are well represented. If we
focus on edges, Figure 8 highlights this strong decrease. Within the optimization for edges, the leeway in
replayability is reduced because of the decrease in the number of patients going through edge pathways (172
vs 38 patients in the example of Figure 8). For this reason, the effect of edge optimization in TSOE is less
visible in more complex data sets as Figure 7b compared to Figure 7a.

6.4. TimeGridOpt Results

Results are presented in Table 7. For each data configuration, the mean number of incoherent edges
(edges which do not correspond to any defined pattern through design of experiments, by not containing

14

Data RS FM SS TS TSOE ROOT
dive,p dive pmax AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD

1 25 5 5 0.33 0.08 0.87 0.00 0.86 0.00 0.87 0.00 0.90 0.00 0.91 0.00
2 25 5 25 0.15 0.09 0.77 0.02 0.74 0.02 0.81 0.02 0.84 0.02 0.90 0.01
3 100 5 25 0.24 0.04 0.70 0.01 0.70 0.02 0.75 0.01 0.77 0.01 0.90 0.01
4 100 5 50 0.14 0.08 0.66 0.01 0.65 0.02 0.72 0.01 0.74 0.01 0.89 0.01
5 100 50 5 0.19 0.04 0.34 0.01 0.35 0.02 0.44 0.01 0.44 0.02 0.90 0.01
6 100 50 25 0.15 0.04 0.34 0.03 0.33 0.03 0.42 0.02 0.42 0.02 0.90 0.01
7 100 50 50 0.11 0.02 0.34 0.04 0.33 0.03 0.41 0.02 0.42 0.02 0.89 0.01
8 100 100 5 0.13 0.02 0.23 0.04 0.25 0.03 0.36 0.03 0.36 0.02 0.90 0.01
9 100 100 25 0.13 0.04 0.29 0.03 0.27 0.04 0.37 0.02 0.38 0.02 0.90 0.01
10 100 100 50 0.10 0.03 0.30 0.02 0.29 0.03 0.38 0.03 0.38 0.02 0.89 0.01
11 300 50 25 0.15 0.02 0.26 0.02 0.26 0.01 0.31 0.01 0.31 0.02 0.89 0.01
12 300 50 50 0.13 0.02 0.24 0.01 0.24 0.02 0.30 0.01 0.31 0.01 0.89 0.01
13 300 100 5 0.13 0.02 0.20 0.01 0.21 0.01 0.26 0.01 0.26 0.01 0.89 0.01
14 300 100 25 0.11 0.01 0.21 0.02 0.21 0.02 0.27 0.02 0.28 0.02 0.89 0.01
15 300 100 50 0.10 0.02 0.21 0.02 0.21 0.02 0.27 0.02 0.29 0.02 0.89 0.01

Table 5: The replayability score of the best models mined by different methods: average and standard deviation.

Data RS SS TS TSOE
AVG STD AVG STD AVG STD AVG STD

1 21 9 39 9 622 151 1479 392
2 15 1 33 6 731 155 1825 419
3 22 7 40 11 665 134 1591 619
4 19 5 38 6 873 234 1930 598
5 34 12 47 16 878 363 1828 362
6 18 5 39 12 711 191 1463 321
7 18 5 33 7 726 162 1541 407
8 15 1 40 12 679 184 1182 335
9 15 <1 33 10 678 162 1513 398
10 15 <1 35 8 689 150 1416 454
11 19 5 38 8 639 99 1353 411
12 18 2 38 8 745 182 1404 334
13 15 <1 37 6 785 213 1354 347
14 16 1 43 8 656 132 1406 253
15 16 <1 36 7 674 173 1497 257

Table 6: Computation time (in seconds) of each method: average and standard deviation.

Data Replayability Time Incoherent edges
Config. AVG STD AVG STD AVG

2 0.81 0.02 9820 3048 5.6%

4 0.72 0.01 7965 2547 7.0%

15 0.28 0.02 10999 3688 6.0%

Table 7: Best models mined by TSOE for TimeGridOpt : replayability, time (in seconds) and percentage of incoherent edges.

15

0 10 20 30 40 50
Number of itertions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
pl

ay
ab

ilit
y

sc
or

e

ROOT - mean
FM - mean
RS - mean

TSOE - mean
TS - mean
SS - mean

(a) Configuration 2 - GridOpt

0 10 20 30 40 50 60
Number of itertions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
pl

ay
ab

ilit
y

sc
or

e

ROOT - mean
FM - mean
RS - mean

TSOE - mean
TS - mean
SS - mean

(b) Configuration 15 - GridOpt

Figure 6: Replayability versus the number of iterations: 6 different methods applied to three logs for the GridOpt problem;
log of configuration 2 (Fig. 6a) and configuration 15 (Fig. 6b).

16

(a) Configuration 2

(b) Configuration 15

Figure 7: Examples of the best G-PsM models mined by the TSOE algorithm.

17

(a) Configuration 2

(b) Configuration 15

Figure 8: Focus on the edges for G-PsM models.

18

time values 100, 200 or 300) is also given. The replayability of the best mined models with TSOE for
TimeGridOpt is slightly inferior to TSOE for GridOpt on the same event log. The number of incoherent
edges, i.e. the edges not respecting time patterns, is low (5.6%, 7.0% and 6.0%) and thus is encouraging
for the methodology presented. These incoherent edges characterize traces with transitions generated from
no time pattern edges (25% of transitions following {U(0, 400)}) or noisy transitions obtained after adding
noise to the event log. Visual representations of the best models are shown in Figure 9 for configuration
2. The general shape of the process model obtained by solving TimeGridOpt is similar to previous G-PsM
graphs (Figure 9a). The time-focused representation of TG-PsM highlights the type of edges obtained after
the optimization, corresponding to the amount of timed edges it contains. According to the simulated event
log, the time pattern edges could be of 3 types: simple (one interval centered in 200), double (2 intervals
centered in 100 and 300) or triple (centered in 100, 200 and 300), as shown in Figure 9b.

7. Real-life Case Study

7.1. Diabetes Mellitus

Diabetes Mellitus (DM) is a group of metabolic disorders, resulting in chronic hyperglycemia due to
unregulated insulin secretion and/or action. Common forms of DM are type-1 and type-2. Type-2 diabetes
is the most common form (90-95% of patients). It is mainly characterized by insulin resistance and relates
to the lifestyle, physical activity, dietary habits and heredity. Type-1 diabetes is less frequent (5-10%) and
is due to destruction of β cells of the pancreas [4]. Data Mining methods have been widely applied to DM
data and supervised learning prevails (85% of studies). Moreover, clinical data sets were the most used
[3]. Our method, unsupervised Process Mining, adds a new angle and diversity to existing approaches in
DM research. This real-life case study shows how the newly developed approach helps to analyze patient
pathways before the appearance of four identified complications.

7.2. Data and Methodology

Data originates from the French National Health Insurance (CNAM), where a group of 50,000 patients
suffering type-1 or type-2 diabetes in 2008 was constructed. Within this population, 5,714 patients developed
at least one of the following complications until 2016: stroke, amputation, infarctus or TCKD (Terminal
Chronic Kidney Disease). For each complication and for each patient, a 2-year period of medical history
was analyzed. A time grid process model was built for each complication over these 2-year periods. TSOE
algorithm was used with the following parameters : models’ size is |N | = 20, |E| = 4× |N |, and otherwise
as in Table 4. Events of different categories were available:

• Hospitalizations (diabetes, cardiovascular, surgery...);

• Complications (stroke, amputation, infarctus, TCKD);

• Other medical events (dialysis , insulin, emergency without hospitalization).

Other follow-up exams, much more frequent in patient pathways (around 70% of the events), were also
available: general practitioner visits, glycated hemoglobin tests (HBA1C), glycemia tests, creatinine tests,
etc. Discussions with medical experts led to the non-consideration of these exams as key nodes for the
process model. Instead of studying their sequence and successions in the pathway, they were simply and
usefully quantified within the period between two nodes (i.e. on an edge). The quantification of such events
was performed on the final mined model: for each patient crossing an edge during the replayability game,
a list of frequent exams is computed, and median values for each frequent exam are printed on the edges.
An unconnected grid process model with best time grid process model’s nodes was created first. Then, a
number of edges |E|, equal to the DivE , are used to connect the grid process model using optimized edges.

19

(a) Configuration 2

(b) Focus on the edges for TG-PsM models.

Figure 9: Examples of the best TG-PsM models mined by the TSOE algorithm

20

0 20 40 60 80 100 120
Number of iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ep

la
ya

bi
lit

y
sc

or
e

Stroke - Best solution
Infarct - Best solution

Amputation - Best solution
TCKD - Best solution

Figure 10: Replayability versus iterations for the four complication event logs.

Complication |L| dive dive,p |σ|q1,m,q3 RG RTG

Amputation 695 15 232 3/5/8 0.76 0.75

Stroke 2152 15 222 1/3/4 0.89 0.87

Infarctus 2913 15 253 2/3/5 0.88 0.86

TCKD 421 13 225 4/6/9 0.72 0.70

Table 8: Diabetes event log descriptors and replayability score.

7.3. Results

Descriptors and replayability performances are presented in Table 8. The evolution of the optimization
for each event log is presented in Figure 10. Event log analyses using the descriptors show pathway differences
between stroke, infarctus, amputation and TKCD. Indeed, the first two complications are characterized by
shorter traces (|σ|q1,m,q3 : (1, 3, 4) and (2, 3, 5) vs. (3, 5, 8) and (4, 6, 9)), that is to say short and unstructured
pathways compared to the other two. This difference between complications is also highlighted by the best
final replayability scores: amputation and TCKD have lower scores (RTG : 0.75 and 0.70) compared with
those of stroke and infarctus (0.87 and 0.86) because longer and more complex pathways are less easily
replayed in a graph than shorter ones. These observations are illustrated by Figure 11. An example of
frequent events’ information can be seen in Figure 11b where a pattern of diabetes hospitalization before
stroke is highlighted. For 206 patients concerned, time between events was 242 days on average. As an
example of frequent exams, the median number of general practitioner visits is displayed (“MG : 5”). The
grid structure, which allows duplicate labels in a process model, is particularly suitable in this case study.
As shown in Figure 11a, a high number of “Other hospitalizations excluding surgery” and “Cardiology
hospitalizations” are interesting patterns revealed by the grid process model. Time pathway analysis gives
further opportunities for understanding patient pathways. As an example, the process model relating to the
complication “amputation” (Figure 11a) shows globally unique short time pathways. On the opposite, the
process model relating to the complication “stroke” (Figure 11b) presents diverse time pathways, with not
only short duration transition.

21

8. Conclusion and Future Research

An extended methodology to create suitable process models for healthcare applications has been pre-
sented. Its Scientific contributions are multiple. New process models considering a grid structure and time
patterns were mathematically defined. We formulated a set of descriptors to characterize the structure of
such a process model and event log complexity. The establishment of a new property for grid process mod-
els leads to a novel search algorithm to mine optimized process models. The search incorporates the grid
structure and includes time patterns upon construction of the process model. Computational experiments
validate the overall performance of this approach. The interest of neighborhood-based searches to solve
the problem was quantitatively shown: Tabu Search with Optimized Edges is more efficient for a small
event diversity. A qualitative observation was made regarding the grid structure, representing with more
fidelity the linearity of patient pathways over time. This improves the visualization of repeated events. The
advantage of considering time within optimization was also spotlighted. In addition, the applicability of the
method and the interest in patient pathways analysis is demonstrated by a case study. The grid structure,
the time patterns and the display of certain frequent events on edges provide interpretative highlights for
medical staff and decision makers.

Three opportunities for future work come to mind. Firstly, a focus on optimization performances for
complex data sets will be made, by considering less strict constraints (nodes and edges). During the exper-
iments presented in this work, constraints were specifically set to obtain an overall comprehensible model
capable of being simply visually interpreted. However, increasing the complexity of the process model can
be achieved if interactive tools permit the exploration of the final model wherein key elements are able to
be clearly discerned. Secondly, studying the relation between event log descriptors, graph constraints and
replayability of the best models minded is of important interest as well. Any results rendered will be useful
for the calibration of constraints, particularly for the third research axis. Eventually, future research should
focus on creating a methodology to perform supervised learning with traces as input data, whereas current
state-of-the-art classification methods only take “flattened data” as input (vectors of features). A process
model optimized for classification purposes will produce an explainable predictive model.

Acknowledgement

The authors wish to thank Chris Yukna for his help in proofreading.

References

[1] T. G. Erdogan and T. Ayca. Systematic mapping of process mining studies in healthcare. IEEE Access, 6:1–1, 2018.
[2] A. Giua and X. Xie. Control of Safe Ordinary Petri Nets Using Unfolding. Discrete Event Dynamic Systems, 15(4):

349–373, 2005.
[3] I. Kavakiotis, O. Tsave, A. Salifoglou, N. Maglaveras, I. Vlahavas, and I. Chouvarda. Machine learning and data mining

methods in diabetes research. Computational and Structural Biotechnology Journal, 15:104 – 116, 2017.
[4] A. T. Kharroubi and H. M. Darwish. Diabetes mellitus: The epidemic of the century. World journal of diabetes, 6:

850–867, 2015.
[5] G. P. Kusuma, M. Hall, C. Gale, and O. Johnson. Process mining in cardiology: A literature review. International Journal

of Bioscience, Biochemistry and Bioinformatics, 8(4):226–236, 2018.
[6] I. Litchfield, C. Hoye, D. Shukla, R. Backman, A. Turner, M. Lee, and P. Weber. Can process mining automatically

describe care pathways of patients with long-term conditions in uk primary care? a study protocol. BMJ Open, 8(12),
2018.

[7] A. R. C. Maita, L. C. Martins, C. R. L. Paz, L. Rafferty, P. C. K. Hung, S. M. Peres, and M. Fantinato. A systematic
mapping study of process mining. Enterprise Information Systems, 12(5):505–549, 2018.

[8] M. Prodel, V. Augusto, X. Xie, B. Jouaneto, and L. Lamarsalle. Discovery of patient pathways from a national hospital
database using process mining and integer linear programming. In CASE, pages 1409–1414, 2015.

[9] M. Prodel, V. Augusto, B. Jouaneton, L. Lamarsalle, and X. Xie. Evaluation of discovered clinical pathways using process
mining and joint agent-based discrete-event simulation. In Proceedings of the Winter Simulation Conference 2016, 2016.

[10] M. Prodel, V. Augusto, B. Jouaneton, L. Lamarsalle, and X. Xie. Optimal process mining for large and complex event
logs. IEEE Transactions on Automation Science and Engineering, 15(3):1309–1325, 2018.

[11] H. A. Reijers and J. Mendling. A study into the factors that influence the understandability of business process models.
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 41(3):449–462, 2011.

22

[12] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Springer US, 1986.
[13] W. M. P. van der Aalst. Introduction. In Process Mining: Discovery, Conformance and Enhancement of Business

Processes, pages 1–25. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
[14] W. M. P. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: discovering process models from event logs.

IEEE Transactions on Knowledge and Data Engineering, 16(9):1128–1142, 2004.

23

(a) Amputation

(b) Stroke (with an example of frequent events display)

Figure 11: Example of time grid process models resulting from the case study.

24

