Single chamber Solid Oxide Fuel Cells selective electrodes: A real chance with brownmillerite-based nanocomposites
Résumé
In this contribution brownmillerite-based nanocomposite cathode for Single-Chamber Solid Oxide Fuel Cells is developed. These cells can be very attractive especially for small and cheap devices because of the absence of seals. The efficiency of SC-SOFCs is strictly connected to the selectivity of anode and cathode, the bottleneck for this technology. The development of a cathode inert in fuel oxidation is particularly challenging. Our strategy is to start from a catalytically un-active support (CFA = Ca2FeAl0.95Mg0.05O5) and induce the formation of iron oxide based nanoparticles, expected to activate oxygen. Symmetric (CFA + FeOx/CGO/CFA + FeOx) and complete cells (CFA + FeOx/CGO/Ni-CGO) are studied in air and methane/oxygen 2:1 mixture. The Area Specific Resistance of CFA + FeOx is less than 1/3 that of CFA. The high selectivity allows to reach an efficiency of 25%; power still needs to be increased but we demonstrated the possibility to develop selective low cost electrodes. The effect of air, methane/oxygen exposure and the heat treatments were carefully investigated.
Origine | Fichiers produits par l'(les) auteur(s) |
---|