A Generic Multi-Agent Model for Resource Allocation Strategies in Online On-Demand Transport with Autonomous Vehicles
Alaa Daoud, Flavien Balbo, Paolo Gianessi, Gauthier Picard

To cite this version:

HAL Id: emse-03186991
https://hal-emse.ccsd.cnrs.fr/emse-03186991
Submitted on 31 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Generic Multi-Agent Model for Resource Allocation Strategies in Online On-Demand Transport with Autonomous Vehicles

Alaa DAOUĐ – Flavien BALBO – Paolo GIANESSI – Gauthier PICARD
alaa.daoud@emse.fr flavien.balbo@emse.fr paolo.gianessi@emse.fr gauthier.picard@onera.fr

Application domain: On-demand transport (ODT)

AV-OLRA model
Autonomous Vehicles Online Localized Resource Allocation
A generic model to ODT’s dynamic resource allocation problem in autonomous vehicle fleets with communication constraints
\(\langle R, V, G, T \rangle \)
- \(R \): a dynamic set of requests
- \(V \): a fleet of \(m \) vehicles
- \(G \): a graph defining the road network
- \(T \): the problem’s time horizon

Solution methods
Depends on the adopted coordination mechanism (CM)
\(CM := \langle DA, AC, AM \rangle \)
- \(DA \): level of decision autonomy centralized (C) / decentralized (D)
- \(AC \): agents’ cooperativeness level "sharing" (S) / "no-sharing" (N)
- \(AM \): the allocation mechanism

Implementation examples
- **Selfish**: \(\langle D, N, \text{Greedy} \rangle \) [3]
- **Dispatching**: \(\langle C, S, \text{MILP} \rangle \) [2]
- **Auctions**: \(\langle D, S, \text{Auction} \rangle \) [1]
- **Cooperative**: \(\langle D, S, \text{DCOP} \rangle \)
MGM-2 solver [4]
DSA solver [5] (variant A, \(p = 0.5 \))

Evaluation
<table>
<thead>
<tr>
<th>Coordination</th>
<th>QoS evolution with the increasing fee size</th>
<th>Metrics for scenarios with 10 vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>message size</td>
<td>max</td>
<td>avg</td>
</tr>
<tr>
<td>Selfish</td>
<td>140</td>
<td>88</td>
</tr>
<tr>
<td>Dispatching</td>
<td>3500</td>
<td>168</td>
</tr>
<tr>
<td>Auctions</td>
<td>140</td>
<td>112</td>
</tr>
<tr>
<td>MGM-2</td>
<td>210</td>
<td>25</td>
</tr>
<tr>
<td>DSA</td>
<td>236</td>
<td>20</td>
</tr>
</tbody>
</table>

References