
HAL Id: emse-03195702
https://hal-emse.ccsd.cnrs.fr/emse-03195702

Submitted on 14 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transit-Guard: An OS-based Defense Mechanism
Against Transient Execution Attacks

Maria Mushtaq, David Novo, Florent Bruguier, Pascal Benoit, Muhammad
Khurram Bhatti

To cite this version:
Maria Mushtaq, David Novo, Florent Bruguier, Pascal Benoit, Muhammad Khurram Bhatti.
Transit-Guard: An OS-based Defense Mechanism Against Transient Execution Attacks. ETS
2021 - 26th IEEE European Test Symposium, May 2021, Bruges (virtual), Belgium. pp.1-2,
�10.1109/ETS50041.2021.9465429�. �emse-03195702�

https://hal-emse.ccsd.cnrs.fr/emse-03195702
https://hal.archives-ouvertes.fr


Transit-Guard: An OS-based Defense Mechanism
Against Transient Execution Attacks

Maria Mushtaq, David Novo, Florent Bruguier, Pascal Benoit
LIRMM-CNRS, Univ. Montpellier

Montpellier, France
{maria.mushtaq, david.novo, florent.bruguier, pascal.benoit}@lirmm.fr

Muhammad Khurram Bhatti
Information Technology University (ITU)

Lahore, Pakistan
khurram.bhatti@itu.edu.pk

Abstract—Transient attacks manipulate speculative execution to
alter the control flow path in an application program and modify
microarchitectural state. These state changes are not captured by
the existing Instruction Set Architectures (ISAs). In this paper, we
propose a novel OS-level detection-based mitigation mechanism,
called Transit-Guard, that uses machine learning and real-time
behavioral data of concurrent processes to detect and subsequently
mitigate these attacks at run-time.

Index Terms—Secure Systems, Microarchitecture, Transient
execution, Spectre, Meltdown, Mitigation, OS, Machine learning.

I. THE TRANSIT-GUARD MECHANISM
Side- and covert-channel information leakage is a seri-

ous threat to modern computer architectures as they exploit
microarchitectural features to extract privileged information.
Recently, information retrieval attacks have started to target
microarchitectural features beyond the memory sub-system.
For instance, many of the performance-boosting techniques
included in modern processor microarchitectures, such as out-
of-order and speculative execution, pipelining, and branch-
prediction [1], have already been exploited. In our threat model,
we assume a co-resident attacker process running in user space
and targeting privileged address space without explicit access.
We consider the OS does not offer any specific privilege level
associated with the attacker process.

Transit-Guard works in two distinct stages. As illustrated
in Figure 1, the detection module operates in the Linux user
space, while the mitigation module operates in kernel space.
Transit-Guard works at runtime, i.e., when the attack is actually
happening. The Transit-Guard reuses the detection module pro-
posed in [2]. Both Spectre [3] and Meltdown [4] attacks exploit
transient execution to trigger the attack and later retrieve data
from caches using covert channels. We have selected appropri-
ate hardware/software performance counters (HPCs/SPCs) that
are most affected by these stages of the attack. We have selected
Total Branch Instructions, Total Branch Mispredictions, L3
total cache misses and total execution cycles as features for
Spectre attack. For Meltdown attack, we have selected Total
Page Faults, L3 Total Cache Accesses, L3 Cache Misses and
Total Execution Cycles as features. As illustrated in Figure 1,
the mitigation module is hosted in the Linux kernel space. Once
the detection module reports an attack, mitigation module first
evaluates whether the received PIDs from detection module are
trusted processes or not. All system processes are considered
trusted whereas all the user processes are considered untrusted
by default. Transit-Guard does so because, at run-time, it is
highly likely that the set of active processes also contain some

Fig. 1: Design details of the Transit-Guard Mechanism.
Linux’s system processes, which are considered as trusted by
default. It is, therefore, imperative for the mitigation module
to evaluate malicious PIDs. Once it is established that the
process under consideration is trusted, the module marks the
process as benign/safe. All the untrusted processes are then
evaluated further. Since the mechanism associates an instance
of each performance counter with processes at the time of
their creation, when a process exhibits malicious behaviour the
related instance of counter reports abnormality to the detection
module, which then acquires the PID of current process. These
instances of counters are process-specific and point to the exact
process that is exhibiting abnormal behavior at the time of
detection. Thus, the mitigation module kills only the malicious
process and does not incur any performance overhead other
than its own execution time overhead. When a particular
model reports a detection, the mitigation module checks the
authenticity of the reported detection by waiting for at least 3
consecutive detection reports to further reduce the FPs.

II. EXPERIMENTS, RESULTS AND DISCUSSION
We have performed experiments on Linux Ubuntu LTS 16.04

Kernel version: 4.10.0-28-generic running on Intel’s core i7−
4770 CPU at 3.40-GHz with 64KB L1, 256KB L2, 8192KB
L3 and 8GB system memory. We have used Performance API
(PAPI) [5] and Perf [6] libraries to access SPCs/HPCs.

A. Case Study 1: Detection and Mitigation of Spectre

1) Detection of Spectre: As illustrated in Table I, our
results show that LDA, LR and SVM demonstrate 99.01%,
98.61% and 97.10% detection accuracy, respectively, under FL
conditions. All ML models provide high detection accuracy
for Spectre attack. We have collected the SPCs/HPCs at a
(constant) high speed of 10µs. This sampling frequency is



adjustable. Results in Table I illustrate that LDA provides
1.20% and 0.79%, LR provides 1.37% and 0.02% and SVM
provides 2.87% and 0.03% of FPs and FNs, respectively. Re-
sults demonstrate that all models provide a negligible number
of FPs and FNs, where most of the time results depict more FPs
in ratio. The adaptability and scalability of detection module is
highly dependent on performance overhead. Results in Table I
illustrate that all ML models report a low performance overhead
for detection, i.e., LDA, LR and SVM report only 1.6%, 1.5%,
1.7% overhead, respectively.

TABLE I: Results on the detection of Spectre attack

Model Loads Accuracy
(%)

Speed
(µs)

FP
(%)

FN
(%)

Overhead
(%)

LDA
NL 99.95 10 0.05 0

1.6AL 99.08 10 0.57 0.35
FL 98.01 10 1.20 0.79

LR
NL 99.99 10 0.01 0

1.5AL 98.51 10 1.17 0.32
FL 98.61 10 1.37 0.02

SVM
NL 99.30 10 0.69 0.01

1.7AL 98.00 10 1.98 0.02
FL 97.10 10 2.87 0.03

TABLE II: Measured time at different stages for mitigation
mechanism while detecting Spectre Attack

Load
Type

Detection
(µs)

PID Collec-
tion (µs)

Mitigation
(µs)

Total Time
(µs)

NL 62 0.5 5 67.5
AL 65 0.5 11 76.5
FL 68 1.0 18 87

2) Mitigation of Spectre: Table II provides results on the
measured time at different stages from detection to mitigation,
i.e., detection time, PID collection, mitigation and the total time
that Transit-Guard takes. The average time Spectre attack takes
to execute as stand-alone process on an Intel’s Core i7 machine
is measured as 256µs. Results in Table II show that Transit-
Guard takes 68µs as detection to mitigation time in order to
detect an attack process under FL conditions. Once the attack
is detected, PIDs of all detected processes are collected within
1.0µs. Once the PIDs of detected processes are collected, the
information is relayed to the kernel module through Netlink
socket to take mitigation decision, which takes another 18µs
to kill the untrusted processes. Therefore, Transit-Guard takes
87µs in total under FL conditions to detect and subsequently
mitigate Spectre attack. These results demonstrate that Transit-
Guard is able to detect and mitigate Spectre attack in < 27%
of attack completion.

B. Case Study 2: Detection and Mitigation of Meltdown

1) Detection of Meltdown: under FL condition, Table III
shows that LDA, LR and SVM show 98.30%, 96%, 98.35%
detection accuracy, respectively, under FL conditions at the
sampling granularity of 10µs. Moreover, LDA offers 1.25% and
0.45%, LR offers 3.40% and 0.60% and SVM offers 1.39% and
0.26% of FPs and FNs, respectively. LDA, LR and SVM incur
1.91%, 2.21% and 2.00% overhead, respectively.

2) Mitigation of Meltdown: Table IV shows the detection
to mitigation time taken by the Transit-Guard while mitigating
Meltdown attack. It takes 70µs to detect the Meltdown attack,
1.0µs to collect PIDs of detected processes and 21µs to mitigate
the untrusted processes. Transit-Guard, under FL condition,
takes a total of 92µs to detect and mitigate the Meltdown attack.
Our experiments show that Meltdown takes 305µs on average to
execute the attack on Intel’s Core i7 machine. Our results report
that Transit-Guard is able to detect and subsequently mitigate
Meltdown attack in < 30% of attack’s completion time. Table
I & III report that most of the performance overhead is coming
from detection module (due to the collection of events and
binary classification), whereas, the time to collect PIDs and
mitigating untrusted process is minimal. Therefore, the overall
overhead of Transit-Guard lies between 1.5− 2.2%.

TABLE III: Results on the detection of Meltdown attack

Model Loads Accuracy
(%)

Speed
µs

FP
(%)

FN
(%)

Overhead
(%)

LDA
NL 99.99 10 0.01 0

1.91AL 99.91 10 0.09 0.00
FL 98.30 10 1.25 0.45

LR
NL 99.41 10 0.59 0

2.21AL 97.45 10 1.95 0.60
FL 96.00 10 3.40 0.60

SVM
NL 99.99 10 0.01 0

2.00AL 99.40 10 0.60 0.00
FL 98.35 10 1.39 0.26

TABLE IV: Measured timing at different stages for mitigation
mechanism while detecting Meltdown Attack

Load
Type

Detection
(µs)

PID Collec-
tion (µs)

Mitigation
(µs)

Total Time
(µs)

NL 64 0.5 7 71.5
AL 69 0.5 14 83.5
FL 70 1.0 21 92

III. CONCLUSION

We propose Transit-Guard, a novel OS-level run-time de-
tection & mitigation mechanism, against transient execution
attacks. The Transit-Guard uses multiple machine learning
models and profiles concurrent processes using SPCs/HPCs at
real-time. Experimental results demonstrate that Transit-Guard
is capable of detecting and mitigating Spectre and Meltdown
attacks while running under Linux OS. The Transit-Guard is
light-weight and resilient to noisy system load conditions.

REFERENCES

[1] W. Xiong and J. Szefer, “Survey of transient execution attacks,” arXiv
preprint arXiv:2005.13435, 2020.

[2] M. Mushtaq, J. Bricq, M. K. Bhatti, A. Akram, V. Lapotre, G. Gogniat,
and P. Benoit, “WHISPER: A tool for run-time detection of side-channel
attacks,” IEEE Access, vol. 8, pp. 83 871–83 900, 2020.

[3] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” CoRR, 2018.

[4] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Melt-
down: Reading kernel memory from user space,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018.

[5] “Performance application programming interface,” in http :
//icl.cs.utk.edu/papi/, 2018.

[6] P. Tool, “http : //lacasa.uah.edu/,” 2018.


