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ABSTRACT

Mathematical Morphology (MM) is a tool that can be applied to many digital image processing tasks that
include the reduction of impulsive or salt and pepper noise in grayscale images. The morphological filters
used for this task are filters resulting from two basic operators: erosion and dilation. However, when the level
of contamination of the image is higher, these filters tend to distort the image. In this work we propose a pair
of operators with properties, that better adapt to impulsive noise than other classical morphological filters, it
is demonstrated to be increasing idempotent morphological filters. Furthermore, the proposed pair turns out
to be a ∧-filter and a ∨-filter which allow to build morphological openings and closings. Finally, they are
compared with other filters of the state-of-the-art such as: SMF, DBAIN, AMF and NAFSM, and have shown
a better performance in time-quality ratio when the noise level is above 50%.

Keywords: adaptive morphological filters, grayscale images, noise removal.

INTRODUCTION

Impulsive noise (or salt and pepper) is one of
the most frequent types of noise present in digital
images. This type of noise is caused by several factors
such as faulty memory, scanning problems of the
video sensors, decoding errors, transmission in a noisy
channel, etc. The removing of this type of noise is one
of the most important procedures that must be done
before analyzing the characteristics of an image.
There exists several methods in the literature for
the efficient removing of impulsive noise. One of
the most used and robust non-linear filters is the
standard median filter (SMF) (Huang et al., 1979),
nevertheless, as noise increases, noise removing is
less effective. Other algorithms like adapted median
filter (AMF) (Ibrahim et al., 2008) and the Decision
Based Algorithm (DBAIN) (Srinivasan and Ebenezer,
2007) tend to blur and distort the image. On the other
hand, the Noise Adaptive Fuzzy Switching Median
Filter (NAFSM) (Toh and Mat Isa, 2010) has better
results than other median filters however it has a high
computational complexity that makes it difficult to
carry out. Furthermore, all these methods are focused
only on the computational aspects rather than on
properties of its filters.
In the framework of mathematical morphology, it
is common to use combinations of erosions and
dilatations for the removing of this type of noise
(Maragos and Schafer, 1987; Song and Delp, 1990;

Oh and Chaparro, 1998; Mukhopadhysy and Chanda,
2002). Despite the fact that this kind of filters gives
good results, as the level of degradation increases,
they do not guarantee a good quality of the image.
One of the reasons for its inefficiency is that they
modify non-noisy pixels in an incorrect way contrary
to most of the state-of-the-art filters. Added to this, the
theoretical requirement of the property of adjunction
between erosion and dilation (Serra, 1983; Debayle
and Pinoli, 2005; Ćurić et al., 2014) makes it difficult
to define morphological operators that do not modify
non-noisy pixels. In the first section of this paper
the aforementioned issues are analyzed in detail and
illustrated, see figures 1, 3 and 4.

The main objetive of this work is to propose a family
of real denoising morphological filters that overcome
these difficulties for which it is demostrated that they
turn out to be increasing and idempotent operators.
Also, they are ∧-filter and ∨-filter which allow to
define mophological openings and closings. Finally
it is shown that they are efficient for impulsive noise
removal in comparison with other morphological
filters and finally they are compared qualitatively and
quantitatively to other filters from the literature.

The paper is organized as follows. In the first
section, some concepts about classical and adaptive
mathematical morphology are recalled. Besides the
difficulty of defining morphological openings and
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closings that do not modify non-noisy pixels and at
the same time effectively remove impulsive noise is
analyzed. In the next section, it is proposed a pair
of operators that overcome these dificulties and it is
demonstrated to be ∧-filter and ∨-filter (Serra and
Vicent, 1992). Then, the proposed filter is evaluated
and compared in terms of quality and execution time
with some filters of the state of the art. Finally, in the
last section, the conclusions are given.

BACKGROUND ON MATHEMATICAL
MORPHOLOGY

A digital image can be described by the function

f : Z2→ T (1)

where T = {0,1, ...,L} and L is the maximum value
of the intensity scale used. Let (F ,≤) be the lattice
of functions with the order: f ≤ g⇔∀x ∈ Z2, f (x)≤
g(x). A noisy image of f ∈ F , is defined as fr ∈ F
affected by impulsive noise where a fraction p ∈ [0,1]
of the points in the domain of f , which are randomly
selected with uniform probability, change their value
by the following composition,

fr(x) = τ(ρ(1)≤ p,τ(ρ(1)≤ 0.5,0,L), f (x))

where τ(c,ev,e f ) is the conditional function whose
arguments are the logical condition c to evaluate, the
function to evaluate ev in case that c = 1 (true) and the
function to evaluate e f in case that c = 0 (false). Also
ρ(1) is a number generating function with uniform
distribution in the interval (0,1). Note in the function
fr that the values to assign are the maximum and the
minimum of the gray scale.

CLASSICAL MATHEMATICAL
MORPHOLOGY

Classical mathematical morphology studies
images through series of operators that are, in a lot
of cases, the result of the composition of two basic
operations: erosion and dilation.

Definition 1 Erosion and dilation of a function f ∈F
through the structuring element B⊂Z2 are defined as:

εB( f )(x) = min
y∈ Bx

f (y) and δB( f )(x) = max
y∈ B̂x

f (y) (2)

respectively. Where B̂ = {−x : x ∈ B} is the symmetric
set of B, and Bx is the translation of B to point x.

One of the fundamental characteristics of this
structuring element is that its size is much smaller than
the domain of the image to be studied and thus, it acts
as a probe or local analyzer.
The dilation and erosion are not inverse of each other
and, in general, are not invertible. However, this allows
defining another pair of operations based on their
composition.

Definition 2 The opening and closing of f by
structuring element B are defined as,

γB( f ) = δBεB( f ) and ϕB( f ) = εBδB( f ). (3)

respectively. The filters derived from the composition
of the opening and the closing are the morphological
operators used to eliminate noise in the grayscale
images. Fig. 1 shows the result of applying filters
γBϕBγB and ϕBγBϕB to Lena image contaminated with
impulsive noise of 10% and 30%, using the diamond-
shaped structuring element. It can be observed that
the classic morphological filters are becoming less
effective as the level of degradation increases, in
addition to its softening effect that is not always
something that one would expect to obtain. These
problems are due in large part to the fact that the
structuring element is the same at each point of the
image, without distinguishing between noisy points
and points that are important information of the
original image.

Fig. 1: From left to right. Up to down. first column:
images with impulsive noise of 10% and 30%; second
column: morphological filter γBϕBγB; third column:
morphological filter ϕBγBϕB. B is the diamond-shaped
structuring element.

Another filter used in MM for the removing of
impulsive noise is the morphological center.

Definition 3 Being {ψi} a family of operators over
F , meaning, ψi : F →F . The morphological center
is defined as

C( f ) = min{max{ f ,min ψi( f )},max ψi( f )}.
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Fig. 2: . From left to right. Up to down. First column:
images with impulsive noise of 10% and 30%; second
column: morphological center C( f ) where B is the
diamond-shaped structuring element.

Fig. 2 shows the result of applying the
morphological center to the Lena image, with a noise
level of 10% and 30%, using the family of operators
{ψ1 = γϕγ,ψ2 = ϕγϕ}. As can be seen, the noise
not removed in the images filtered by morphological
center is smaller than those in the images filtered by
γϕγ or ϕγϕ .

ADAPTIVE MATHEMATICAL
MORPHOLOGY

The generalizations of the basic morphological
operators (erosion and dilation) make up the area
of mathematics known as adaptive mathematical
morphology Debayle and Pinoli (2005;a; 2009);
Angulo and Velasco-Forero (2011); Ćurić et al.
(2014); Legaz et al. (2018). These generalizations are
based on an essential property known as adjunction
that is required to correctly define openings and
closing from the combination of erosion and dilation.
Let’s define some important concepts.

Definition 4 Given Φ : F →F an operator, it is said
that:

1. Φ is increasing if for each pair f ,g ∈F so that
f ≤ g then Φ( f )≤ Φ(g).

2. Φ is idempotent if Φ2 = Φ.

3. Φ is extensive if for each f ∈F , f ≤Φ( f ).

4. Φ is anti-extensive if for each f ∈F ,Φ( f )≤ f .

5. Si Φ is increasing, extensive and idempotent then
Φ is a algebraic closing.

6. If Φ is increasing, anti-extensive and idempotent
then Φ is an algebraic opening.

7. Φ is a morphological filter if it is increasing and
idempotent on a lattice.

Definition 5 The operations ε,δ : F → F form an
adjunction on F if:

∀ f ,g ∈F : δ ( f )≤ g⇔ f ≤ ε(g).

The operations εB and δB defined in (2) form
an adjunction. On the other hand, in adaptive
mathematical morphology the idea is to define a
structuring element for each point in the domain of
the digital image, which means, we define a family
of structuring elements Z(x), where Z : Z2 → P(Z2)
and P(Z2) is the power set of Z2. Then we define the
operations εZ and δZ as:

εZ( f )(x) = min
y∈Z(x)

f (y) and δZ( f )(x) = max
y∈Z(x)

f (y).

(4)
In general, these operations are not morphological
operations because the pair (εz,δz) does not always
fulfill with the property of adjunction. However, given
a family Z(x) of subsets of Z2 so that x ∈ Z(x), if for
each x we define

Ẑ(x) = {y ∈ Z2 : x ∈ Z(y)}.

Then the pair (εz,δẐ) defines an adjunction. The set
Ẑ(x) can also be implicitly defined as:

y ∈ Z(x)⇔ x ∈ Ẑ(y) (5)

Moreover, one of the characteristics that makes many
of the algorithms for the removing of impulsive noise
efficient is that they preserve the pixels that have
not been corrupted. Be fr a noisy image, to ensure
that pixels that are not noisy are not modified when
morphological operations are applied, we define a
family of sets {Z(x)} in such a way that:

Z(x) = Ẑ(x) = {x} if x ∈ Rc, (6)

where R is a set that contains the noisy points and Rc

is the complement of R, that is, R ∪ Rc = Z2. Let’s
see that the property stated in (6) cannot be combined
conveniently with the condition stated in (5) to remove
impulsive noise because the structuring element Ẑ(x)
from each noisy point it turns out to contain only noisy
points. Indeed, let x ∈ R such that Ẑ(x)∩ Rc 6= /0 and
let y ∈ Ẑ(x) ∩ Rc, so x ∈ Z(y) = {y} and therefore
x = y, which is a contradiction. So that, Ẑ(x) ⊂ R for
every x ∈ R. Therefore, the dilation and the operations
resulting from its combination with erosion, using a
family of structuring elements that complies with the
properties established in (5) and (6), will not eliminate
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the noise correctly. Since the morphological operations
are not invertible, if we modify a non-noisy point, in
general we will not be able to recover it. Therefore,
adaptive morphological operators calculated using
the reflected structuring element have disadvantages
compared to other methods. Fig. 3 shows a magnified
section of lena’s image with some noisy pixels to
which δẐ is applied. Here, Z(x) = Bx is the diamond-
shaped structuring element for each noisy pixel, and
Z(x) = {x} for each non-noisy pixel. The structuring
elements Z(x) and the reflected structuring elements
Ẑ(x) for some pixels were drawn. As can be seen,
each neighborhood Ẑ(x) has only noisy pixels and the
point x, so the resulting image contains more noisy
pixels than original image. Further, the combination
of this operation with others operations can also
result in a noisier image, see figure 4. In this work
we study two operations with a special family of
structuring elements that do not modify non-noisy
pixels, and even that do not comply with the properties
of extensivity and anti-extensivity, and therefore do not
define morphological openings and closings, but they
are increasing and idempotent, that is, morphological
filters.

Fig. 3: From up to down. Left to right. first row: noisy
image and estructuring elements Z(x) for some pixels
marked with an x. Second row: reflected estructuring
elements Ẑ(x) for some pixels marked with an x, and
the resulting image δẐ f .

Fig. 4: From left to right. Up to down. first column:
noisy image of 10% and 30%; second column: εZδẐ f .

PROPOSED ADAPTIVE
MORPHOLOGICAL FILTER

Considering R,B⊆Z2 so that 0∈ B and B= B̂. For
each x∈Z2 we define the function ZR :Z2→P(Z2) as:

ZR(x) =

 {x} i f x ∈ Rc

Bx i f x ∈ R.
(7)

We define the operations εR,δR : F →F as

εR f (x) = min
y∈ZR(x)

f (y) and δR f (x) = max
y∈ZR(x)

f (y),

and the operations γR,ϕR : F →F as

γR f (x)= max
y∈ZR(x)

min
z∈ZR(y)

f (z) and ϕR f (x)= min
y∈ZR(x)

max
z∈ZR(y)

f (z).

Note that γR f = δRεR f and ϕR f = εRδR f .

Observation 1 If x ∈ R and y ∈ ZR(x)∩ R then x ∈
ZR(y). In fact, we have that ZR(x) = Bx, ZR(y) = By
and y = x+w where w ∈ B, then x = y+ (−w) and
−w ∈ B̂ = B, therefore x ∈ By.

Proposition 1 If f ∈F and x ∈ Z2 then

εR f (x)≤ εRδRεR f (x) = εRγR f (x). (8)

32



Image Anal Stereol 2021;40:29-38

Proof
If x ∈ Rc then ZR(x) = {x} and the inequality is trivial.
Let x ∈ R. Developing the right side of (8) we have the
following expression

εR f (x)≤miny∈ZR(x) γR f (y).

This expression is equivalent to prove that εR f (x)
is lower bound of {γR f (y)} where y ∈ ZR(x). That is,

∀y ∈ ZR(x) : εR f (x)≤ γR f (y).

a) If y ∈ ZR(x)∩Rc then y ∈ ZR(x), minz∈ZR(x) f (z) ≤
f (y) and γR f (y) = f (y). Thus

εR f (x) = minz∈ZR(x) f (z)≤ f (y) = γR f (y).

b) If y ∈ ZR(x)∩R then x ∈ ZR(y), see observation 1.
Hence,

εR f (x)≤ max
z∈ZR(y)

εR f (z) = δRεR f (y) = γR f (y).�

Proposition 2 Let f ,g ∈F . The following properties
are satisfied:

a) Increasing: f ≤ g⇒ γR f ≤ γRg and ϕR f ≤ ϕRg.

b) Duality: γR f =−ϕR(− f ).

c) Idempotence: γR ◦ γR = γR and ϕR ◦ϕR = ϕR.

Proof
The properties a) and b) are directly derived from the
definition of the operators γR and ϕR. Then the proof
for idempotence is presented. Let x ∈ Z2, if x ∈ Rc

then ZR(x) = {x} and γR ◦ γR f (x) = f (x) = γR f (x).
Let’s suppose that x ∈ R. By the proposition 1 and the
increasing property of δR we have that

γR f (x)= δR(εR f )(x)≤ δR(εRδRεR f )(x)= γR◦γR f (x).

Thus γR f (x)≤ γR ◦γR f (x) for each x ∈ Z2. Now let us
demonstrate that

γR ◦ γR f (x)≤ γR f (x).

Since ZR(x) = (ZR(x)∩R)∪ (ZR(x)∩Rc), then:

γR ◦ γR f (x) = max
y∈ZR(x)

min
z∈ZR(y)

γR f (z)

= max{ max
y∈ZR(x)∩R

min
z∈ZR(y)

γR f (z), max
y∈ZR(x)∩Rc

f (y)},

Let y ∈ ZR(x). If y ∈ R then x ∈ ZR(y), see
observation 1. Then

min
z∈ZR(y)

γR f (z)≤ γR f (x)⇒ max
y∈ZR(x)∩R

min
z∈ZR(y)

γR f (z)≤ γR f (x).

On the other hand

max
y∈ZR(x)∩Rc

f (y)≤max{ max
y∈ZR(x)∩R

min
z∈ZR(y)

f (z), max
y∈ZR(x)∩Rc

f (y)}

= γR f (x).

Thus γR ◦γR f (x)≤ γR f (x) for each x∈Z2. Finally,
we have that γR ◦ γR f = γR f . The property of duality
and the idempotence of the function γZ imply the
following equalities:

ϕR f =−γR(− f )
=−γRγR(− f )
=−γR(γR(− f ))
=−γR(−ϕR f )
= ϕR ◦ϕR f .�

The pair (εR,δR) does not define an adjunction, and
consequently operations γR and ϕR are not extensive or
anti-extensive then, they do not define morphological
openings or closings. However, the operations γR and
ϕR are idempotent, increasing and, therefore, define
morphological filters. Next, we present a couple of
filters built from γR and ϕR with additional properties.

Given ψ,Φ : F →F two operators, we define the
operators ψ ∧Φ and ψ ∨Φ as

(ψ∨Φ) f (x) = ψ f (x)∧Φ f (x) = min{ψ f (x),Φ f (x)}.

Definition 6 An operator Φ is a ∧-filter if Φ(I∧Φ) =
Φ, while Φ is a ∨-filter if Φ(I ∨Φ) = Φ. If Φ is a ∧-
filter and a ∨-filter then Φ is a strong filter.

Proposition 3 γR is a ∧-filter y ϕR is a ∨-filter.

Proof
Let f ∈ F . And x ∈ Z2, from observation 1 and
proposition 1 we have the next equalities

γR( f ∧ γR f )(x) = max
y∈ZR(x)

min
z∈ZR(y)

{ f (z)∧ γR f (z)}

= max
y∈ZR(x)

{ min
z∈ZR(y)

γR f (z)∧ min
z∈ZR(y)

γR f (z)}

= max
y∈ZR(x)

{εR f (y)∧ γR f (y)}

= max
y∈ZR(x)

εR f (y)

= δRεR f (x)
= γR f (x).
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By duality property we have the next equalities

ϕR( f ∨ϕR f ) =−γR(−( f ∨ϕR f ))
=−γR((− f )∧ (−ϕR f ))
=−γR((− f )∧ γR(− f ))
=−γR(− f )
= ϕR( f ).�

The following proposition gives a sufficient condition
to build openings and closings.

Proposition 4 Given Φ : F →F an operator, if Φ is
∧-filter, then I ∧Φ is an opening while if Φ is ∨-filter
then I∨Φ is a closing (Serra and Vicent, 1992).

Because of proposition 4 we have that I ∧ γR is a
morphological opening and I ∨ϕR is a morphological
closing.

PROPOSED FILTER
In the case of impulsive noise, the noisy pixels are

in the set R = {x : fr(x) = 0 or fr(x) = L}, where fr
is the noisy image. Next we present a result that will
help us to have a simple interpretation of the filters
I ∧ γR and I ∨ϕR, and to reduce their computational
cost when R is defined as before.

Proposition 5 Let f ∈ F , if R = {x : f (x) =
0 o f (x) = L}, R1 = {x : f (x) = 0} and R2 = {x :
f (x) = L}. then I ∧ γR f = γR2( f ) and I ∨ ϕR( f ) =
ϕR1( f ).

Proof
Let x ∈ Z2, we have the following cases,

a If f (x) = 0 then I ∧ γR f (x) = f (x) ∧ γR f (x) =
f (x) = γR2 f (x).

b If f (x) = L then I ∧ γR f (x) = f (x) ∧ γR f (x) =
γR f (x) = γR2 f (x).

c In any other case I∧ γR f (x) = f (x) = γR2 f (x).

The proof that I ∨ ϕR f = ϕR1 f is like the previous
one.�

We propose to combine the pairs ( γR2 ,ϕR1) and
(γR,ϕR), by using the morphological center for the
removing of impulsive noise as follows:

C( f ) = min{max{ f ,minψi( f )},maxψi( f )}.

Where ψ1 = γRϕRγR and ψ2 = ϕRγRϕR or ψ1 =
γR2ϕR1γR2and ψ2 = ϕR1

γR2ϕR1 . This filter has the
advantage of cleaning an image more efficiently

compared to the classic morphological center.
Next, the algorithm to calculate γR is proposed.
Note that the operation is divided into two parts,
first calculated εR fr and then the composition γR =
δR(εR fr), keeping the family of structuring elements
fixed ZR(x) for both operations.

Algorithm
Require: Noisy image fr, set of noisy pixels R, and

the structuring element B
for each x ∈ Z2 do

compute Z(x)
end for
for each x ∈ Z2 do

compute εR fr(x) = miny∈Z(x) fr(y)
end for
for each x ∈ Z2 do

compute γR fr(x) = maxy∈Z(x) εR fr(x)
end for

The algorithm to obtain ϕR is similar. In the next
section, the family used to compute the center is
(γR,ϕR), because this one has better results than the
center computed with (γR2 ,ϕR1).

EXPERIMENTS AND RESULTS

In this section the proposed method is evaluated
and compared in terms of quality and execution time
with other algorithms that include SMF, DBAIN, AMF
and NAFSM, using the Lena’s image of 510× 510
size degraded with different noise levels ranging from
10% to 90% with increments of 10%. The restoration
quality of the image is measured with the structural
similarity index (SSIM) (Wang et al., 2004), a metric
that was designed to improve traditional metrics such
as PSNR and MSE. The results of the evaluation are
presented and compared in table 1 and figure 5. Table 3
shows the qualitative results of the application of these
methods.
Lena’s image in different sizes was used to compare
the execution time of the different methods mentioned
above, the results are presented in table 2. MATLAB
2017a on a PC equipped with 2.5-GHz CPU and 12 GB
of RAM memory has been employed for the evaluation
of computation time of all algorithms.
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Table 1: SSIM values for various filters applied on
Lena’s image at noise density levels from 10% to 90%.

Filters

Noise% SMF DBAIN AMF NAFSM Proposed

10 0.977 0.997 0.992 0.996 0.994
20 0.929 0.993 0.987 0.991 0.988
30 0.767 0.986 0.982 0.985 0.983
40 0.492 0.976 0.973 0.975 0.975
50 0.271 0.960 0.962 0.967 0.968
60 0.142 0.936 0.947 0.953 0.959
70 0.078 0.894 0.921 0.940 0.945
80 0.041 0.827 0.878 0.914 0.921
90 0.017 0.669 0.787 0.857 0.871

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Noise %

SS
IM

SMF DBAIN AMF NAFSM
Proposed

Fig. 5: Graph representing the SSIM values of table 1.

To study the robustness of our method, we
considered a collection of 10 different images, Fig. 6,
which were contaminated with impulsive noise from
40% to 90% intensity and filtered with the 5 filters
applied before. The results are presented in table 4.

Fig. 6: Images. Up to down. From left to right. First
row: Baboon, Barbara, Cameraman, Einstein and Hill;
second row: House, Jet plane, Lake, Ship and Walk
bridge.

40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Noise %
SS

IM

SMF DBAIN AMF NAFSM
Proposed

Fig. 7: Graph representing the SSIM average values of
table 4.

RESULTS

As seen in figures 1, 2 and 4, the classic
morphological filters are effective when the noise
level is low, however, if the noise level increases
the results of these filters are of low quality. From
table 1 and Fig. 5 we can see that the proposed filter is
effective and, unlike classical morphological methods,
or adaptive, the filter remains stable by increasing
noise levels. We also observed that when the noise
level is above 50% the results of our filter are better
compared to other state-of-the-art filters such as SMF,
DBAIN, AMF and NAFSM.

From table 4 we can see that with images like those
of Barbara and Einstein the NAFSM method has better
results than the proposed method, and with images like
walk bridge or jet plane the proposed method is better.
Nevertheless, from noise level 50%, in the average
case our method was always the best, see figure 7.

In table 2 it can be seen that both SMF method
and proposed method have the best execution time.
In addition, the proposed method also has the best
results with regard to the restoration quality, therefore
the proposed method has the best results with respect
to the time-quality ratio.
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Table 2: Execution times for Lena image in different sizes contaminated with noise levels of 40% to 90%. The
best results were highlighted.

Filters SMF DBAIN AMF NAFSM Proposed SMF DBAIN AMF NAFSM Proposed

Size 40% 50%

128X128 0.000 0.267 0.037 0.371 0.019 0.000 0.268 0.034 0.450 0.019
256x256 0.000 1.121 0.109 1.580 0.014 0.000 1.164 0.112 1.825 0.014
348x348 0.001 2.066 0.259 2.852 0.018 0.001 2.066 0.231 3.607 0.018
512x512 0.001 4.421 0.735 5.930 0.026 0.001 4.500 0.787 7.385 0.027
640x640 0.001 7.015 1.020 9.341 0.034 0.001 6.913 1.217 11.799 0.036

60% 70%

128X128 0.000 0.271 0.066 0.533 0.019 0.000 0.270 0.047 0.617 0.013
256x256 0.000 1.176 0.133 2.175 0.015 0.000 1.101 0.190 2.521 0.014
348x348 0.001 2.079 0.238 4.006 0.019 0.001 2.033 0.286 4.622 0.019
512x512 0.001 4.401 0.936 10.174 0.028 0.001 4.442 0.838 10.047 0.029
640x640 0.001 6.931 1.254 14.109 0.036 0.001 6.915 1.533 15.558 0.038

80% 90%

128X128 0.000 0.273 0.065 0.710 0.017 0.000 0.273 0.190 0.807 0.012
256x256 0.001 1.105 0.299 2.836 0.015 0.000 1.089 0.678 3.234 0.015
348x348 0.001 2.074 0.475 5.276 0.019 0.001 2.073 1.232 5.952 0.020
512x512 0.001 4.393 1.144 11.545 0.029 0.001 4.661 2.581 12.849 0.032
640x640 0.001 6.982 2.022 18.186 0.040 0.001 6.898 3.995 20.047 0.044

Table 3: From left to right: First column: Lena images at noise density levels of 50% to 90%.; second column:
SMF; third column: DBAIN; fourth column: AMF; fifth column: NAFSM and the proposed method.

NOISE NOISE IMAGE SMF DBAIN AMF NAFSM Proposed

50%

60%

70%

80%

90%
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Table 4: SSIM values for diferents filters applied on images of figure 7 at noise density levels of 40% to 90%.
The best results were highlighted.

Filters SMF DBAIN AMF NAFSM Proposed SMF DBAIN AMF NAFSM Proposed

40% 50%

Baboon 0.580 0.934 0.929 0.913 0.939 0.375 0.893 0.897 0.871 0.918
Barbara 0.467 0.882 0.854 0.892 0.833 0.283 0.823 0.806 0.851 0.793
Cameraman 0.492 0.984 0.985 0.975 0.987 0.280 0.971 0.975 0.963 0.983
Einstein 0.469 0.901 0.881 0.893 0.874 0.270 0.856 0.846 0.861 0.845
Hill 0.469 0.876 0.854 0.859 0.849 0.265 0.822 0.808 0.820 0.818
House 0.494 0.99 0.991 0.986 0.992 0.271 0.980 0.984 0.979 0.990
Jet plane 0.527 0.981 0.981 0.975 0.983 0.321 0.965 0.969 0.964 0.977
Lake 0.584 0.973 0.972 0.964 0.977 0.380 0.952 0.958 0.949 0.969
Ship 0.432 0.867 0.841 0.857 0.844 0.266 0.812 0.801 0.816 0.808
Walk bridge 0.620 0.945 0.941 0.931 0.950 0.423 0.911 0.917 0.901 0.934
Average 0.513 0.933 0.923 0.925 0.923 0.313 0.898 0.896 0.898 0.903

60% 70%

Baboon 0.222 0.829 0.849 0.821 0.888 0.375 0.893 0.897 0.871 0.918
Barbara 0.160 0.758 0.754 0.811 0.756 0.283 0.823 0.806 0.851 0.793
Cameraman 0.162 0.946 0.960 0.950 0.976 0.280 0.971 0.975 0.963 0.983
Einstein 0.139 0.799 0.798 0.825 0.810 0.270 0.856 0.846 0.861 0.845
Hill 0.131 0.742 0.746 0.768 0.778 0.265 0.822 0.808 0.820 0.818
House 0.149 0.961 0.974 0.971 0.986 0.271 0.980 0.984 0.979 0.990
Jet plane 0.192 0.936 0.954 0.950 0.970 0.321 0.965 0.969 0.964 0.977
Lake 0.235 0.920 0.936 0.928 0.957 0.380 0.952 0.958 0.949 0.969
Ship 0.144 0.745 0.742 0.765 0.768 0.266 0.812 0.801 0.816 0.808
Walk bridge 0.250 0.855 0.877 0.865 0.912 0.423 0.911 0.917 0.901 0.934
Average 0.178 0.849 0.859 0.865 0.880 0.313 0.898 0.896 0.898 0.903

80% 90%

Baboon 0.118 0.735 0.776 0.756 0.845 0.375 0.893 0.897 0.871 0.918
Barbara 0.087 0.662 0.681 0.761 0.704 0.283 0.823 0.806 0.851 0.793
Cameraman 0.100 0.906 0.937 0.932 0.965 0.280 0.971 0.975 0.963 0.983
Einstein 0.068 0.719 0.730 0.778 0.763 0.270 0.856 0.846 0.861 0.845
Hill 0.065 0.660 0.675 0.709 0.727 0.265 0.822 0.808 0.820 0.818
House 0.088 0.926 0.956 0.958 0.978 0.271 0.980 0.984 0.979 0.990
Jet plane 0.113 0.888 0.927 0.930 0.956 0.321 0.965 0.969 0.964 0.977
Lake 0.144 0.861 0.904 0.905 0.941 0.380 0.952 0.958 0.949 0.969
Ship 0.071 0.641 0.659 0.706 0.714 0.266 0.812 0.801 0.816 0.808
Walk bridge 0.145 0.762 0.822 0.818 0.879 0.423 0.911 0.917 0.901 0.934
Average 0.100 0.776 0.807 0.825 0.847 0.313 0.898 0.896 0.898 0.903

CONCLUSIONS

The classic morphological filters are effective tools
for the removing of impulsive noise, however as
the noise level increases they are ineffective. This is
because the structuring element is rigid and does not
fit to the local characteristics of the image. On the
other hand, the adaptive morphological filters used to
eliminate impulsive noise are more effective than the
classic morphological filters. However, the imposition
of the property of adjunction makes complicated
a definition of the structural elements so that the
operators erosion and dilation do not modify the
noisy pixels, coupled with the fact that they are
not reversible operators, results in operators that are
not very effective at high impulsive noise levels. In
order not to alter non-noisy pixels, it is proposed

a pair of operations γR and ϕR that turn out to be
morphological filters, ∧-filters and ∨-filters which led
to define morphological openings and closings. These
characteristics make the filters effective in eliminating
high levels of impulsive noise while preserving fine
details of the objects in the image and obtaining
comparable results with other state-of-the-art methods,
even exceeding them with respect to the time-quality
ratio.
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