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Waste accumulation in landfills, global warming and the need to preserve finite raw materials 

push governments and industries to shift towards a circular economy. Industrial symbiosis 

represents a sustainable way of sharing resources and converting unavoidable production 

residues into useful and added-value products. In this context, we study a production planning 

problem arisen between two production units (PU) within an industrial symbiosis. During the 

production process of a main product, a production residue is generated by the first PU, which 

is subsequently either used as raw materials by the second PU, or disposed of. The second PU 

can also purchase raw materials from an external supplier. The resulting combined production 

planning problem has been formulated as a two-level single-item lot-sizing problem. We 

prove that this problem is NP-Hard irrespective of the production residue, namely unstorable, 

or storable with a limited capacity. To efficiently solve this problem, a heuristic based on 

Lagrangian decomposition is proposed. Extensive numerical experiments highlight the 

competitiveness of the proposed solution method. The impact of the collaborative framework, 

in which the production plans of each PU are brought together, has been studied via a 

comparative analysis of different decentralized and centralized collaboration policies. 

Valuable insights derived from this analysis are subsequently used to discuss the managerial 

implications of setting up an industrial symbiosis between a supplier of by-products and its 

receiver. 
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Abstract

Waste accumulation in landfills, global warming and the need to preserve finite raw ma-
terials push governments and industries to shift towards a circular economy. Industrial
symbiosis represents a sustainable way of sharing resources and converting unavoidable
production residues into useful and added-value products. In this context, we study a
production planning problem arisen between two production units (PU) within an indus-
trial symbiosis. During the production process of a main product, a production residue is
generated by the first PU, which is subsequently either used as raw materials by the sec-
ond PU, or disposed of. The second PU can also purchase raw materials from an external
supplier. The resulting combined production planning problem has been formulated as a
two-level single-item lot-sizing problem. We prove that this problem is NP -Hard irrespec-
tive of the production residue, namely unstorable, or storable with a limited capacity. To
efficiently solve this problem, a heuristic based on Lagrangian decomposition is proposed.
Extensive numerical experiments highlight the competitiveness of the proposed solution
method. The impact of the collaborative framework, in which the production plans of
each PU are brought together, has been studied via a comparative analysis of different
decentralized and centralized collaboration policies. Valuable insights derived from this
analysis are subsequently used to discuss the managerial implications of setting up an
industrial symbiosis between a supplier of by-products and its receiver.

Keywords: Production planning, Two-level lot-sizing, By-product, Industrial symbiosis,
Lagrangian decomposition

1. Introduction

Waste accumulation in landfills, the depletion of finite raw materials and global warm-
ing push our generation to shift towards a circular economy and to adopt a number of
sustainable practices such as recycling end-of-life products, using renewable energy, reduc-
ing greenhouse gas emissions. Since few years, the legislation around the world is evolving
to promote the reuse of production residues, particularly those that are no longer allowed
in landfills1.

One of the sustainable ways to convert production residues into useful and added-value
products is the so-called industrial symbiosis. This is a collaborative form between compa-
nies based on the exchange of physical flows, such as production residues or other secondary
resources (e.g. water, and energy), and/or the sharing of services like knowledge, logistics,

1The directive 1999/31/EC of the Council of 26 April 1999 on the landfill of waste: https://eur-lex.

europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999L0031&from=EN Access: 5 February 2020

Preprint submitted to Elsevier September 15, 2020

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999L0031&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999L0031&from=EN


expertise (Lombardi and Laybourn, 2012). According to the Waste Framework Directive2,
production residues are materials that are not deliberately produced during a production
process, and can be divided into two broad classes of products: (i) by-products, i.e. law-
ful production residues unavoidably obtained as an integral part of a production process,
ready for a certain use without further transformation, and (ii) wastes, i.e. production
residues, which are not by-products.

By its nature, industrial symbiosis offers opportunities for the three dimensions of the
sustainable development, namely economic, environmental and social, by: (i) avoiding
disposal costs and the increasing resource efficiency, (ii) reducing the consumption of raw
materials, (iii) supporting the regional economic development. As a consequence and
due to the success of the existing eco-industrial parks, a number of industrial symbiosis
emerges all around the world. In 2017, Evans et al. (2017) referenced 281 implemented
by-product synergies and about 150 planned or under feasible study, spread over almost
all continents.

The particular configuration of an industrial symbiosis system, where the by-products
generated by a production unit are used as raw materials by another production unit, is
called by-product synergy. The by-product exchange can take place either within a single
entity, or between two or several different autonomous companies. The resulting network
includes necessarily two major actors: (i) a supplier, which generates by-products and,
(ii) a receiver, which uses them. The intervention of a third party can be required to
ensure the connection between the supplier and the receiver of a by-product.

As long as two actors are involved at least in a by-product synergy system, multiple
practical questions arise e.g.: During which time slot can the by-products be used? What
transportation mode is more convenient to be used? How to distribute the related costs
or benefits between the different actors? What collaboration policy should be adopted?

Being industry-dependent, the industrial symbiosis networks can also include specific
intermediate facilities required by the by-product handling systems, e.g. for storage or
treatment purposes (Suzanne et al., 2020b). These intermediate facilities can belong to
production units, or be provided by third parties, complicating thereby the logistics related
to the by-product handling. An extra fee is sometimes paid by one of the actors or both
of them to compensate the generated extra costs incurred by the owner of these facilities
to encourage its participation in the industrial symbiosis (Evans et al., 2017).

The collaboration policies can differ from one industrial symbiosis to another. There
exist cases, where the involved actors develop a mutual trust between themselves and
share all their information, enabling thus possible a centralized decision-making related to
the by-product exchange. The full information sharing is usually encountered when both
actors belong to the same parent company or when a third party manages the industrial
symbiosis network. In general, the full information sharing between actors may be difficult
to be considered for different reasons such as the requirements to keep sensitive information
private or not to reveal the risks related to production disruptions or production recipes
of products (Vladimirova et al., 2018; Fraccascia and Yazan, 2018). Partial information
sharing is commonly addressed via decentralized collaboration policies. Let us distinguish
two main types of decentralized collaboration policies with respect to their time frames:

• Opportunistic (Short-term): In the decentralized collaboration policy applied
to regulate spontaneous exchange of by-products, we assume that both the supplier

2The communication from the Commission to the Council and the European Parliament on the Inter-
pretative Communication on waste and by-products, number 52007DC0059: https://eur-lex.europa.

eu/legal-content/EN/TXT/?uri=CELEX%3A52007DC0059
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and the receiver make their own production plans independently from one another.
The production plans are then brought together to put the generated by-products
into value. This kind of decentralized collaboration policy is specific to short-term
horizontal collaboration in classical supply chains.

• Symbiotic (Long-term): A long-term collaboration may be expressed in the
framework of sequential decentralized collaboration policies, made either from the
supplier to the receiver or from the receiver to the supplier. Commonly encountered
in the vertical collaboration in classical supply chains, this kind of decentralized col-
laboration policies can also take place in an industrial symbiosis framework when a
long-term collaboration is committed to promoting the by-product recovery. They
are based on the dominance (i.e. on primacy in decision-making) of one actor com-
pared to another one: one actor makes its decisions first, then the second one makes
its production plan accordingly.

To cope with the operation management problems posed by the industrial symbiosis, the
current paper contributes by:

• Introducing and formalizing a lot-sizing problem in the framework of an industrial
symbiosis: The addressed problem extends the work of Suzanne et al. (2020b), by
integrating the receiver production unit in the management of a by-product gen-
erated by the supplier production unit. As discussed in Section 2.1, the lot-sizing
problem introduced in this paper enriches the joint production planning literature
by its novelty and industrial relevance.

• Studying a two-level lot-sizing problem for different characteristics: The studied
problem falls within the class of two-level lot-sizing problems, where the first level
corresponds to the problem encountered by the supplier, and the second level cor-
responds to the problem encountered by the receiver. The main differences between
the studied problem and the classical state-of-the-art two-level problems are the link-
ing flows of the by-product between levels and the associated inventory capacities at
the supplier level.

• Proposing a solution method based on both Lagrangian decomposition and La-
grangian relaxation, whose efficiency and effectiveness is shown via extensive nu-
merical experiments. The performance of several variants of the proposed solution
method has been also empirically evaluated.

• Discussing centralized and decentralized collaboration policies, which can be applied
in full and none information sharing settings.

The remainder of this paper is organized as follows. Section 2 reviews: (i) the lit-
erature covering lot-sizing problems, which integrate the joint production, and (ii) the
literature covering the class of two-level lot-sizing problems. The generic version of the
problem under study is described and a complexity analysis is conducted in Section 3.
A Lagrangian decomposition approach is proposed in Section 4. Different collaboration
policies are introduced and solved in Section 5, in order to be compared in the current pa-
per. The competitiveness of the Lagrangian decomposition algorithm is empirically shown
by performing computational experiments on two versions of the problem with: storable
by-products with a limited capacity and unstorable by-products in Section 6. Managerial
implications of the different collaboration policies are discussed in Section 7. Concluding
remarks and perspectives are provided in Section 8.
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2. Literature review

As the industrial symbiosis implies the operations management related to the by-
product exchange, this section provides a literature review focused on joint production
planning problems. In the current paper, the by-products generated by a production
unit are used by another production unit. In order to better apprehend the interactions
between these two production units, we also present a review on two-level production
planning problems, by placing a special focus on the problems with inventory capacities at
the supplier level and external intermediate flows between levels. For more details on the
production planning problems in general, the reader is referred to the literature reviews of
Buschkühl et al. (2010); Dı́az-Madroñero et al. (2014); Brahimi et al. (2017); Quadt and
Kuhn (2008); Melega et al. (2018).

2.1. Joint production with by-products

The current paper studies a lot-sizing problem in the framework of an environmentally
friendly context of an industrial symbiosis. Due to the topicality of the environmental
concerns, the literature related to production planning problems under the prism of the
circular economy is growing (e.g. Ilgin and Gupta (2010), Govindan and Soleimani (2017),
Suzanne et al. (2020a)). However, despite the new issues brought by the flows of end-of-life
products and production residues, the material exchange involved in industrial symbiosis
networks is not investigated in the production planning literature, to the best of our knowl-
edge. As an industrial symbiosis network is organized on the basis of joint production, let
us discuss the production planning literature dealing with co-production and generation
of by-products.

According to the European Waste Framework Directive2, recall that: (i) a by-product is
a production residue whose use is certain and without prior transformation, (ii) it cannot
trigger the production even if an opportunistic demand arises, and (iii) its generation
is unavoidable. On the contrary, a co-product has its own demand and can initiate the
production process (see e.g. Bitran and Leong (1992); Lu and Qi (2011); Ağralı (2012)).
Production planning problems dealing with production residues cannot be thus reduced
or generalized to co-production problems. In line with the scope of this paper, let us focus
in the following on the literature related to the management of unavoidable products at a
tactical level.

To the best of our knowledge, only Sridhar et al. (2014) and Suzanne et al. (2020b) have
treated production planning problems dealing with by-products from an academic point
of view. Sridhar et al. (2014) studied a generic non-linear production planning problem,
where the ratio of undesirable by-products increases monotonically as a convex function of
the cumulative production mixture. Suzanne et al. (2020b) proposed a lot-sizing problem,
where the by-product is generated in a constant proportion, stored in a limited capacity
(constant and time-dependent) and transported to a further destination. They showed
that the studied problem is NP -Hard when the capacity is time-dependent, and can be
optimally solved in polynomial time when the capacity is constant. Solution approaches
based on dynamic programming are proposed to solve these two cases of the lot-sizing
problem dealing with by-products.

Given the actual circular economy concerns and the large number of interested indus-
trial sectors (e.g. metal processing (Spengler et al., 1997), glass manufacturing (Taşkın and
Ünal, 2009), semiconductor fabrication (Rowshannahad et al., 2018)), the current paper
contributes to the joint production literature by investigating a joint production system
in the context of a generic industrial symbiosis network. We study a single-item lot-sizing
problem subject to different properties related to the storability potential of by-products.
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2.2. Two-level lot-sizing problems

The studied problem can be considered as a two-level lot-sizing problem, where the
first level corresponds to the problem encountered by the supplier, and the second level
corresponds to the problem encountered by the receiver. There are multiple configurations
of two-level production planning problems: the production-transportation problem (see
e.g. Melo and Wolsey (2010, 2012); Hwang et al. (2016)), the supplier-retailer problem
(see e.g. Brahimi et al. (2015); Phouratsamay et al. (2018)) and the One Warehouse
Multi-Retailer (OWMR) problem (see e.g. Arkin et al. (1989); Solyalı and Süral (2012))
which are the most studied. As the OWMR problem is different from the problem studied
in our paper, we only take interest of the production-transportation and supplier-retailer
problems.

Let us position the problem studied in this paper within the two-level production
planning literature according to its characteristics:

Inventory capacities at the supplier level. The two-level lot-sizing problem with inventory
capacities at the retailer level can be polynomially solved using dynamic programming
algorithms. Hwang and Jung (2011); Phouratsamay et al. (2018) provided algorithms
running in a polynomial time to solve a number of different versions of this problem.
Note that the case with inventory capacities at the first level is NP -Hard (Jaruphongsa
et al. (2004); Brahimi et al. (2015); Phouratsamay et al. (2018)). Jaruphongsa et al.
(2004) proposed a two-level problem with demand time-window constraints and stationary
inventory bounds at the first level. By allowing demand splitting, Jaruphongsa et al.
(2004) solved the problem using a polynomial algorithm based on dynamic programming.
Brahimi et al. (2015) solved the supplier-retailer problem with inventory capacities using
a Lagrangian relaxation. Phouratsamay et al. (2018) solved the same problem using a
pseudo-polynomial algorithm based on dynamic programming. The problem studied in
the current paper is different from Brahimi et al. (2015); Phouratsamay et al. (2018)
in the sense that the inventory capacities are not on the product, which has to meet a
demand.

External intermediate flows between levels. External intermediate flows between the two
levels can occur while considering intermediate demands at the supplier level. Papers
dealing with intermediate demands are not numerous. Melo and Wolsey (2010) considered
a two-level lot-sizing problem, where an intermediate product is created at the first level,
required to meet only the demand in the second level. On the contrary, Zhang et al. (2012)
proposed valid inequalities to solve a multi-echelon lot-sizing problem, where the output of
each intermediate echelon has its own external demand to fulfill and can also be used as an
input to the next echelon. In the same way, Van Vyve et al. (2014) introduced a problem,
where a unique intermediate product is used to multiple outputs. Ahmed et al. (2016)
and He et al. (2015) dealt with the multi-stage version of the problem with intermediate
demands of the final product as a minimum concave cost flow network problem. Against
this background, the novelty of the problem under study lies in the consideration of external
intermediate flows and the inventory bounds at the supplier level.

3. Problem statement

Consider a lot-sizing problem for an industrial symbiosis (ULS-IS), where two produc-
tion units (PU1 and PU2) have to plan their production over a planning horizon of T
periods, as illustrated in Figure 1. Each production unit produces a product to meet a
deterministic demand. Denote by d1

t (resp. d2
t ) the demand of PU1 (resp. PU2) at period
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t ∈ {1, 2, ..., T}. In addition, during the process of producing a quantity of X1
t units of

main product in PU1, a quantity of X1
t units of by-products is generated. In the same

way, to produce X2
t units of main product in PU2 at period t ∈ {1, 2, ..., T}, X2

t units of
raw materials are required. The by-product generated by PU1 can be assimilated as the
raw material needed to produce the main product of PU2.

PRODUCTION
• fixed setup cost f1

t
• unitary cost p1t

main product
X1

t (Y 1
t )

residue X1
t

Production Unit 1

demand
d1t

disposal

unitary cost gt

PRODUCTION
• fixed setup cost f2

t
• unitary cost p2t X2

t (Y 2
t )

demand
d2t

Production Unit 2

by-product Wt

unitary cost b1t + b2t

waste Lt

supply

unitary cost qt

raw materials Zt

I2t

unitary cost h2
t

I1t

unitary cost h1
t

JtJt

unitary cost ĥt

Bounded inventory

Unbounded inventory

Figure 1: Process flow diagram of the ULS-IS problem

In order to ensure the procurement of raw materials, PU2 can supply its production
either with the by-products generated by PU1, or with the raw materials from an external
supplier. The quantity of by-products, which is not used by PU2, can be disposed of or
stored by PU1, as long as the stored quantity does not exceed a limited capacity B in
each period t ∈ {1, 2, ..., T}. The quantity of by-products, transported from PU1 to PU2
at each period t ∈ {1, 2, ..., T}, is denoted by Wt. The quantity of raw materials bought
from the external supplier at period t ∈ {1, 2, ..., T} is denoted Zt. Let Lt (resp. Jt) be
the quantity of by-products disposed of (resp. stored) in period t ∈ {1, 2, ..., T}.

The management of the exchange of by-products and the supply of raw materials
generates the following unitary costs in each period t ∈ {1, 2, ..., T}:

• a unitary disposal cost gt, paid by PU1,

• a unitary inventory holding cost ĥt paid by PU1 to store the generated by-products,

• a unitary cost of reusing by-products of PU1 by PU2, decomposed into two unitary
costs: b1t (resp. b2t ) paid by PU1 to prepare by-products for further use (resp. paid
by PU2 to transport by-products from PU1 to PU2),

• a unitary purchasing cost qt of raw materials supplied from an external supplier,
paid by PU2.

Moreover, each PU pays the classical lot-sizing costs per period t ∈ {1, 2, ..., T}: a
unitary production cost p1

t (resp. p2
t ), a fixed setup cost f1

t (resp. f2
t ), and a unitary

holding cost h1
t (resp. h2

t ), paid by PU1 (resp. PU2). The binary setup indicators of
production for PU1 and PU2 are denoted by Y 1

t and Y 2
t , respectively. Let I1

t be the
inventory level of the main product in PU1 at the end of period t, and I2

t be the inventory
level of the product in PU2. The parameters and variables are summarized in Table 1.

In what follows, a number of assumptions are made, without loss of generality:

(A.1) The by-product inventory level is equal to zero at the end of the horizon, i.e. JT = 0.
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Table 1: Summary of the problem parameters

Parameters:

T Number of time periods
d1t (d2t ) Demand for the main product of PU1 (PU2) in period t
p1t (p2t ) Unitary production cost for PU1 (PU2) in period t
f1
t (f2

t ) Fixed setup cost for PU1 (PU2) in period t
h1
t (h2

t ) Unitary holding cost for the main product of PU1 (PU2) in period t

ĥt Unitary holding cost for the by-product of PU1 in period t
qt Unitary purchasing cost of raw materials by PU2 from an external supplier in period t
b1t Unitary treatment or transportation cost imputed to PU1 for the by-product in period t
b2t Unitary treatment or transportation cost imputed to PU2 for the by-product in period t
gt Unitary by-product disposal cost of PU1 in period t
B By-product inventory capacity in PU1 in each period

M1
t (M2

t ) Big number with M1
t =

T∑
i=t

d1i

(
M2

t =

T∑
i=t

d2i

)
Decision variables:

X1
t (X2

t ) Production quantity in PU1 (PU2) in period t
Y 1
t (Y 2

t ) Binary setup indicator for PU1 (PU2) for period t
I1t (I2t ) Inventory level of the main product of PU1 (PU2) at the end of period t
Jt Inventory level of the by-product of PU1 at the end of period t
Wt Quantity of by-products sent from PU1 to PU2 in period t
Zt Quantity of raw materials purchased at an external supplier by PU2 in period t
Lt Disposal quantity of by-products in period t

(A.2) The treatment or transportation cost of the by-products imputed to PU1 is lower
than their disposal cost performed by PU1, i.e. b1t ≤ gt,∀t ∈ {1, 2, . . . , T}.

(A.3) The treatment or transportation cost of the by-product imputed to PU2 is lower
than its purchasing cost, i.e. b2t ≤ qt, ∀t ∈ {1, 2, . . . , T}.

(A.4) The needs for raw materials in PU2 cannot trigger the production in PU1, i.e. qt ≤
p1
t + b1t + b2t , ∀t ∈ {1, 2, . . . , T}.

(A.5) A by-product demand in PU1 cannot trigger the production in PU2, i.e. gt ≤
p2
t + b1t + b2t , ∀t ∈ {1, 2, . . . , T}.

(A.6) On average, the by-product inventory holding cost is small enough to make possible
the storage of by-products instead of their disposing of, i.e.

∑T
t=1 ĥt ≤

∑T
t=1(gt−b1t ).

Otherwise, the problem to solve can be reduced to the problem without intermediate
storage of the by-product.

Note that, if one of these assumptions is not met, the problem becomes trivial.

3.1. Straightforward formulation (AGG)

Using notations given in Table 1, the ULS-IS problem can be modeled via the following
straightforward formulation:

min
T∑
t=1

(p1
tX

1
t + f1

t Y
1
t + h1

t I
1
t + ĥtJt + gtLt + b1tWt)

+

T∑
t=1

(p2
tX

2
t + f2

t Y
2
t + h2

t I
2
t + qtZt + b2tWt)

(1)

7



s.t. I1
t−1 +X1

t − I1
t = d1

t , ∀t ∈ {1, 2, . . . , T} (2)

I1
0 = 0, (3)

X1
t ≤M1

t Y
1
t , ∀t ∈ {1, 2, . . . , T} (4)

I2
t−1 +X2

t − I2
t = d2

t , ∀t ∈ {1, 2, . . . , T} (5)

I2
0 = 0, (6)

X2
t ≤M2

t Y
2
t , ∀t ∈ {1, 2, . . . , T} (7)

Jt−1 +X1
t = Wt + Lt + Jt, ∀t ∈ {1, 2, . . . , T} (8)

J0 = JT = 0, (9)

Jt ≤ B, ∀t ∈ {1, 2, . . . , T} (10)

Wt + Zt = X2
t , ∀t ∈ {1, 2, . . . , T} (11)

X1
t , X

2
t , I

1
t , I

2
t ,Wt, Zt, Jt, Lt ≥ 0, ∀t ∈ {1, 2, . . . , T} (12)

Y 1
t , Y

2
t ∈ {0, 1}, ∀t ∈ {1, 2, . . . , T} (13)

The objective function (1) minimizes the sum of all costs: production, inventory holding,
transportation, disposal and purchasing. Constraints (2) and (5) model the flow conserva-
tion of the main products of PU1 and PU2, respectively. Constraints (3) and (6) set to zero
the initial inventory levels of the main products of both PU1 and PU2. Constraint (9) fix
the initial and ending inventory levels of the by-product to zero. Constraints (4) and (7)
are production constraints, which ensure that the production launching at a given period
entails a setup operation at the same period. The inventory capacity of the by-product
is limited by Constraints (10). Constraints (8) and (11) are conservation constraints of
flows of by-products and external raw materials, which ensure that the production residue
of PU1 is either disposed of, stored or used, and raw materials required for production of
PU2 are bought. Constraints (12) and (13) are the nonnegativity and binary requirement
constraints.

3.2. Facility location formulation (FAL)

In the lot-sizing literature, the straightforward formulation is very intuitive and easy to
understand, but its linear relaxation usually provides a poor dual bound (Brahimi et al.,
2017). As we can fear that the straightforward formulation becomes intractable for large
size problems, we propose a disaggregated formulation, called the facility location model
(Krarup and Bilde, 1977), to link the production variables not only with their production
period, but also with their consumption period.

In the ULS-IS problem, there is production of two different main products linked by
a flow of storable by-products. Thus, the facility location formulation of the ULS-IS
problem requires the introduction of new variables that link production and inventory
variables with: (i) production periods in PU1, (ii) consumption periods of the main
product in PU1, (iii) periods of using by-products or periods of ordering raw materials (i.e.
production periods in PU2) and, (iv) consumption periods of the main product in PU2.
To do this, we introduce a new set of variables Uijkl, i ∈ {1, ..., T}, j ∈ {i, i+1, ..., T}, k ∈
{i, i+ 1, ..., T}, l ∈ {k, k + 1, ..., T}, which represent:

1. the quantity of the main product produced in PU1 in period i,

2. to fulfill a fraction of the demand of the main product in period j in PU1,

3. such that the quantity of by-products generated in i is stored until k − 1 and sent
to PU2 in order to produce the main product of PU2 in period k,
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4. to meet the demand of PU2 in period l.

By convention, variables U00kl are used to denote the quantity of raw materials pur-
chased from an external supplier to be used in period k to produce the main product of
PU2 for satisfying the demand in period l. We also consider variables Uijk0 to represent
the quantity of by-products generated by PU1 in period i to satisfy the demand of the
main product in period j, which is disposed of after having been stored until period k.

A new parameter aijkl corresponding to the cost associated with variables Uijkl, ∀i ∈
{0, 1, ..., T}, ∀j ∈ {0, i, i+ 1, ..., T}, ∀k ∈ {i, i+ 1, ..., T}, ∀l ∈ {0, k, k+ 1, ..., T} is added.
Parameter aijkl is defined as follows:

aijkl =



p1
i + b1k + b2k + p2

k +

j−1∑
t=i

h1
t +

l−1∑
t=k

h2
t +

k−1∑
t=i

ĥt, if i, j, l 6= 0 (i ≤ j, i ≤ k ≤ l)

p1
i + gk +

j−1∑
t=i

h1
t +

k−1∑
t=i

ĥt, if i, j 6= 0, l = 0 (i ≤ j, i ≤ k)

p2
k + qk +

l−1∑
t=k

h2
t , if i, j = 0, l 6= 0 (k ≤ l)

+∞, otherwise

The facility location formulation of the ULS-IS problem is given below:

min

T∑
i=1

T∑
j=i

T∑
k=i

(
T∑

l=k

aijklUijkl + aijk0Uijk0

)
+

T∑
k=1

T∑
l=k

a00klU00kl +

T∑
t=1

(
f1t Y

1
t + f2t Y

2
t

)
(14)

s.t.

j∑
i=1

T∑
k=i

(
T∑

l=k

Uijkl + Uijk0

)
= d1j , ∀j ∈ {1, 2, ..., T} (15)

Uijkl ≤ d1jY 1
i , ∀i, j, k, l ∈ {1, 2, ..., T} (i ≤ j, i ≤ k ≤ l) (16)

Uijk0 ≤ d1jY 1
i , ∀i, j, k ∈ {1, 2, ..., T} (i ≤ j, i ≤ k) (17)

l∑
k=1

 k∑
i=1

T∑
j=i

Uijkl + U00kl

 = d2l , ∀l ∈ {1, 2, ..., T} (18)

Uijkl ≤ d2l Y 2
k , ∀i, j, k, l ∈ {1, 2, ..., T} (i ≤ j, i ≤ k ≤ l) (19)

U00kl ≤ d2l Y 2
k , ∀k, l ∈ {1, 2, ..., T} (k ≤ l) (20)

t∑
i=1

T∑
j=i

T∑
k=t+1

(
T∑

l=k

Uijkl + Uijk0

)
≤ B, ∀t ∈ {1, 2, ..., T} (21)

Uijkl, U00kl, Uijk0 ≥ 0, ∀i, j, k, l ∈ {1, 2, ..., T} (i ≤ j, i ≤ k ≤ l) (22)

Y 1
i , Y

2
i ∈ {0, 1}, ∀i ∈ {1, 2, ..., T} (23)

The objective function (14) minimizes the sum of unitary and fixed costs. Constraints
(15) and (18) ensure the demand satisfaction of PU1 and PU2, respectively. Constraints
(16),(17), (19) and (20) are production constraints, i.e. there is a setup at a given period
if there is production at the same period. Constraints (21) limit the level of by-product
inventory. The definition domains of decision variables are given in Constraints (22)-(23).

Note that, experimental tests show that adding the following valid inequalities:

T∑
k=i

(
T∑
l=k

Uijkl + Uijk0

)
≤ d1

jY
1
i , ∀i, j ∈ {1.2, ..., T}, (i ≤ j) (24)
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k∑
i=1

T∑
j=i

Uijkl + U00kl ≤ d2
l Y

2
k , ∀k, l ∈ {1.2, ..., T}, (k ≤ l) (25)

allows to substantially reduce the computational time needed to optimally solve the facility
location formulation. The computational time is even lower when replacing constraints
(16)-(17) and (19)-(20) by constraints (24)-(25).

3.3. Complexity analysis

In this section, we study the complexity of the ULS-IS problem. To do this, let us: (i)
consider a particular case of the ULS-IS problem when the by-product is unstorable, (ii)
show that this particular case is NP -Hard by performing a reduction from the classical
capacitated lot-sizing problem, and (iii) derive the complexity of the general case of the
ULS-IS problem. The following proposition holds:

Proposition 1. The ULS-IS problem with an unstorable by-product (B = 0), i.e. with no
by-product inventory (ULS-IS-NI) is NP -Hard.

Proof. The proof of NP -Hardness is performed by reduction of ULS-IS-NI from the ca-
pacitated lot-sizing (CLS) problem, whose general case is known to be NP -Hard (Florian
et al., 1980). The decision version of the CLS problem is defined by:

• a planning horizon of T̃ periods {1, 2, ..., T̃},
• limited production capacities C̃t,∀t ∈ {1, 2, ..., T̃},
• demands d̃t,∀t ∈ {1, 2, ..., T̃},
• three cost components: fixed setup costs f̃t, unit production costs p̃t and unit inven-

tory holding costs h̃t,∀t ∈ {1, 2, ..., T̃}.
Let X̃ = (X̃1, X̃2, . . . , X̃T ) be the vector of produced quantities, and Ĩ = (Ĩ1, Ĩ2, . . . , ĨT ) be
the vector of inventory levels during the planning horizon. Denote by Ỹ = (Ỹ1, Ỹ2, . . . , ỸT )
the production indicator vector. The question posed by the CLS problem is: Does there
exist a production plan (X̃, Ĩ, Ỹ ) of total cost at most equal to a given value V , which
satisfies demands d̃ = (d̃1, d̃2, . . . , d̃T )?

An instance ICLS of the CLS problem can be transformed into an instance I of ULS-
IS-NI by making the following substitutions ∀t ∈ {1, 2, . . . , T̃}:
(S.1) Number of periods: T = T̃ ;
(S.2) Demands: d1

t = C̃t, d
2
t = d̃t;

(S.3) Costs related to the main product of PU1: f1
t = 0, p1

t = 0 and h1
t = 1;

(S.4) Costs related to the product of PU2: f2
t = f̃t, p

2
t = p̃t and h2

t = h̃t;
(S.5) Costs related to by-products of PU1 and raw materials of PU2: gt = 0, bt = 0 and

qt = V .

Let us show that instance ICLS has an affirmative answer, if and only if, there exists a
feasible solution (X1, Y 1, I1, X2, Y 2, I2,W,Z, L) for instance I such that:

T∑
t=1

(
p1
tX

1
t + f1

t Y
1
t + h1

t I
1
t + gtLt + b1tWt

)
+

T∑
t=1

(
p2
tX

2
t + f2

t Y
2
t + h2

t I
2
t + qtZt + b2tWt

)
≤ V.

(26)

To do this, we prove the conditional relationship between CLS and ULS-IS-NI problems
related to the solution existence.
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(=⇒). Suppose that instance ICLS has an affirmative answer. Let S̃ = (X̃, Ĩ, Ṽ ) be a

production plan, such that
T̃∑
t=1

(
p̃tX̃t + f̃tỸt + h̃tĨt

)
≤ V .

A feasible solution (X1, Y 1, I1, X2, Y 2, I2,W,Z, L) for instance I, such that the total cost
is at most equal to V , can be built as follows: (i) produce X1 = C̃ quantities of the main
product in PU1, this generates by-product quantities less than C̃ by virtue of substitution
(S.2), (ii) I1 = 0, hold inventory levels of the main product of PU1 to zero according
to (S.3), (iii) transport to PU2 the quantity of by-product Wt = X̃t in each period and
dispose of Lt = C̃t − X̃t by virtue of substitution (S.5), (iv) produce X2 = X̃ quantities
in PU2, and (v) I2 = Ĩ, hold the levels of the product in PU2 to Ĩ. Given substitutions
(S.1)-(S.5), it follows that equation (26) is hold.

(⇐=). Conversely, assume that instance I has a positive answer, i.e. there exists a pro-
duction plan (X1, Y 1, I1, X2, Y 2, I2,W,Z, L), which satisfies all demands with a cost at
most equal to V . Making use of substitutions (S.1)-(S.5), it can immediately be checked

that
T∑
t=1

(
p̃tX̃t + f̃tỸt + h̃tĨt

)
≤ V , where X̃ = X2, Ĩ = I2 and Ỹ = Y 2.

Remark 1. As the ULS-IS-NI problem is a particular case of the ULS-IS problem, the
ULS-IS problem is also NP -Hard.

4. Solution method based on Lagrangian decomposition

Lagrangian decomposition approaches have been successfully used to solve a large va-
riety of optimization problems. The main idea is to decompose a complex problem, often
NP -Hard, into two or more easy to solve sub-problems. To do this, a set of variables is du-
plicated and the constraints corresponding to the equivalence of these variables are relaxed
and penalized in the objective function by Lagrangian multipliers (see e.g. Fisher (1981)).
Lagrangian decomposition provides a lower bound to the initial problem. Upper bounds
can be computed using a Lagrangian heuristic, which transforms the obtained infeasible
solutions into feasible ones. This procedure is repeated a large number of iterations in
order to improve the obtained lower bounds.

The set of variables Wt, which links PU1 and PU2, corresponds to the flows of by-
products. Let us duplicate these variables as follows: Wt represents the quantity of by-
products to be sent to PU2 in period t ∈ {1, 2, ..., T}, and W̄t represents the quantity
of by-products to be bought from PU1 in period t ∈ {1, 2, ..., T}. The straightforward
formulation of the problem under study becomes:

min
T∑
t=1

(p1
tX

1
t + f1

t Y
1
t + h1

t I
1
t + ĥtJt + gtLt + b1tWt)

+

T∑
t=1

(p2
tX

2
t + f2

t Y
2
t + h2

t I
2
t + qtZt + b2t W̄t)

(27)
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s.t. (2)− (7), (9)− (10), (12)− (13) (28)

Wt + Lt + Jt = X1
t + Jt−1, ∀t ∈ {1, 2, ..., T} (29)

W̄t + Zt = X2
t , ∀t ∈ {1, 2, ..., T} (30)

W̄t = Wt, ∀t ∈ {1, 2, ..., T} (31)

Wt, W̄t ≥ 0, ∀t ∈ {1, 2, ..., T} (32)

By relaxing constraints (31), the objective function becomes:

CLD(λ) = min

T∑
t=1

(p1
tX

1
t + f1

t Y
1
t + h1

t I
1
t + ĥtJt + gtLt + b1tWt)

+

T∑
t=1

(p2
tX

2
t + f2

t Y
2
t + h2

t I
2
t + qtZt + b2t W̄t)

+
T∑
t=1

λt(W̄t −Wt)

where λ ∈ RT is the vector of Lagrangian multipliers.
The problem thus obtained can be separated into two sub-problems SP1 and SP2.

Sub-problem 1 (SP1(λ) and SP1(λ, α)). After applying the Lagrangian decomposition,
the sub-problem referring to PU1 can be formulated as follows:

min

T∑
t=1

(
p1
tX

1
t + f1

t Y
1
t + h1

t I
1
t + ĥtJt + gtLt + (b1t − λt)Wt

)
(33)

s.t. (2)− (4), (8)− (10) (34)

X1
t , I

1
t , Jt,Wt, Lt ≥ 0, ∀t ∈ {1, 2, ..., T} (35)

Y 1
t ∈ {0, 1}, ∀t ∈ {1, 2, ..., T} (36)

Sub-problem (33)-(36), called for short SP1(λ), corresponds to the single-item lot-
sizing problem with a by-product, which can be solved using a time consuming polynomial
algorithm when the inventory capacity of the byproduct is constant and is proved NP -
Hard in the general case (see Suzanne et al. (2020b)). Let us apply a Lagrangian relaxation
on capacity constraints (10). Constraints (10) are relaxed and penalized in the objective
function by a vector of Lagrangian multipliers denoted α ∈ RT

+. The sub-problem, called
SP1(λ, α) is given as follows:

CSP1(λ, α) = min

T∑
t=1

(
p1
tX

1
t + f1

t Y
1
t + h1

t I
1
t + (ĥt + αt)Jt + gtLt + (b1t − λt)Wt − αtB

)

s.t. (2)− (4), (8)− (9)

X1
t , I

1
t , Jt,Wt, Lt ≥ 0, ∀t ∈ {1, 2, ..., T}

Y 1
t ∈ {0, 1}, ∀t ∈ {1, 2, ..., T}

Being constant, the term −αtB can be discarded when solving SP1.
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Sub-problem 2 (SP2(λ)). Sub-problem SP2(λ) corresponds to the single-item lot-sizing
problem to be solved by PU2 and can be formulated as follows:

CSP2(λ) = min
T∑
t=1

(
p2
tX

2
t + f2

t Y
2
t + h2

t I
2
t + qtZt + (b2t + λt)W̄t

)

s.t. (5)− (7), (11)

X2
t , I

2
t , W̄t, Zt ≥ 0, ∀t ∈ {1, 2, . . . , T}

Y 2
t ∈ {0, 1}, ∀t ∈ {1, 2, . . . , T}

Each of the sub-problems given above can be considered as a single-item lot-sizing
problem and solved using a dynamic programming algorithm running in O(T log T ) (Fed-
ergruen and Tzur, 1991; Wagelmans et al., 1992; Aggarwal and Park, 1993; van Hoesel
et al., 1994). Note that the following properties characterizing the optimal solutions of
sub-problems SP1(λ, α) and SP2(λ) are true:

• SP1(λ, α): In an optimal solution, the generated quantities of by-products can either
be disposed of or sent to PU2 after storage.

• SP2(λ): An optimal solution, where each production period is supplied with raw
materials originating from only one supplier, can be found.

Given the values of the Lagrangian multipliers, costs are updated by setting:

• p′t := pt + min
t≤u≤T

( u−1∑
v=t

(ĥv + αv) + min{b1u − λu, gu}
)
, ∀t ∈ {1, 2, . . . , T}, in SP1,

• p′′t := pt + min{b2t + λt, qt}, ∀t ∈ {1, 2, . . . , T}, in SP2.

Thus, the unitary production cost associated with the uncapacitated lot-sizing problems
of SP1(λ, α) and SP2(λ) are respectively p′t and p′′t .

The pseudo-code of the proposed Lagrangian decomposition algorithm is presented in
Algorithm 1. The goal of Algorithm 1 is to successively provide a high number of upper
bounds of the ULS-IS problem to move closer to its optimal solution. To do this, at each
iteration, sub-problems SP1(λ, α) and SP2(λ) are independently solved by calling function
Solve(SP (•)), which provides an optimal solution by using the very efficient dynamic
programming algorithm of Wagelmans et al. (1992) that runs in O(T log T ). Based on these
optimal solutions, a upper bound is computed using the Lagrangian heuristic proposed in
Section 4.1. If there is an improvement, the best found lower and upper bounds are
updated and a local search procedure is applied (Section 4.2). Lagrangian multipliers are
updated using the sub-gradient method described in Section 4.3.

13



Algorithm 1 Lagrangian decomposition algorithm

1: λt = 0, αt = 0, ∀t ∈ {1, 2, ..., T}
2: π := πinit, zlb := 0, zub := +∞
3: while stopping condition is not met do
4: Solve(SP1(λ, α)) and retrieve X1, I1, J,W,L, Y 1 . see Section 4
5: Solve(SP2(λ)) and retrieve X2, I2, W̄ , Z, Y 2 . see Section 4
6: z∗ ← CSP1(λ, α) + CSP2(λ)
7: if z∗ > zlb then
8: zlb = z∗

9: end if
10: ẑub ← LagrangianHeuristic(z∗, X1, I1, J,W,L, Y 1, X2, I2, W̄ , Z, Y 2) . see Section 4.1
11: if ẑub < zub then
12: zub = ẑub
13: zub ← LocalSearch(zub, Y

1, Y 2, L, Z) . see Section 4.2
14: end if
15: UpdateMultipliers() . see Section 4.3
16: end while

4.1. Lagrangian heuristic

Lagrangian decomposition does not generally provide feasible solutions for ULS-SI
problem, resulting by merging the obtained solutions of sub-problems SP1(λ, α) and
SP2(λ). The merged solution may violate the relaxed constraints. To recover feasibility,
three main phases are executed in the framework of a heuristic formalized in Algorithm 2:

• Phase 1 (Smoothing phase): The solutions of SP1(λ, α) and SP2(λ) are crossed to
create a feasible solution of the ULS-IS problem. To do this, quantities of by-products
are moved in order to comply with inventory capacity constraints.

• Phase 2 (Inventory balance phase): To improve the solution obtained after Phase 1,
the by-product is moved in the inventory.

• Phase 3 (Improvement phase): To improve the solution obtained in Phase 2, pro-
duction quantities are moved to reduce the quantities of disposed by-products and
purchased raw materials.

Phase 1 of Algorithm 2 creates feasible solutions of the original problem, by: (i) check-
ing and satisfying the by-product inventory capacity constraints, and (ii) synchronizing
the exchange of by-products between PU1 and PU2. Algorithm 2 first disposes of the extra
inventory quantities. It ensures subsequently that, if there is a quantity of by-products
available in PU1 and production in PU2, then there is an exchange of by-products between
PU1 and PU2. Otherwise, no transfer between production units is created. Given As-
sumptions (A.2)-(A.3), Algorithm 2 exploits the property that, no disposal of by-products
and purchasing of raw materials can be simultaneously done.

When the by-product is storable with a limited capacity, Phase 2 is applied to balance
the by-product inventory in a less myopic way. The inventory balance phase consists
of reducing in each period the disposal of or purchasing quantities by: (i) computing the
cost of moving backward or forward by-product quantities in the inventory, while satisfying
capacity constraints (done via the function called CostInventory() in line 3, Algorithm
2), (ii) applying the move corresponding to the minimal cost, if it is strictly negative.
After Phase 3, Phase 2 is also called to adjust the inventory quantities of by-products.
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Algorithm 2 LagrangianHeuristic(zlb, X
1, I1, J,W,L, Y 1, X2, I2, W̄ , Z, Y 2)

Phase 1 – Smoothing phase

1: for t = 1 to T do
2: if Jt > B then
3: Lt ← Jt −B, Jt ← B
4: end if
5: At ← X1

t + Jt−1

6: if At > 0 and X2
t > 0 and At ≤ X2

t then
7: Wt ← At, W̄t ← At, Zt ← X2

t −At

8: else if At > 0 and X2
t > 0 and At > X2

t then
9: Wt ← X2

t , W̄t ← X2
t , Lt ← At −X2

t

10: else if At > 0 then
11: Lt ← At

12: else
13: Zt ← X2

t

14: end if
15: Update zlb
16: end for

Phase 2 – Inventory balance phase

1: for t = T to 1 do
2: if Lt > 0 or Zt > 0 then
3: cost← CostInventory(Lt,t) or CostInventory(Zt,t)
4: if cost < 0 then
5: Apply the corresponding move
6: zub ← zub + cost
7: end if
8: end if
9: end for

Phase 3 – Improvement phase

1: for t = T to 1 do
2: if Lt > 0 or Zt > 0 then
3: cost1← CostMove(min{Lt, I

1
t }, t, t+ i) or CostMove(min{Zt, I

2
t }, t, t+ i)

4: cost2← CostMove(Lt, t, t− i) or CostMove(Zt, t, t− i)
5: cost3← CostMove(Lt, t+ i, t) or CostMove(Zt, t+ i, t)
6: cost4← CostMove(min{Lt, I

2
t−1}, t− i, t) or CostMove(min{Zt, I

1
t−1}, t− i, t)

7: if min(cost1, cost2, cost3, cost4) < 0 then
8: Apply the move corresponding to the minimal cost
9: zub ← zub + min(cost1, cost2, cost3, cost4)

10: end if
11: end if
12: end for
13: if B 6= 0 then
14: Execute Phase 2
15: end if

Phase 3 aims to move the production backward or forward to reduce the quantities
of by-products disposed of and raw materials purchased from an external supplier. For
each period, if there is disposal of or purchasing operations, there are 4 actions that can
contribute to improve the current solution. Each action is applied twice i.e. with: (i)
next t− 1 or t+ 1, and (ii) the previous or next production period with respect to period
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t. Function CostMove(Q,t,t′) in Algorithm 2 computes the cost of moving the quantity
Q from period t to period t′. More precisely, the goal is to reduce the disposal of and
purchasing quantities in each period t, by:

(C.1) Moving a production quantity of PU1 (resp. PU2) in period t to the next period
t + 1 (or the next production period) in order to reduce the disposal of (resp. the
purchasing) of byproducts. The cost cost1 in Phase 3 of Algorithm 2 corresponds
to the cost of moving the minimal quantity between (i) Lt and I1

t or (ii) Zt and
I2
t , from the current period t to the next period t+ 1 or the next production period
t′ > t.

(C.2) Moving a production quantity of PU1 (resp. PU2) in period t to the previous period
t − 1 (or the last production period before t) in order to reduce the disposal of
(resp. the purchasing) of byproducts. The cost of moving quantity Lt or Zt from
the current period t to the previous period t− 1 or the last production period t′ < t
is denoted by cost2 in Phase 3 of Algorithm 2.

(C.3) Increasing the quantity of by-products transported between PU1 and PU2 by moving
a production quantity of PU1 (resp. PU2) from the next period t + 1 (or the next
production period after t) to period t in order to reduce the purchasing of raw
materials (resp. the disposable of) in period t. The cost of moving quantity Lt or
Zt from period t+ 1 or the next production period t′ after t to the current period t
is denoted by cost3 in Phase 3 of Algorithm 2.

(C.4) Increasing the quantity of by-products transported between PU1 and PU2 by moving
a production quantity of PU1 (resp. PU2) from the previous period t − 1 (or the
last production period before t) to period t in order to reduce the purchasing of raw
materials (resp. the disposable of) in period t. The cost of moving the minimal
quantity between Lt or Zt, and the inventory level of the main products in period
t− 1 from period t− 1 or the last production period t′ before t to the current period
t is denoted by cost4 in Phase 3 of Algorithm 2.

For each possibility (C.1)-(C.4), the satisfaction of capacity constraints is checked. If the
inventory capacity prevents from performing a move, the associated cost is set to zero.

In each of the cases (C.1)-(C.4), if the quantity moved equals to the produced quantity,
the setup cost is subtracted. Moreover, if a production period is created, a setup cost is
added. If the lowest cost thus obtained is negative, the corresponding move is applied and
the objective function is updated. Algorithm 2 performs backward and is applied twice to
adjust the moves corresponding to periods after the current period.

4.2. Local search procedure

To improve the obtained upper bounds, a local search procedure is executed. It consists
of improving a given feasible solution, by applying a number of neighborhood operators.

The operators are applied on the solution obtained by Algorithm 2, and more precisely
on the values of binary variables Y 1

t and Y 2
t for t ∈ {1, 2, ..., T} corresponding to the setup

indicators:

• The setup removing operator aims at grouping the production of two consecutive
production periods in the earliest period. This consists of switching the value of a
single binary variable from 1 to 0: if Y i

t = 1 and Y i
t′ = 1, then Y i

t = 1 and Y i
t′ = 0,

for t, t′ ∈ {1, 2, ..., T}, t < t′, i ∈ {1, 2}.

• The setup moving operator aims at exchanging the setup indicators of two consecu-
tive periods: if Y i

t = 1 and Y i
t′ = 0, then Y i

t = 0 and Y i
t′ = 1, for t, t′ ∈ {2, 3, ..., T},

t < t′, i ∈ {1, 2}.
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• The setup synchronization operator matches the production periods of PU1 and
PU2: if Y 1

t + Y 2
t = 1, then Y 1

t = 1 and Y 2
t = 1, for t ∈ {2, 3, ..., T}.

• The disposal or purchasing removing operator fixes a setup in PU2, when there is
a disposal of operation in PU1, and a setup in PU1, when there is a purchasing
operation in PU2: if Lt > 0 then Y 2

t = 1 otherwise if Zt > 0 then Y 1
t = 1, for

t ∈ {2, 3, ..., T}.

Based on the above introduced neighborhood operators, the local search procedure is
formalized in Algorithm 3.

Algorithm 3 LocalSearch(zub, Y
1, Y 2, L, Z)

1: zub ← SetupSynchronization(zub, Y
1, Y 2)

2: zub ← DisposalRemoving(zub, Y
1, Y 2, L)

3: zub ← PurchasingRemoving(zub, Y
1, Y 2, Z)

4: zub ← SetupMoving(zub, Y
i, PU i), i ∈ {1, 2}

5: zub ← SetupRemoving(zub, Y
i, PU i), i ∈ {1, 2}

Function SetupSynchronization(•) in Algorithm 3 applies the setup synchronization
operator to all periods from period 2 to period T . For each period, if the value of the
objective function is improved, the associated solution is kept and serves as a basis for the
next iteration. Algorithm 3 is composed of the succession of functions corresponding to
the neighborhood operators introduced above. The succession, in which the operators are
applied, has been empirically determined. To limit the computational time, Algorithm 3
is applied only when the upper bound is improved by Algorithm 2.

4.3. Updating Lagrangian multipliers

The Lagrangian multipliers used in Algorithm 1 are initialized to 0, and then up-
dated using the sub-gradient method. The procedure is named UpdateMultipliers() in
Algorithm 1. Let δ be the sub-gradient composed by the vectors δ1 and δ2 such that:

δ1
t = W̄t −Wt, δ2

t = Jt −B, ∀t ∈ {1, 2, ..., T}.

The step size ∆ is calculated using the formula:

∆ =
π(UB∗ − LB)

‖δ‖2

where UB∗ is the value of the best known feasible solution and LB is the current lower
bound.

The Lagrangian multipliers λt are updated using the following formula, ∀t ∈ {1, 2, ..., T}:

λt = λt + ∆δ1
t , ∀t ∈ {1, 2, ..., T}.

The Lagrangian multipliers αt are computed as follows:

αt =

{
αt + ∆δ2

t , if αt + ∆δ2
t > 0

0, otherwise.
∀t ∈ {1, 2, ..., T}

Usually, the scalar π is initially equal to 2. This coefficient is divided by 2 whenever
the lower bound is not improved in a fixed number of iterations. In our settings, if there
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is an improvement after each 3 iterations, π is not modified, otherwise π is multiplied by
0.8.

If no improvement is recorded during a fixed number of iterations, a multi-start pro-
cedure is called. This procedure consists of taking the values of the last Lagrangian mul-
tipliers, multiplying them by random values and continuing the execution of Algorithm 1.
For the ULS-IS problem, Lagrangian multipliers are multiplied by values between 0.5 and
2. After 600 iterations without improvement, each Lagrangian multiplier is multiplied by
a random value comprised between 0.5 and 2.

5. Collaboration policies

In this section, let us investigate a number of different collaboration policies in an
industrial symbiosis system controlled by two decision makers. As previously discussed, a
centralized collaboration policy (i.e. the ULS-IB problem) can be only applied in full infor-
mation sharing environments. Nowadays, the lack of information sharing remains a major
barrier in the expansion of industrial symbiosis networks (Fraccascia and Yazan, 2018). At
the other extreme, a full decentralized decision-making process is not globally consistent,
since each decision maker pursues its own local objectives with its local constraints, which
does not necessarily maximize the global benefits.

With respect to the centralized collaboration policy modeled via the ULS-IB problem,
we study the following baseline collaboration policies: (i) a policy without collaboration,
(ii) a policy expressing an opportunistic collaboration and, (iii) two sequential decentral-
ized collaboration policies expressing a symbiotic partnership, when one production unit
dominates another one, i.e. makes first its production plan.

The production plans are obtained as follows:

• No collaboration: As no interaction is considered between PU1 and PU2, pro-
duction plans can be found by solving separately sub-problems SP1(λ) and SP2(λ)
with: (i) Wt = 0, ∀t ∈ {1, 2, ..., T} in PU1, and (ii) W̄t = 0, ∀t ∈ {1, 2, ..., T} in
PU2.

• Opportunistic collaboration: This policy presupposes the replacement of raw
materials with by-products whenever possible, by matching the production plans of
PU1 and PU2 calculated separately. The first iteration of Algorithm 1 implements
this collaboration policy.

• Sequential decentralized collaboration policies: Let us consider the case when
one production unit makes its production plan first, then another production unit
proceeds to the decision-making accordingly. The management of the by-product
flows transported from the supplier PU to the receiver PU is discussed in what
follows for both cases, when decisions are made downward, and when decisions are
made upward.

Downward sequential decision-making. Let us suppose that PU1 makes its production
plan and communicates to PU2 the quantities of by-products available in each period.
Subsequently and knowingly, PU2 establishes its informed production plan, by taking
advantage of the by-products generated by PU1.

The problem to be solved by PU1 corresponds to the sub-problem SP1(λ). It is
solved by the dynamic programming algorithm of Wagelmans et al. (1992) that runs in
O(T log T ). Let wt = Wt be the quantity of by-products generated by PU1 and available
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for PU2, t ∈ {1, 2, . . . , T}. The resulting problem for PU2 is a basic supplier selection
problem and can be formulated by a mixed integer linear programming model as follows:

min
T∑
t=1

(
p2
tX

2
t + f2

t Y
2
t + h2

t I
2
t + qtZt + b2tWt

)

s.t. (5)− (7), (11)

Wt ≤ wt, ∀t ∈ {1, 2, . . . , T}
X2

t , I
2
t ,Wt, Zt ≥ 0, ∀t ∈ {1, 2, . . . , T}

Y 2
t ∈ {0, 1}, ∀t ∈ {1, 2, . . . , T}

By virtue of Assumption (A.3), this problem can be solved using a dynamic programming
algorithm by setting:

pt(Q) =

{
(p2

t + b2t )Q, if Q ≤ wt

p2
tQ+ b2twt + qt(Q− wt), otherwise

Since the resulting production cost is concave, the algorithm proposed by Wagner and
Whitin (1958), running in O(T 2), is used to solve the problem.

After obtaining the production plans for both production units, they are crossed in
order to update the disposal quantities Lt, as well as, the quantities of by-products Wt

transported between PU1 and PU2.

Upward sequential decision-making. PU2 makes first its production plan and provides their
needs in terms of by-products (i.e. recovered raw materials) to PU1. This collaboration
policy can thus be reduced to a co-product problem with: (i) inventory bounds, (ii) a
disposal of option, and (iii) possible lost sales on the by-product, since PU1 is allowed to
not meet the demands for by-products.

The problem addressed by PU2 is a classical lot-sizing problem and can be solved
using an algorithm running in O(T log T ) (see e.g. Wagelmans et al. (1992)). Let wt be
the quantity of raw materials required by PU2 in period t. The problem to be solved by
PU1 can be formulated as follows.

min
T∑
t=1

(
p1
tX

1
t + f1

t Y
1
t + h1

t I
1
t + ĥtJt + gtLt + b1tWt

)
s.t. (2)− (4), (8)− (10)

Wt ≤ wt, ∀t ∈ {1, 2, . . . , T}
X1

t , I
1
t , Jt, Lt,Wt ≥ 0, ∀t ∈ {1, 2, . . . , T}

This model is solved using a commercial solver. Once the production plan is made by
PU1, quantities of by-products Wt are recovered by PU2 to adjust the real quantities of
raw materials received from PU1 and those purchased from an external supplier.
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6. Experimental results

6.1. Instances generation

Computational results have been conducted on heterogeneous instances randomly gen-
erated. All the costs are supposed to be stationary. The tested data sets are built for two
time horizon lengths T ∈ {24, 96}. The horizon length defines the size of the problem.
Parameters p1, p2, h1 6= 0, b1, b2, g and q are randomly generated between 0 and 10, while
respecting Assumptions (A.1)-(A.6). To define setup costs f1 and f2, and holding cost h2,
critical parameters are identified, namely: ratio ∆ between PUs, Setup cost-Holding cost
Ratio (SHR), demands d1 and d2, and inventory capacity of by-products B:

• ∆ =
h2

h1
aims at linking the holding costs of PU1 and PU2. This ratio can be low

(∆ = 0.75), medium (∆ = 1) or high (∆ = 1.25). Note that ∆ is insightful to reveal
the impact of one PU to the production plan of another PU.

• SHR is a well-known parameter in the lot-sizing literature (see e.g. Trigeiro et al.
(1989)). This ratio has an impact on the average number of time periods between
two consecutive setups, known as the Time Between Order (TBO). SHR links the
setup and holding costs. As far as we consider a problem involving two different
PUs, an SHR is generated for each PU, SHR1 for PU1 and SHR2 for PU2, which
take their values in the set {3, 4, 5}.

• Demands d1
t and d2

t , which have an impact on the size of production units, can
be: (i) low : generated following a normal distribution with an average of 50 and
a standard deviation of 10, ∀t ∈ {1, 2, ..., T}, (ii) medium: generated following a
normal distribution with an average of 100 and a standard deviation of 20, ∀t ∈
{1, 2, ..., T} or (iii) high: generated following a normal distribution with an average
of 200 and a standard deviation of 40, ∀t ∈ {1, 2, ..., T}. We denote by d̄1 and d̄2 the
average demands of PU1 and PU2, respectively.

• The by-product inventory capacity B can be: (i) tight : randomly generated around
1.2d̄1, (ii) large: randomly generated around 3d̄1, or (iii) null : when the by-product
is unstorable, i.e. B = 0.

Given SHR and holding costs of both PUs, setup costs f1 and f2 can be computed via:

f1 =
1

2
h1(SHR1)2d̄1

f2 =
1

2
h2(SHR2)2d̄2

Data sets for each time horizon length T ∈ {24, 96} are generated by combining all
possible values of the critical parameters discussed above. By generating 10 instances for
each class, the total number of generated instances per T ∈ {24, 96} is 10 × 3 × 3 × 3 ×
3× 3× 3 = 7,290.

6.2. Design of experiments

We carried out the comparison between the following approaches:

• AGG: Straightforward formulation (1)-(13) of the ULS-IS problem solved via CPLEX.

• FAL: Facility location formulation (14)-(23) of the ULS-IS problem solved via CPLEX.
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• Several variants of Lagrangian decomposition Algorithm 1 are tested:

– LD: Lagrangian heuristic (i.e. Algorithm 2) without any local search procedure.

– LD-LS: Lagrangian heuristic (i.e. Algorithm 2) embedding the local search
procedure given by Algorithm 3.

– LD-MS: Lagrangian heuristic (i.e. Algorithm 2) within a multi-start procedure,
called when there is no improvement after a fixed number of iterations. This
procedure consists of taking the values of the last Lagrangian multipliers, mul-
tiplying them by random values, and continuing Algorithm 1.

– LD-MS-LS: Lagrangian heuristic (i.e. Algorithm 2) embedding the local search
procedure given by Algorithm 3 within a multi-start procedure.

– LD-LP: The Lagrangian heuristic given in Algorithm 2 is replaced by the resolu-
tion of the linear program obtained by fixing the production periods according
to the solutions of sub-problems SP1(λ, α) and SP2(λ).

– LD-LP-MS-LS: LD-LP embedding the local search procedure given by Algo-
rithm 3 within a multi-start framework.

Algorithm 1 is stopped after 1,000 iterations. For large size problems, this stopping
criterion is strengthened by a time limit fixed at 10 seconds (s). The gap between the
upper bound (UB) and the lower bound (LB) is given by the formula:

Gap = 100× UB − LB
UB

Numerical tests were carried out on a computer with Intel Xeon e5-2620 2.1GHz CPU
with 32GB RAM. Models AGG and FAL and linear programs in LD-LP and LD-LP-MS-LS

were solved using IBM ILOG CPLEX 12.6. The Lagrangian decomposition algorithm was
implemented using the C++ programming language on Microsoft Visual Studio 2013.

6.3. Numerical results

The goal of the conducted experiments is manifold: (i) to evaluate the impact of
critical parameters, (ii) to discuss the contribution of the different procedures described
above, (iii) to show the competitiveness of the proposed solution method with respect to
AGG, (iv) to characterize the generated instances.

On average, LD outperforms LD-LP, regardless the used improvement procedure. For
this reason, only LD-LP and LD-LP-MS-LS are kept to empirically study the performance
of the proposed solution method.

Algorithm 1 and its variants. By summarizing Table A.6, Table 2 provides the distribution
of the gaps between UB and LB for the different variants of Algorithm 1. The improvement
obtained with the multi-start procedure is too low to be noticeable after rounding of the
results. On the contrary, the local search procedure reduces the maximum gaps from
3.17 (3.30) to 2.88 (3.01) in the unstorable (storable) case. In the same way, the CPU
time increases when using the local search procedure (multiplied by 2 or even 3), while
remaining acceptable (always below 1s). The combination of the multi-start and local
search procedures is particularly efficient when the by-product is storable. The average
gap decreases from 0.55% to 0.38%.

The performance of the multi-start and local search procedures can be also observed
when comparing the results obtained by LD-LP and LD-LP-MS-LS. The difference of gaps
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between LD-MS-LS and LD-LP-MS-LS are: (i) relatively small for B 6= 0, LD-LP-MS-LS

being twice slower, (ii) rather high for B = 0, LD-LP-MS-LS being three times slower.
To sum up, LD-MS-LS outperforms other variants of Algorithm 1 in terms of both the

solution quality and computational time, and is considered by default in what follows.

Table 2: Algorithm 1 and its variants: Gap distribution (in %) between UB and LB for small size instances

B Variant Mean Standard deviation Max Median CPU time

Null

LD 0.42 0.57 3.17 0.16 0.22
LD-MS 0.42 0.57 3.17 0.16 0.22
LD-LS 0.39 0.54 2.88 0.14 0.72
LD-MS-LS 0.39 0.53 2.88 0.14 1.16
LD-LP 0.99 1.45 9.46 0.26 3.70
LD-LP-MS-LS 0.61 0.88 6.24 0.21 3.61

Non-null

LD 0.55 0.66 3.30 0.26 0.40
LD-MS 0.54 0.65 3.30 0.26 0.40
LD-LS 0.38 0.54 3.01 0.14 0.83
LD-MS-LS 0.38 0.54 3.01 0.14 0.85
LD-LP 0.60 1.10 9.88 0.11 2.21
LD-LP-MS-LS 0.40 0.72 8.52 0.09 2.29

Analysis of the critical parameters. Table A.5 shows that the tightness of the by-product
inventory capacity has a high impact on the CPU time spent by CPLEX to solve AGG and
FAL. The more the capacity is tight, the higher are computational times needed to solve
AGG and FAL.

One can also remark that the closer the values of SHR1 and SHR2, the faster the
problem is to solve. On the contrary, when the average demand of PU1 is close to the
average demand of PU2, the optimal solution is found after a higher CPU time. Moreover,
when SHR1 and SHR2 both increase, the CPU times needed to solve AGG and FAL increase
(e.g. for AGG, it is around 0.30s for SHR1 = SHR2 = 3, and 0.60s for SHR1 = SHR2 =
5). The value of ∆ intensifies the impact of the parameters on the CPU time, since it
operates with the difference between the holding costs, and accordingly between the setup
costs. Apart from this fact, the impact of ∆ is negligible.

The last row of Table A.5 highlights that the time spent by CPLEX to solve FAL is: (i)
on average higher than for AGG, (ii) inhomogeneous and can be very high for some classes of
instances (16.18s in average for SHR1 = 5, SHR2 = 3 with a tight capacity). We conclude
that FAL formulation is less efficient than AGG for most instances, and consequently it is
not used to solve large-size instances.
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Figure 2: Distribution of gaps (%) for T = 24: LD versus AGG
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Focus on the effectiveness of LD-MS-LS versus AGG. The solution quality provided by
LD-MS-LS is studied on small instances with respect to the value of B, SHR1 and SHR2.
Figure 2 provides the boxplots showing the distributions of gaps between: (i) UB and LB
for LD-MS-LS, denoted by UB-LB, (ii) UB and optimal solution OPT, denoted by UB-OPT,
(iii) OPT and LB, denoted by OPT-LB.

To evaluate the effectiveness of LD-MS-LS, no time limit has been imposed to CPLEX.
The higher gaps are observed for instances with high computational times for AGG. For
B = 0, the gap UB-LB is always below 3%, and the maximum gap UB-OPT is near 1.7%.
When SHR1 = SHR2, gaps are very closed to 0 in more than three quarters of instances
(see Figure 2b). The higher the difference between SHR1 and SHR2 is, the significant
the gaps are. For 75% of instances with |SHR1 − SHR2| = 2, UB-OPT is below 0.5%.
Gaps UB-LB are quite large, but rarely exceed 2%. For B 6= 0, the gaps UB-OPT increase
with the inventory capacity, whereas the gaps OPT-LB tend to decrease (see Figure 2a).
When B is large, 75% of gaps UB-OPT and OPT-LB are below 1% for the worst combination
of critical parameters. When B is tight, 75% of gaps UB-OPT are below 0.7%, and 75% of
gaps OPT-LB are below 1.5% for the same combination of critical parameters.

Focus on the efficiency of LD-MS-LS versus AGG. Let UBLD and LBLD (resp. UBAGG and
LBAGG) be the lower and upper bounds obtained by Algorithm 1 (resp. formulation AGG).
The maximum CPU time allowed for CPLEX has been limited to 10s.

To compare the quality of the primal and dual bounds, let us define: (i) LDu = UBLD−
UB∗ and AGGu = UBAGG − UB∗ where UB∗ = min{UBAGG, UBLD}, (ii) LDl = LB∗ −
LBLD and AGGl = LB∗ − LBAGG, where LB∗ = max{LBAGG, LBLD}. These gaps are
provided in Table A.8.
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Figure 3: LD versus AGG as function of |SHR1− SHR2| for T = 96

In general, AGG provides better upper bounds than LD-MS-LS. However, when SHR1 =
SHR2, LDu is very close to AGGu for a lower running time. In particular, when B = 0,
LD-MS-LS provides upper bounds almost as good as AGGu in only around 1.5s against
around 8.8s taken by AGG. Also, the lower bounds obtained by LD-MS-LS are generally
better than AGGl, when B = 0. On the contrary, LDl is relatively poor compared to AGGl
for B 6= 0. The more SHRs increase, the more the gaps are significant.

Challenging instances. In the light of the findings previously discussed, let us challenge
AGG and LD-MS-LS, by increasing the values of SHRs up to 8. The new created instances
are discussed in terms of the heterogeneity in SHRs and the maximum value between
SHR1 and SHR2.

• High heterogeneity in SHR: As Figure 2b shows, gaps to UB of LD-MS-LS in-
crease when SHR1 and SHR2 are very different. For instances with |SHR1 −
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Table 3: Gaps to UB (in %): T = 96, SHR1, SHR2 ∈ {6, 7, 8} and |SHR1− SHR2| ≤ 1

SHR1 SHR2
Null B Tight B Large B

AGGu LDu AGGu LDu AGGu LDu
6 6 0.02 0.03 0.04 0.03 0.04 0.06
6 7 0.02 0.07 0.08 0.06 0.07 0.09
7 6 0.02 0.11 0.08 0.08 0.06 0.14
7 7 0.02 0.03 0.11 0.01 0.08 0.03
7 8 0.04 0.03 0.15 0.01 0.12 0.02
8 7 0.02 0.05 0.12 0.02 0.1 0.04
8 8 0.03 0.01 0.14 0 0.13 0.01

Average CPU time 10.0 1.2 10.0 7.2 10.0 7.6

SHR2| ≥ 2, AGG provides better UBs than LD-MS-LS (see Figure 3a) . However,
LBAGG is very poor compared to LBLD. This makes LD-MS-LS globally better than
AGG in terms of closeness between bounds. For |SHR1 − SHR2| = 5, gaps to UB
reach more than 2%, that makes the corresponding instances difficult to solve.

• High dispersion in SHR: Focus now on instances with SHR1, SHR2 ∈ {6, 7, 8}
and |SHR1 − SHR2| ≤ 1. They correspond to instances with high setup costs,
which may make difficult the synchronization between PUs. The obtained results
are provided in Table 3. AGG outperforms LD-MS-LS only when one of the SHRs
equals to 6. In all other cases, LD-MS-LS provides better feasible solutions than AGG,
especially when B is tight.

7. Managerial implications and research perspectives

In this section, let us discuss the economic opportunities induced by the exchange
of by-products between two production units, by examining five baseline collaboration
policies, namely:

• No Co: No collaboration, i.e. no symbiotic partnership is considered between produc-
tion units. The by-products generated by PU1 are disposed of, and raw materials
used by PU2 are purchased from an external supplier. Let the costs obtained in the
framework of this policy be called nominal costs.

• Full Co: Full collaboration, i.e. the exchange of by-products are planned in the
framework of a centralized collaboration policy. No other policy can provide better
gains. Let the costs obtained in the framework of this policy be called centralized
costs.

• Opp Co: Opportunistic collaboration, i.e. the exchange of by-products is being done
by taking advantage of a fortunate matching between the production plans of the
supplier (PU1) and the receiver (PU2).

• Two sequential decentralized collaboration policies:

– PU1 First: Downward sequential collaboration,

– PU2 First: Upward sequential collaboration.

The aforementioned policies were addressed in Section 5, where the used models and
the associated solution methods are detailed. For the sake of simplicity and without loss

24



of generality, the quantitative impact of each collaboration policy is evaluated on small
size instances, i.e. for T = 24 periods and SHR1, SHR2 ∈ {3, 4, 5}.

The gains of each production unit i are calculated with respect to its nominal cost ci

obtained outside any symbiotic partnership, as follows:

(1− cip/ci)× 100,

where cip is the cost of production unit i obtained in the framework of a collaboration
policy denoted by p, p ∈ {Full Co, Opp Co, PU1 First, PU2 First}, i ∈ {1, 2}. The
gains obtained for each of the aforementioned policy are provided in Table 4.

Even an opportunistic exchange of by-products creates value-added benefits for both
PUs, reaching from slightly over 2.4% on average to a maximum of more than 17%. It
is worthwhile to observe that the more the decision-making is informed, the more sig-
nificant are the benefits of each production unit. Both of the sequential decentralized
collaboration policies double the savings procured by exchanging by-products, being far
from the centralized costs (Full Co) within a distance of around 1%. In the same line of
thought, in the PU2 First policy, PU1 knows the by-product needs of PU2. In this case,
this knowledge helps PU1 improving its gains by 1% compared to the gains obtained by
policy PU1 First. In our experiments, it appears that the knowledge of PU2 about the
availability of by-products (in the PU1 First policy) does improves significantly its gains
compared to the gains obtained with the PU2 First policy. This means that sometimes
the by-product supplier can obtain higher gains when moving at second instance. It is also
important to mention that in the Full Co policy, even if the average and the maximal gains
are higher than the gains obtained by other policies, PU1 can lose up to 3.6% and PU2
can lose up to 4.2% of their total nominal costs, when the by-product is storable. In this
case, to make the proposed solution acceptable by both PUs, compensation mechanisms
have to be considered. Some perspectives related to these mechanisms are addressed at
the end of this section.

Table 4: Collaboration policies: Gains of PU1 and PU2 (in %) against No Co

PU B
Opp Co PU1 First PU2 First Full Co

min mean max min mean max min mean max min mean max

PU1
Null 0 3.1 17.3 0 7 40.1 0 6.9 39.6 -1.4 7.9 40.0

Tight 0 3.4 21.8 0 7.5 43.5 0 8.3 44.5 -3.6 9.2 48.2
Large 0 3.2 21.8 0 7.3 43.5 0 8.7 44.5 -1.4 9.4 48.2

PU2
Null 0 2.8 18.2 0 6.6 41.5 0 6.5 39.6 -4.7 7.2 42.1

Tight 0 2.7 17.6 0 6.3 47.9 0 6.4 48.3 -4.2 7.4 48.4
Large 0 2.4 17.6 0 5.9 46.3 0 6.7 48.4 -4.2 7.5 48.4

Impact of technology characteristics on collaboration policies. Figures 4-5 highlight the
economic impact of the by-product storability with respect to (SHR1−SHR2) and (d̄1−
d̄2).

Figure 4 (resp. Figure 5) reports the average relative gains of each PU obtained by
policy Full Co against No Co as function of (SHR1−SHR2) (resp. (d̄1− d̄2)) for storable
and unstorable by-products. Once again compared to policy No Co, Figures 6a-6b (resp.
Figures 6c-6d) report the relative gains of each PU as function of (SHR1−SHR2) (resp.
(d̄1 − d̄2)) for the three production policies: Full Co, PU1 First, PU2 First.
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First, let us analyze the impact of (SHR1 − SHR2) on obtained gains regarding the
storability or not of by-products. From Figure 4, we can notice that when the by-product
is unstorable and (SHR1 − SHR2) is high, PU2 has more gains than PU1. This can be
explained by the fact that when the SHR is high for PU1 and low for PU2, PU2 has more
flexibility to align its production with the one of PU1. When the situation is inverted,
i.e. (SHR1 − SHR2) is very small, the average relative gain of PU1 is higher than the
one of PU2. In this case, PU1 has more flexibility to align its production with the one
of PU2. When the by-product is storable, we notice that the relative gains of PU1 are
always higher than those of PU2 regardless the value of (SHR1 − SHR2). This can be
explained by the flexibility of PU1, which has more freedom to manage the by-product
inventory level. From Figures 6a-6b, we notice that the higher gains are obtained when
the SHR of both PUs are close, i.e. SHR1 ≈ SHR2. Negative gains are obtained when
the difference between the SHR of both PUs is high, i.e. |SHR1− SHR2| = 2.

Focus now on the impact of the balance between average demands of production units
on benefits obtained in the framework of different policies. As Figure 5 corroborates in
the case of policy Full Co, the higher the difference between demands, the more the gains
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Figure 6: Gains (in %) as function of (SHR1− SHR2) and (d̄1 − d̄2)

of PUs are unbalanced. From Figures 6c-6d, it appears to be more beneficial for each
PU when the production unit, which has the largest demand, establishes its production
plan first. This finding differs from that encountered in classical supply chains, where the
primacy in the decision-making ensures the maximum benefits.

• PU1 first and d̄1 � d̄2: Having to meet large demands, PU1 generates and makes
available large quantities of by-products. This configuration is convenient for PU2
requiring relatively small quantities of by-products.

• PU2 first and d̄2 � d̄1: The case when PU2 has to meet greater demands than PU1
is favorable for PU1, since PU2 will tend to deplete the relatively small quantities
of by-products generated by PU1.

• d̄1 ≈ d̄2: When demands of production units are balanced, the primacy in decision-
making has no drastic effects on costs.

Discussions on industrial symbiosis-based collaboration policies. As previously highlighted,
the collaboration schemes applied to coordinate traditional supply chains may not be
appropriate to regulate the exchange of by-products between a number of production
units.

Apart from the attractiveness in terms of global economic benefits, the centralized col-
laboration policy suffers from the disadvantage of not being always equitable, as shown in
the analysis of Table 4. One of the state-of-the-art remedies to deal with the misalignment
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of benefits is to explicitly add and operate with financial flows within the network. The
centralized policy may be improved by sharing benefits between production units in the
form of side payments given by one PU to compensate financial losses incurred by another
PU (Daquin et al., 2019).

As far as the decentralized policies are considered, contract schemes serve to align
the interests of each production unit, by rigorously framing the by-product transfer and
avoiding relationships based on dominance. The global benefits induced by these contracts
are situated between the values of solutions obtained by PU1 First and PU2 First, and
deserves to be studied.

One of the most sensitive and crucial points in making successful an industrial symbio-
sis partnership is the information sharing. Nowadays, a growing number of IT platforms is
implementing not only: (i) to facilitate the access to information about the by-product lo-
cation and availability, but also (ii) to support the framing of collaboration schemes. Let us
mention a couple of platforms dedicated to fostering the industrial symbiosis (Vladimirova
et al., 2019): (i) SYNERGie 4.0 Platform and Database, promoted by International Syner-
gies3, (ii) MAESTRI Toolkit, EPOS Toolbox, Sharebox or SYNERGie 2.0 Platform, etc,
developed in the framework of European projects (respectively MAESTRI4, EPOS5 and
Sharebox6 projects), and (iii) Industrial Symbiosis Data Repository Platform7, an open
source platform. It is worthwhile to underline the importance of the following questions
posed by Fraccascia and Yazan (2018) in achieving the zero-waste goal via the industrial
symbiosis: “What is sensitive information for a company? Which type of information
is non-sensitive for a company to implement industrial symbiosis based cooperation? Is
the sensitive information really sensitive enough to motivate the limitation for its non-
disclosure?” In line with these issues and as future research, it would be very insightful to
evaluate the value of information availability within the system of coordinates defined by
the baseline collaboration policies investigated in this paper.

8. Conclusion and perspectives

Inspired by the circular economy paradigm, this paper introduced and investigated
a new version of a two-level single-item lot-sizing problem (ULS-IS), posed by an indus-
trial symbiosis network including two production units. We proposed two formulations
to model the two-level single-item lot-sizing problem in the framework of a centralized
coordination policy. We showed that ULS-IS problem is NP -Hard. A solution method
based on Lagrangian decomposition has been proposed. Extensive numerical experiments
have been conducted on small and large instances to study the competitiveness and the
tractability of the proposed solution method and its variants.

From a managerial point of view, two sequential decentralized collaboration policies
have been investigated against two extreme configurations, namely: no collaboration, and
full collaboration based on a centralized decision-making. Valuable evidence for policy
makers has been discussed, and a number of perspectives has been suggested for further
research.

3International Synergies https://www.international-synergies.com/
4MAESTRI project. https://maestri-spire.eu/
5EPOS project. https:/www.spire2030.eu/epos
6Sharebox project. http://sharebox-project.eu/partners/
7Industrial Symbiosis Data Repository Platform. http://isdata.org
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Table A.6: Algorithm 1 and its variants: Gaps (in %) to optimality for small size instances

B Variant Mean Standard deviation Max Median

Null

LD 0.12 0.27 1.74 0.00
LD-MS 0.12 0.27 1.74 0.00
LD-LS 0.09 0.21 1.68 0.00
LD-MS-LS 0.08 0.21 1.68 0.00
LD-LP 0.73 1.28 9.29 0.01
LD-LP-MS-LS 0.31 0.61 5.86 0.00

Non-null

LD 0.37 0.55 3.40 0.12
LD-MS 0.36 0.55 3.40 0.12
LD-LS 0.16 0.30 2.05 0.01
LD-MS-LS 0.16 0.30 2.05 0.01
LD-LP 0.42 0.90 9.06 0.00
LD-LP-MS-LS 0.20 0.43 7.20 0.00

Table A.7: LD-MS-LS: Gaps (in %) for small size instances

SHR1 SHR2
Null B Tight B Large B

UB-LB UB-OPT OPT-LB UB-LB UB-OPT OPT-LB UB-LB UB-OPT OPT-LB

3 3 0.16 0 0.15 0.31 0.03 0.28 0.4 0.02 0.37
3 4 0.5 0.06 0.44 0.71 0.1 0.61 0.72 0.11 0.61
3 5 1 0.16 0.84 1.23 0.24 1 1.08 0.3 0.79
4 3 0.43 0.1 0.33 0.81 0.26 0.55 0.96 0.15 0.82
4 4 0.11 0 0.1 0.28 0 0.28 0.55 0.01 0.53
4 5 0.25 0.08 0.17 0.46 0.1 0.37 0.58 0.16 0.42
5 3 0.7 0.22 0.49 0.97 0.35 0.63 0.97 0.3 0.67
5 4 0.2 0.03 0.17 0.28 0.06 0.22 0.46 0.08 0.38
5 5 0.11 0 0.11 0.29 0.01 0.28 0.54 0.04 0.51

d1 d2 UB-LB UB-OPT OPT-LB UB-LB UB-OPT OPT-LB UB-LB UB-OPT OPT-LB

L L 0.63 0.08 0.55 0.89 0.16 0.73 0.85 0.19 0.66
L M 0.35 0.11 0.25 0.46 0.14 0.33 0.38 0.15 0.23
L H 0.22 0.05 0.17 0.31 0.09 0.22 0.2 0.07 0.13
M L 0.25 0.05 0.2 0.59 0.1 0.49 1.15 0.07 1.07
M M 0.64 0.09 0.55 0.92 0.19 0.74 0.86 0.19 0.67
M H 0.36 0.11 0.25 0.47 0.14 0.33 0.38 0.14 0.23
H L 0.16 0.03 0.13 0.22 0.07 0.16 0.33 0.07 0.25
H M 0.24 0.05 0.19 0.6 0.11 0.49 1.24 0.08 1.16
H H 0.62 0.09 0.53 0.88 0.17 0.72 0.87 0.19 0.68

Average gaps 0.38 0.07 0.31 0.59 0.13 0.46 0.69 0.13 0.56

L: Low, M: Medium, H: High, UB: Upper bound, LB: Lower bound, OPT: Optimality.
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