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1. Introduction 

The digital transformation of the manufacturing industry is at full speed, and customers’ 

preferences are changing rapidly whilst their demands increase. This has led to shortening product 

lifecycles and continuous development and introduction of products into the market. Such a 

situation forces enterprises to rethink their manufacturing systems to address the resulting 

challenges of increased product variety and complexity stemming from mass-customized products, 

as well as market dynamics. To remain competitive, companies need to become more agile and 

flexible, while steadily increasing the efficiency of their manufacturing operations. In fact, agile 

and service-oriented companies are disrupting the marketplace, and customers are starting to get 

used to reliable next-day deliveries (i.e., ‘the Amazon effect’) in addition to mass-customized or 

even personalized product offerings.1 

To keep up with the evolving technological, social and market paces, companies are confronted 

with the need for frequent ramp-ups to move from product development to stable production.2 

Ramp-up activities are, however, challenged by increasing product and process complexities 

resulting from an increasingly diverse offering. When manufacturing companies launch a new 

product into the market, they not only need to think about the time-to-market as their key measure 

of success but also take into account the time-to-volume, time-to-quality and time-to-cost required 

to satisfy their customers’ expectations.3,4,5,6,7 

Conversely, ramp-up management has not yet received the deserved attention in comparison to 

other product lifecycle management stages, in particular when it comes to multi-variant 



production.6,7,8 In fact, product development and stable or volume production are addressed widely 

and separately. One major recurring question a decision-maker is likely to consider during product 

development is how to move from a prototype up to a production ceiling. Such a question involves 

examining different potential criteria for measuring ramp-up success, such as time, cost and 

quality.6,7 It becomes apparent that there are several general strategies and high-level frameworks 

available in recent ramp-up management literature.6,7,9 However, there is a scarcity of data-backed 

tools and frameworks that deal with the question of how to support the efficient ramp-up of multi-

variant production.  

This paper aims to bridge this gap by introducing a Multi-Agent System (MAS) supporting ramp-

up management strategies assessment in multi-variant production contexts. The aim is to support 

decision-makers in the planning stage of the production ramp-up. The MAS relies on the concept 

of an agent which is an autonomous entity operating in a society of agents in order to contribute to 

a general goal.  

The remainder of the paper is organized as follows: An overview of the research motivation and 

problem definition is provided in Section 2 and based on this, a review of MAS applications for 

ramp-up management is given in Section 3. The development of MAS is detailed in Section 4, 

followed by a case study for evaluating the applicability of the MAS which is presented and 

discussed in Section 5. Further discussion and perspectives are summarized in Section 6 and the 

paper ends with concluding remarks in Section 7.  

2. Motivations and Problem Definition  

Individualized customer demands and market expansion is pushing companies to seek not only 

cost efficiency but also differentiation as a competitive advantage.7,10,11 This trend introduces 

certain obstacles to the successful development and introduction of highly differentiated products 

into the market. In fact, differentiation comes with associated complexity and costs which may 

negatively impact time-to-market and time-to-volume. The ramp-up phase is generally set up when 

moving from the product development to the production phase of the product lifecycle (see Figure 

1). 



 

Figure 1. Ramp-up Management in Product Lifecycle11 

According to Schuh et al. (2008)12, production ramp-up is a value creation phase starting with the 

completion of product and process design and ending with the achievement of the full production 

capacity of the manufacturing system, in other words, a successful production run. Ramp-up 

management is also required when companies experience a significant peak in an existing product 

or service demand.13 A good example is the global demand for Personal Protective Equipment 

(PPE) that increased tremendously and rapidly during the COVID-19 pandemic outbreak.14,15  The 

current mode of production that includes outsourcing and global sourcing has shown significant 

limitations at a time when resilience and agility became key denominators of a delocalized industry 

during this global crisis (e.g., changing priorities, very tough competition).16 Therefore, proper 

decision-making support combined with innovative approaches is needed for quick production 

ramp-up and even ramp-down under these circumstances.  

Ramp-up and capacity management have therefore started to receive a great deal of attention and 

have become more critical than ever. More generally, the increasing versatility in today’s 

manufacturing environment started to bring back the production ramp-up concept to the cutting-

edge production research trends. This is exemplified by several recent research works.7 6,7,17,18,19,20 

However, the available scientific literature dealing with production ramp-up, particularly in high-

variety or even multi-variant production, focuses on relevance and general strategies of production 

ramp-up management.6 There is a lack of operational methods and tools intended for the effective 

guidance of the decision-making process within manufacturing companies.6,7 

Glock et al. (2012)20 develop a mathematical model to support production planning during ramp-

up considering the learning effect on the production rate. The model allows for optimizing 

procurement and inventory costs while attempting to match demand.  Hansen and Grunow (2015)21 

propose a similar model which also considers capacity expansion through experience gained in 



production. Therefore, effective capacity during the ramp-up phase is volume-dependent in their 

model. However, multi-variant production is not addressed by the proposed models, which 

generally focus on a single product context.  

Schuh et al. (2015)17 propose a structured approach to support the ramp-up of assembly systems 

when faced with complex challenges. Their approach relies on a qualitative assessment of 

complexity drivers and enablers to ensure a cost-efficient and timely migration to serial production. 

The approach provides significant decision-making support to help manage ramp-up projects and 

for production management. Fjällström et al. (2007) 22 highlight the importance of information for 

a ramp-up, in particular, for handling crises that may occur after the start of production (i.e., 

disturbances, quality problems, lack of operators, etc.). Their research relies on an insightful 

longitudinal case study and offers advice on how to improve production ramp-up management.  

More recently, Glock and Grosse (2015)18 review different decision-support models for production 

ramp-up management and identify several basic production planning problems such as capacity 

expansion, product development, and learning aspects. The authors found that most of the existing 

research works address a single production planning problem while production ramp-up 

complexity suggests that these problems are interrelated. In fact, the authors underline the potential 

of simulation as a means to address the production ramp-up process complexity and as a way to 

move beyond analytical models prevailing so far in the literature. In particular, multi-agent 

simulation allows us to capture qualitative properties of the system under study based on agents’ 

behaviours and interaction. Quantitative properties can be captured through mathematical 

modelling.23,24,25 Therefore, multi-agent simulation and mathematical modelling complete each 

other towards supporting ramp-up management decisions. The challenge remains how to unleash 

their synergies to model complex systems at large and to address ramp-up management in multi-

variant production, in the particular context of this research.  

This paper addresses the problem of how best to support decision-making during the planning stage 

of ramp-up as a means to the effective management of a diverse product portfolio. The proposed 

approach leverages an agent-based simulation and performance indicators to provide an economic 

assessment of different ramp-up management strategies. The new model addresses the alignment 

of production with the customized demand during the ramp-up phase and applies this to multi-

variant production.  



3. Production Ramp-Up Management and MAS Simulation 

3.1. MAS Potential for Ramp-Up Management 

MAS paradigm has been applied to different problems in the areas of systems engineering and 

management and operations management. 25,2526,27  During the last few years, concepts such 

“holonic manufacturing systems” and “intelligent control of distributed systems” have relied 

heavily on MAS.32,33,34 A holonic architecture of manufacturing systems is characterized by the 

autonomy of actions and decisions of system entities, leading to higher system flexibility. This 

trend is heightened by the increase in product variety and the emergence of small-lot-size 

production which requires a robust system with a higher degree of flexibility and 

reconfigurability.32,35,36 

The wide application areas of MAS are partially due to the intrinsic characteristics of “agents” 

regardless of the development approach and implementation environment. In fact, autonomy and 

interaction are key features of an agent, which can be defined as a “computer system located in an 

environment that operates autonomously and flexibly to achieve the objectives for which it was 

designed”.28 These characteristics are very consistent with the requirements of a production ramp-

up phase, which is characterized by high uncertainty and the need for system adaptability. 

Additionally, while single agents are autonomous entities, they usually operate in a “society of 

agents” to achieve a general objective.2929,30,31 This feature brings MAS forth as a promising 

solution approach for complex problems by deconstructing the system or problem into independent 

sub-systems. Subsequently, MAS exhibits a real potential to address inherently complex problems 

in high variety and small-lot size production environments. For instance, MAS is a promising way 

to represent modular and smart systems, which are a key feature of high variety production 

environments. 

3.2. MAS Applications in Ramp-Up Management 

Vrba et al. (2015)37 introduce a scheduling model implemented using agents for the ramp-up of 

aircraft manufacturing. The proposal relies on mathematical modelling and the resulting model is 

integrated within an overall Information Technology (IT) architecture. Doltsinis et al. (2020)36 

develop a decision-support system fostering the learning process as a means to improve the 



production ramp-up process. The proposal focuses on a task-level perspective and involves human 

agents in a production ramp-up learning process. Zhang et al. (2016)33 develop an agent-based 

architecture for intelligent manufacturing control focusing on the integration of the cyber- and 

physical- systems using RFID technology. The intelligent control framework is intended to 

improve flexibility and adaptability through a more efficient real-time production planning and 

control. In the same vein, Cupek et al. (2016)35 develop a holon-based model which allows a 

Manufacturing Execution System (MES) to be adapted to small-series production. The model is 

implemented into an IT architecture allowing for local optimization of the distributed production. 

The need for proactively dealing with changes and uncertainty has been further addressed by 

Rodrigues et al. (2018) 34, who develop a MAS for service reconfiguration in manufacturing 

systems. The system considers factors such as production changeover. Authors such as Antzoulatos 

et al. (2014)38 and Kovalenko et al. (2019)39 develop multi-agent software architectures to support 

quick reconfiguration of production systems. MAS use in smart manufacturing systems also started 

to enhance additional dimensions such as sustainability and service.40 Research efforts conducted 

within European projects have resulted in relevant tools such as conceptual models and ontologies 

for production management using MAS.41,42 These efforts have also contributed to building a 

bridge to service-oriented smart manufacturing systems.43  

In conclusion, the literature shows a discrepancy between the underlying pressing problem 

demanding new, innovative solutions to support production ramp-up for multi-variant, mass-

customized products, and the available research. While the reported research and directions are 

motivated by the broader, customer-driven trends of mass-customization and multi-variant 

production, most of the literature is still focussing on developing solutions to optimize stable 

production rather than an agile production ramp-up phase. The selected research that addresses 

issues around production ramp-up is mainly focussed on the operational level, neglecting other key 

tactical and strategic perspectives including the economic outcome of different production ramp-

up strategies. The significant amount of uncertainty underlying the ramp-up phase requires 

appropriate frameworks and operational tools to mitigate risk and enlighten decision-makers.44 



4. An MAS for Supporting a Production Ramp-Up Strategy Selection 

4.1. Methodology and Background     

MAS development relies on 1) GAIA methodology supporting complex systems understanding and 

modelling, 2) Unified Modelling Language (UML) and platform-specific requirements to develop 

more detailed models and ease MAS implementation, and 3) Mathematical modelling to implement 

different production management strategies.45,46,47 

GAIA inherits from the terminology of object-oriented design and analysis which ensures 

flexibility and fosters modular and rapid model development.48 It has been applied to address 

various problems in production and supply chain areas.48,49 Figure 2 shows GAIA basic models 

which guide system analysis and design as key steps in understanding and modelling complex 

systems.45 Requirements statement is an input for the GAIA methodology that represents the 

purpose of the system to be analysed and designed. 

 

 

Figure 2. GAIA Basic Steps 45
 

The analysis stage aims to build an understanding of the system organisation defined by a set of 

interacting roles. Two basic models are used in this step, Role Model and Interaction Model. The 

Role Model is defined by the following attributes: responsibilities, permissions, activities, and 

protocols. 45 Responsibilities determine the functions associated with a role. Responsibilities could 

involve two different properties, Liveness and Safety. Liveness properties refer to desired states of 

affairs while Safety properties design the constraints that should be respected. Permissions refer to 



the rights of a role supporting the realization of its responsibilities. Activities are private actions 

associated with a role. Lastly, Protocols describe the way a given role interacts with other roles. 

The Interaction Model captures the interplay between roles to ensure system functioning. It consists 

of a set of protocols that are institutionalized patterns of interaction. A protocol definition relies on 

the following attributes: Purpose (i.e., nature of the interaction), Initiator (i.e., the responsible role 

for starting the interaction), Responder (i.e., the role with which the initiator interacts), Inputs (i.e., 

information used by the initiator), Outputs (i.e., the information supplied to/by the protocol 

responder), and Processing (i.e., possible initiator processing during the interaction). 

The design stage is concerned with transforming the abstract models developed during the analysis 

stage to support technical implementation. The basic three GAIA model types used for this step 

are the Agent Model, Service Model, and Acquaintance Model. Agent Model defines agent types 

and agent instances that will release them at run time. To optimise system design, several agent 

roles can be aggregated into a single type. Service Model specifies the functions associated with 

each agent role known as services, which represent single and coherent activity blocks. Services’ 

inputs and outputs are derived from the protocols. The Acquaintance Model defines the 

communication links between agent types and can be derived from roles and protocols. This model, 

however, does not specify further details such as message content. 

Since GAIA methodology is not primarily concerned with the implementation, the design stage is 

broken into three steps, Design I, Design II, and Implementation. Design I follows GAIA logic and 

extends MAS using UML class and sequence diagrams. Design II specifies the mathematical 

models defining ramp-up strategies. Implementation integrates the specific requirements of the 

MAS development platform to ease the implementation. These three complementary and logically 

linked steps further support the reduction of the abstraction level by defining how an agent society 

will cooperate and what is needed for each individual agent in such a cooperation process. 

In the following section, the development of the MAS is detailed, highlighting the requirements 

statement and MAS analysis (§4.2), MAS design I (§4.3), MAS design II (§4.4), and MAS 

implementation (§4.5).  



4.2. Requirements Statement and MAS Analysis    

The MAS is developed to support the assessment of ramp-up management strategies, in particular 

in a multi-variant production context. The scope of the research involves a single echelon supply 

chain adopting a Make-to-Order production management strategy. The focus is on a focal company 

dealing with a given market demand and being supplied with a set of components and raw material 

by its suppliers. Therefore, the internal organisation of the customers and the suppliers is out of 

this research’s scope. Similarly, a limited number of agent types will be required which are also 

consistent with the scope of the GAIA methodology. 

The roles required for the purpose of the current MAS development are Customer, Company, 

Production, Supplier, and Performance (see Table 1). The roles were selected and defined to 

represent a standard supply chain model in line with previous research works, building on 

the Supply Chain Operations Reference (SCOR) model.30 The SCOR model is widely 

accepted in industry and academia and relies on a standardized representation of the supply 

chain reinforcing replicability, performance measurement, and improvement. The protocols 

and activities shown in Table 1 are inspired by the SCOR model (Levels 1 and 2 from the 

SCOR model hierarchy). Unlike existing works dealing rather with shop-floor level,4,35,36 the 

current model aims to consider a broader perspective of the focal company covering its operations. 

The Company role is concerned with managing operations to fulfil customer orders, this involves 

both planning and execution activities. Production role is in charge of executing production orders 

and managing related workload and order queue. Supplier is introduced basically as a means to 

model the supply process as part of the company’s operations. Table 1 shows Liveness 

responsibilities associated with agents’ roles (last column). The supply and delivery activities 

are associated with the Company role (see Table 1). It assumes that the transportation 

activities from Suppliers to Company are managed by the Suppliers. The transportation to the 

Customer as part of the Delivery activities is ensured by the Company. Performance is 

responsible for recording the performance data and calculating indicators. 

A particular and original feature of the proposed model is the structured “order management 

process”. Orders are generated based on available configuration options of the product range based 

on the Customer role. Afterwards, the Company role processes the orders to determine whether the 

requested configuration is within the offered range and then plans material requirements. As such, 



orders are not considered as black boxes and the variety impact can be analysed more consistently 

and reliably. Additionally, both the product mix and order generation can be flexibly configured to 

reflect different strategies (e.g., low-mix, high-mix, etc.) and situations (e.g., demand volume, 

mean, deviance, etc.) within both ramp-up and stable production phases.  

Table 1. MAS Roles Model and Roles Definition 

Role 

Schema 
Description 

Activities  

Protocols  

Responsibilities 

Permissions 

Customer 

Generate order 

according to a given 

probability distribution 

Generate order 

Send order 

Order Request Generation 

Customer = (Generate order, Send order) 

Company 
Manage operations to 

fulfil customer orders 

Receive customer order 

Process order 

Manage inventory 

Prepare order 

Deliver order 

Customer Order Processing 

Supply Order Request 

Production Order Request 

Company = (Receive customer order, Process order, 

Manage inventory, Prepare order, Deliver order) 

Read Customer order 

Production 
Execute production 

activities 

Receive production order 

Update production load 

Deliver production order 

Production Informing Company 

Execute production activities = (Receive production 

order, Update production load, Deliver production 

order) 

Read Production order 

Performance 
Record performance 

indicators 

Update and record cumulative 

performance indicators 

Update and record performance 

indicators 

Track and update performance indicators = (Update and 

record cumulative performance indicators, Update and 

record performance indicators) 

Read and update indicators 

Supplier 

Supply focal company 

with raw material and 

components 

Receive Company order 

Process Company order 

Deliver Company order 

Supply Order Fulfilment 

Supply Informing Company 

Supplier = (Receive Company order 

Process Company order 

Deliver Company order) 

Read Company order 

Figure 3 shows the interaction model highlighting the protocols enabling order management by the 

developed MAS. This model is focused on the purpose of the interactions happening across the 

MAS, rather than the sequencing of these interactions. The eight basic protocols comprising the 

interaction model are Order Request Generation, allowing to simulate the demand of a given 

product mix, Customer Order Processing, allowing to process the orders coming from the customer 

and to plan material requirement, Supply Order Fulfilment and Production Order Request, 

generated based on material requirement planning, Production Informing Company and Supply 

Informing Company, to inform the company of order reception, and Customer Order Fulfilment, 

referring to order delivery to the final customer.   



 

Figure 3. MAS Interaction Model 

4.3. MAS Design I   

Following GAIA methodology, Agent Model, Acquaintance Model and Service Model were 

developed to provide more detailed modelling of the system to ease its implementation. These 

models are represented respectively in Figure 4a, Figure 4b, and Table 2. To further define how an 

agent performs and cooperates, a UML class diagram and sequence diagram are used.   

Figure 5 reports on the sequence diagram, highlighting the general sequence of order management. 

The typical operation scheme starts with the company receiving an order from the customer. The 

scenario represented in Figure 5 illustrates a typical order fulfilment process and assumes the order 

management is automated and that there is no bullwhip effect.50 This is consistent with the current 

scope of the model and to start to build a foundation for ramp-up management of multi-variant 

production. In the current version of the proposed MAS, the Performance role is limited to 

data collection, as well as calculation and update of performance indicators. Therefore the 

Performance role is not represented in the sequence diagram depicted in Figure 5. However, 



the authors assume it is preferred to represent it as an agent rather than a program since it 

can be supplemented with further performance monitoring functions. For instance, deriving 

recommendations for the indicators and sending them to the Company agent.   

 (a) (b)  

Figure 4. MAS Agent Model and Acquaintance Model 

Table 2. MAS Service Model 

Agent Service Inputs Outputs Pre-condition Post-condition 

Customer 

Generate order 
Product portfolio 

Demand profile 
Customer order   

Send order 
Customer order 

Company Identifier 
Order sent  

Company informed 

of the order 

Company 

Receive customer order Customer order Order recorded Order queue available 
Order queue 

updated 

Process order Recorded order Material requirements   

Manage inventory 
Material 

requirements 

Updated material 

requirements 

Supply order 

 
Performance 

indicators updated 

Prepare order 
Production order 

Supply order 
Inventory level updated 

Production informed 

Supplier informed 

Performance 

indicators updated 

Deliver order 
Customer order 

Inventory level 
Order delivered Stock available 

Stock updated 

Performance 

indicators updated 

Production 

Receive production 

order 
Production order Order recorded   

Update production load Recorded order Updated production load   

Deliver production 

order 

Production order 

Inventory level 
Inventory level updated  

Performance 

indicators updated 

Performance 

Update and record 

cumulative performance 

indicators 

Current 

performance 

indicator values 

Updated performance 

indicator values 
Data record time  

Update and record 

performance indicators 

Current time 

Current 

performance 

indicator values 

Recorded performance 

indicator values 
  

Supplier 

Receive Company order Company order Company order recorded   

Process Company order 
Recorded company 

order 
Processed order   

Deliver Company order Processed order Order sent  
Company informed 

of the order 

In the represented scenario, both Customer and Company agents are “active” before sending and 

receiving an order. In fact, before sending the order, the customer needs to generate a product 



reference and quantity to include in the order. Both Company and Customer require initialization 

to load master data about demand and production. The company agent receives the order and then 

calculates material requirements according to which it sends supply orders and production orders 

to supply and production agents, respectively. The activity of the production and supply agents 

starts upon receiving the company order. Upon receiving the required material and production 

order, the company proceeds with preparing the order and delivering it to the final customer. 

 

 

Figure 5. MAS Model Sequence Diagram 

4.4. MAS Design II  

This step aims to specify the detailed operations of the agents belonging to the MAS under 

development using a class diagram and mathematical modelling. A summary of agents’ operations 

derived from the Service Model is given by the UML class diagram shown in Figure 6. The 

mathematical model allows for implementing different ramp-up strategies. Examples of these 

include high-volume low-mix (HVLM) and low-volume high-mix (LVHM). The choice of strategy 

depends on product variety and complexity, for instance, an HVLM may fit relatively standard 

products while more complex and highly customized products may require an LVHM strategy. A 

given strategy can be translated into a production plan described through the matrix 𝑆 representing 



the planned production volumes of each product 𝑖 at each planning period 𝑡, 𝑝𝑖
𝑡 , where 𝑀 refers to 

the total number of different products included in a Company’s portfolio and 𝑇 is the total number 

of planning periods considered for the ramp-up phase (6 to 24 months to remain consistent with 

ramp-up context). 

𝑆 = (𝑝𝑖
𝑡 )𝑖=1..𝑀,𝑡=1...𝑇            (1) 

𝑝𝑖
𝑡 is calculated based on the share of product 𝑖 in the product mix at period 𝑡, 𝑠𝑖

𝑡, and the total 

planned aggregate production capacity during period 𝑡, 𝑃𝑡(Eq. 2). The effective volume produced 

from 𝑖 at 𝑡, 𝑒𝑖
𝑡, is an adjustment of the planned volume 𝑝𝑖

𝑡 based on customer orders received during 

period 𝑡 (Eq. 3). The determination of 𝑃𝑡 is derived from the demand forecast 𝐹𝑡 and adjusted to 

mitigate production disturbances. However, demand forecast and its impact on aggregate capacity 

planning is considered out of the scope of the model, therefore the model input is assumed to be 

known, 𝑃𝑡∀ 𝑡 ∈ {1, … , 𝑇}. 𝑠𝑖
𝑡 depends on the complexity of product 𝑖, 𝐶𝑖, planned aggregate 

production capacity during the period 𝑡, 𝑃𝑡, and the period 𝑡 (Eq. 4).  𝑠𝑖
𝑡 is valued by decision-

makers considering the importance and intensity of these factors in the ramp-up context. The 

complexity of the product and its process adds to the complexity and uncertainty of the ramp-up 

phase. The period 𝑡 allows possible adjustment of the planned production volumes according to 

the positioning within the ramp-up phase, e.g., beginning of the ramp-up (small volumes to partially 

meet the total demand), end of the ramp-up (stable production and high volumes to meet full 

demand).   

𝑝𝑖
𝑡 = 𝑠𝑖

𝑡 × 𝑃𝑡                (2) 

𝑒𝑖
𝑡 = ∑ 𝑑𝑖

𝑡
𝑖  | 𝑒𝑖

𝑡 ≤ 𝑝𝑖
𝑡                         (3) 

𝑠𝑖
𝑡 = 𝑔(𝐶𝑖, 𝑃𝑡 , 𝑡)       (4) 

Performance agent collects performance data at predefined points of time which can be defined by 

the developer or user. Total cost is calculated incrementally in a two-step procedure: first, summing 

up supply cost 𝑐𝑆
𝑡, production cost 𝑐𝑃

𝑡 , delivery cost 𝑐𝐷
𝑡 , and inventory holding cost  𝑐𝐼

𝑡, captured at 

recording period 𝑡 (Eq. 5), and the second, updating total cost 𝑐𝑇
𝑡  (Eq. 6).  

𝑐𝑡 = 𝑐𝑆
𝑡 + 𝑐𝑃

𝑡 + 𝑐𝐷
𝑡 + 𝑐𝐼

𝑡      (5) 



𝑐𝑇
𝑡 = 𝑐𝑇

𝑡−1 + 𝑐𝑡              (6) 

Average cost and lead-time are incrementally updated according to Equations 7 and 8, respectively. 

This allows us to keep track of the trend within these indicators.    

𝑐𝐴
𝑡 =

𝑐𝐴
𝑡−1+𝑐𝑡

2
           (7) 

𝑙𝐴
𝑖 =

𝑙𝐴
𝑖−1+ 𝑙𝑡

2
         (8) 

Sales associated with a given order 𝑠𝑡, equal the simple product of unit selling price of the variant 

𝑣, denoted as 𝑠𝑡
𝑣 and the quantity per order denoted as 𝑞𝑡

𝑣 (Eq. 9). Sales turnover 𝑠𝑇
𝑡  is updated 

incrementally by summing sales per orders (Eq. 10).   

𝑠𝑡 = 𝑠𝑡
𝑣 × 𝑞𝑡

𝑣       (9) 

𝑠𝑇
𝑡 = 𝑠𝑇

𝑡−1 + 𝑠𝑡      (10) 

Overall, the model for calculating indicators is purposefully simple as the focus of the current 

research is on the overall operations of the company rather than sophisticated models for specific 

activities at the shop-floor level. The model also covers a revenue perspective which is relevant to 

variety and ramp-up management as both tactical and strategic decisions depends not only on costs 

but also on expected revenues. In this sense, the model is complementary with existing research 

proposing structured approaches to address specifically detailed activities and focusing on 

operational performance.   
 

 

Figure 6. MAS Model Class Diagram 



4.5. MAS Implementation 

This step aims to support the implementation of the MAS by integrating requirements from the 

MAS development platform. Figure 6 reports on main agents’ operations derived from the activities 

described in the MAS analysis step. The development of the agent model was carried out to use 

the JADE (Java Agent Development Environment) platform for the implementation. JADE is a 

software framework supporting the development of agent applications consistent with the FIPA 

(Foundation for Intelligent Physical Agents) specifications for interoperable intelligent multi-

agents.51 Although several other commercial and open-source frameworks have been developed 

since then, JADE is still being widely used for several reasons. For instance, this open-source 

project offers a high degree of flexibility during the development of agents and MAS. Additionally, 

being consistent with FIPA standards plays a major role in the framework acceptance among users 

and communities. These features are among the drivers of the extensive use of JADE in the systems 

engineering and management, and operations management fields.52,53 Within JADE, messages are 

managed using the Agent Communication Language (ACL), message sending and reception is 

dealt with using SimpleBehaviour. Request and Confirm performatives are assigned to ordering 

and delivery confirmation messages, respectively. 

The main operations associated with the Customer agent relate to initialisation, order generation, 

and sending to the company. Customer operation is implemented through a SequentialBehviour 

comprised of an OneShotBehaviour for the initialisation and a TickerBehaviour for order 

generation. Initialisation allows, for instance, Customer agent to load data about the Bill-Of-

Material and possible product configurations as well as information about order arrival rate and 

quantities per order. Order generation refers to generating orders as per the initialized data 

specification. This allows for high flexibility in simulating various scenarios and strategies. 

Supplier agent has a limited set of operations consisting of receiving Company orders and sending 

the delivery confirmation after a given period of time.  

The Company agent has several operations, as shown in Figure 6, given its key role within the 

MAS. The initialisation allows the master data about production and product portfolio to be 

uploaded. These data include available variants (i.e., configurations), their Bill-Of-Material, 

process data, and other technical data. While initialisation is ensured by OneShotBehaviour, the 

remaining operations are implemented through a ParallelBehaviour. Order Processing is 



implemented through a CyclicBehaviour making it possible to continuously check incoming 

customer order queues. Order Processing checks the feasibility of the order and then calculates 

material requirements. The other operations, except sending and receiving messages, are 

implemented through TickerBehaviours. Production agent operations are limited to scheduling the 

order, preparing the order, and confirming to Company. Orders are scheduled using a simple First 

In, First Out (FIFO) rule upon updating the production load. The updated production load is used 

afterwards in a WakerBehaviour representing the production time. A confirmation is sent to the 

Company upon completing the production order. Performance agent has access to cost, lead-time, 

and inventory level indicators. Its main operations include recording performance and tracking 

simulation time. Recording performance is implemented through a TickerBehaviour allowing 

performance indicator values to be recorded at given points of simulated time. The Performance 

agent is responsible for terminating the simulation according to the pre-specified simulation 

horizon. 

5. Illustrative Case in the Furniture Industry Sector 

In this section, we present a prototypical implementation and evaluation of the developed MAS in 

the form of a case study. The objective is to illustrate the applicability of the developed MAS in 

industry. 

5.1. Case Company Selection and Overview 

The case study was selected based on its fit with the requirements of the developed MAS 

methodology and the possibility of evaluating the developed MAS. In essence, the case study aligns 

with the proposed MAS objective to support the assessment of ramp-up management strategies.  

To remain consistent with the scope of the current research, a multi-variant production context is 

required as part of the case study. Priority target companies are SMEs (Small and Medium-sized 

Enterprises) which traditionally require more decision-making support on the strategic and tactical 

levels. The furniture industry is among the suitable candidates that meet these requirements. This 

sector is growing due to favourable market trends and prevailing lifestyles. In the kitchen furniture 

sector, for instance, customization and high variety are two main features that customers demand, 



and many manufacturers are offering today. This presents a major challenge for companies to 

achieve their objectives concerning “time-to-market” and “time-to-volume”.  

The selected case company for our study is a kitchen furniture manufacturing SME located in 

Europe that supplies a wide range of markets ranging from mid-range to luxury kitchens. With 

regards to their product offering, the basic components are the kitchen cabinets. Additional 

accessories are supplied by several partners of the company and generally do not pose a particular 

challenge with regards to ramp-up. Therefore, the focus of our study will be placed on the different 

variants of kitchen cabinets that are offered by the company. A competitive advantage of the 

selected case company is the opportunity to easily customize kitchen cabinet sizes.  

The company’s portfolio includes luxury and highly customized kitchens, produced on Engineer-

To-Order (ETO) basis, and medium-range kitchens, produced on Make-To-Order (MTO) basis. 

The case study involves six variants of the kitchen cabinet with different sizes, belonging to 

medium range kitchens. This scope was purposefully defined in order to (i) show how a limited 

variety and complexity can impact the performance, and (ii) to keep the focus on the illustration of 

the assessment of production ramp-up management strategies.  

Table 3 shows the list of variants and their selling prices - the variants are ordered according to 

their sizes, with five being the biggest cabinet model. Hourly production costs amount to 

approximately €56 while the cost per delivered order is about €40. The average lead-time (in days) 

of the production, delivery, and supply is about 0.04, 1 and 3, respectively. Order costs amount to 

€50 and the stock holding ratio is about 3%. In order not to lose focus, detailed parameters of 

inventory management will not be discussed. These parameters will not be changed among the 

simulation scenarios. The default demand profile follows a normal distribution with a mean of 10 

and a deviation of 5.   

Table 3. Selling Prices 

Variant Selling Price (€) 

0 550 

1 500 

2 350 

3 400 

4 600 

5 650 



The MAS was implemented in Java language using the eclipse platform with the JADE plugins. 

Simulations are run using an Intel Core i5, 2.30 GHz. A simulation run to simulate the supply chain 

for one year takes 20 seconds. A time conversion ratio is used to convert the real-time into system 

time (e.g., one day is equivalent to 40 milliseconds). The frequency for recording performance data 

by Performance agent is based on the conversion ratio (e.g., if performance data need to be 

recorded every week, then Performance agent will proceed with recording every 200 milliseconds 

(5 x 40 milliseconds, assuming that a week is five working days)). Figure 7 presents an excerpt of 

the sniffer agent which depicts interactions among Company, Customer, Production, and one 

supplier (Supplier14), during a short period of the simulation time.  

 

 

Figure 7. MAS Interaction During Run-time 

5.2. Simulation Results 

To support a production ramp-up management strategy selection, two basic scenarios were defined 

in the first place. The first scenario involves a High-Volume-Low-Mix (HVLM) strategy, and the 

second scenario represents a Low-Volume-High-Mix (LVHM) strategy. In the HVLM scenario, 

the offering consists of variants 2 and 3 which are the most standard and cost-efficient ones. 



Production is assumed to be equally shared between these variants. In the LVHM scenario, all 

variants are included in the offering with the following shares: 10% for each of variants 0 and 6, 

and 20% for each of the other variants. In the second scenario, the total production is reduced in 

order to respect capacity constraints. This is because the average production lead-time increases by 

20% when all variants are included in the offering. The idea is to evaluate different alternatives for 

the same total capacity. This is also in line with past research.53 Each of the two simulation runs 

covers a one-year horizon. 

The results of the simulations are referred to by HVLM and LVHM in Figure 8. At first glance, it 

can be seen that the company could perform well when pursuing an HVLM strategy during the first 

year, with a higher sales turnover and €236 K profit. By contrast, the LVHM strategy leads to lower 

sales turnover and lower profit, with a decrease of 10 to 20%. This is down to the decrease in 

productivity given the higher complexity associated with variants 0, 1, 4, and 5 which require a 

higher production lead time and induce higher costs. 

It was decided to increase selling prices when adopting an LVHM strategy to be consistent with 

the prevailing logic in businesses offering higher variety and customization. This third simulation 

scenario is referred to as LVHM-P where selling prices are increased by 6%. Figure 8 shows that 

although sales turnover is still lower than the HVLM scenario, the profit is 10% higher in this 

LVHM-P scenario. This indicates the relevance of pursuing an HVLM strategy while revising 

selling prices to enhance the economies of scope. This is evidenced further by the rate of return, 

which climbs from 0.54 in the HVLM scenario to 0.61 in LVHM-P. 

 



       

Figure 8. Economic Performance Results 

While the case study informs the decision-maker about the expected costs and benefits of ramp-up 

strategies, no definite preference emerges immediately as to which strategy is more appropriate for 

a given scenario. In fact, the decision depends on several strategic, tactical, and operational factors. 

At a strategic level, whether the company enters the market as an innovator or achieves economies 

of scale through cost efficiency is a critical factor when selecting a suitable production ramp-up 

strategy. Furthermore, factors such as customer willingness to pay in case of increased prices, and 

the usefulness of offering variety, are to be taken into account. At the tactical and operational levels, 

the decision on which strategy to pursue depends on internal variety-induced complexity, and thus, 

on cost and lead-time, production capacity, resource availability, and human capital qualification, 

just to name a few. This finding aligns with past research highlighting that HVLM and LVHM are 

equally distributed among most companies’ strategies. 

6. Discussion 

Today’s manufacturer faces many challenges stemming from changing customer demands, such as 

the provision of personalized products with similar efficiency and time to market as mass-produced 

standard products. Providing support in addressing these challenges is of critical importance for 

many companies, especially SMEs. Ramp-up management is understood as a critical factor to meet 

this challenge as it focuses specifically on the transition phase from product development to stable 
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production. In this regard, theoretically sound, yet practice-oriented interdisciplinary research is 

required to address these challenges holistically. 

To address this research gap, our paper expands ramp-up management through frameworks 

relevant to the current business context, which is shaped by overwhelming complexity. In 

particular, this paper underlines the relevance of MAS to support decision making in ramp-

up management. This is further reinforced by the conducted literature analysis and the 

presented illustrative case study. With the MAS design method detailed in Section 4 and 

illustrated by a case study, the paper lays a foundation for further investigation and 

development to unleash MAS’ benefits for ramp-up management in multi-variant production 

environments. Compared to existing MAS applied to supply chain and operations management 

fields, the current proposal is consistent with the idea of aligning operations management with 

customer demands. This allows the integration not only of costs, but also potential profits 

associated with different ramp-up strategies in a holistic cost-benefit analysis. This idea is 

implemented in the MAS through an order management system based on a make-to-order strategy 

triggered by customer orders, which are generated according to different market scenarios. By 

doing so, it becomes possible to adapt ramp-up strategies to production capacity but also and most 

importantly to demand profiles (e.g., adapting production volumes and product mix). Furthermore, 

unlike most of the existing models, our proposed MAS relies on a comprehensive modelling of the 

supply chain spanning from end customer (order generation) to suppliers and detailing focal 

company operations. This limits, to some extent, simplified hypotheses, for example, concerning 

customer demand, delivery, supply activities, and so on, by extending the scope of the MAS, thus 

enhancing consistency of results. In order to enhance consistency, a performance role is designed 

and dedicated to tracking costs and sales data during a simulation. Finally, with our comprehensive 

yet simple model, we offer higher development flexibility and adaptation potential.  

In line with the need for practical and reusable approaches, we elaborated on a design method for 

MAS, illustrate this with a simple MAS supporting ramp-up and operations management, and apply 

the MAS to a case company in the furniture sector, thereby offering valuable insights for decision-

makers in ramp-up management. As such, our paper contributes to decision-making in different 

ways: reusable MAS development method, reusable tool, and first validation. All three 

contributions support an ultimate managerial implication consisting of increased awareness of 



decision-makers of the ramp-up phase and enabling more informed decisions about ramp-up 

management. The proposed MAS informs decision-makers of potential impacts on the economic 

performance of different production ramp-up strategies, particularly when dealing with different 

product variants. The guidance of the decisions is two-fold; first, it allows to oversee different 

scenarios according to the company operation environment and internal policies, and second, it 

allows to fine-tune the production ramp-up strategy before its implementation, e.g., defining a 

range for selling prices, establishing the product mix, etc. 

The MAS developed, presented, and tested in this paper helped to derive multiple valuable 

insights for the use of MAS in the field of ramp-up management and opened several new 

research directions. These can be categorized into MAS improvement and MAS extension. 

Regarding MAS improvement, three main areas were identified: risk management, 

interactions, and negotiation. In fact, all agents’ behaviours can be supplemented with new 

functionalities, and more sophisticated mathematical models can be easily implemented. Yet, 

the main challenge involves the identification and modelling of risk factors. Furthermore, the 

interactions between the agents can be reinforced to enable fine-tuning of agents’ strategies 

using indicators calculated during run-time (e.g., feedback loops between Performance agent 

and Company agent). Finally, agents’ responsibilities can be expanded by implementing 

negotiation protocols at inter-enterprise and intra-enterprise levels. The negotiation has 

shown efficacy concerning performance improvement in several application contexts. 30       

Several perspectives can be identified regarding the MAS extension, such as addressing different 

production ramp-up stages and supporting the decision-making process on ramp-up curves.6 A 

potential benefit of this extension is the clear definition of how the product development overlaps 

with the production phase and, most importantly, how to progressively get to a stable production 

process reaching the production ceiling. Additionally, although capacity is taken into account in 

the current case study, the link between product variety-induced complexity and the overall 

production capacity is based on hypotheses. A potential future research perspective might involve 

modelling this link through analysing the impact of complexity on capacity planning. 

Furthermore, based on current research, multi-variant production ramp-up management can be 

supported by two possible pathways using a MAS approach: The first pathway addresses 

production ramp-up management through a combined digital factory and Cyber-Physical 



Production System (CPPS) approach using smart data for production planning, control, and 

troubleshooting. This data-driven approach aligns with the Industry 4.0 paradigm and supports the 

development of more flexible and agile smart manufacturing systems. Examples might include 

software agents, represented by interoperable information systems, supporting the vertical and 

horizontal integration of information for production planning and control; machine agents, 

represented by smart machines, reducing downtime and troubleshooting efforts (e.g., time and 

other resources) due to their ability for self-diagnosis, self-calibration, and prognosis abilities. The 

second pathway addresses product variety management through a product-centric production 

control approach enabled by the product agents, represented by smart products, which shift 

production control from Programmable Logic Controllers (PLCs) to a service-oriented and 

decentralized production control system enabled by the digital memory of a smart product. This 

digital memory will store all the necessary information for the manufacturing of a specific product 

(e.g., pharmaceutical, aerospace, etc.), allowing the product agent to have full control of the 

individual product’s manufacturing process. The product agent will communicate autonomously 

with the different smart manufacturing systems’ resources in the production line, named machinery 

agents, to negotiate its production plan in response to the delivery time agreed with the customer. 

A product-centric production control approach can then increase the flexibility of the smart 

manufacturing system for small production runs and mass-customized and/or mass-personalized 

products. This trend can benefit from the synergies with Industry 4.0 tools such as 3D printing and 

ultimately support a more efficient ramp-up management. 

7. Conclusions 

Industry 4.0 is reviving several concepts and research topics by integrating established and new 

methods and technologies in ways previously unheard of. Therefore, new opportunities for 

improving a firm’s agility within its rapidly changing environment are being uncovered. More 

specifically, tools and methods for managing product/production variety and ramp-up reached a 

ceiling at some point in the past. The appealing concept of smart manufacturing systems within the 

set of Industry 4.0 tools is opening up new perspectives to efficiently meet customized demands 

with small-lot-size production. For instance, MAS exhibits the potential to easily and smoothly 

integrate intelligence embedded in software agents into physical systems while taking advantage 

of sensing and data processing technologies.  



This paper supports this momentum through a twofold structured design method and a MAS that 

supports the definition and fine-tuning of a robust ramp-up management strategy. The design 

method is detailed and illustrated through a MAS to facilitate transparency and reusability. The 

newly designed and developed MAS features high flexibility through implementing and adapting 

pre-defined behaviours. The results from the illustrative case study indicate its relevance to 

decision-makers during the ramp-up phase. 

However, these opportunities come also with challenges, such as the complexity of projects in this 

area. In fact, cross-disciplinarity is a key requirement for a team that wishes to integrate different 

methods and technologies, for example, MAS, production management, product and process 

design. Therefore, it is not just different skills that are required, but most importantly, multi-skills 

should be acquired through innovative and better-adapted practices such as blended learning. 

Moving forward, the proposed approach needs to be tested in more complex supply chain scenarios 

to better understand the challenges of operationalizing it in industry and the limitations of the 

simulation when faced with a more complex scenario. 
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