
HAL Id: emse-03245752
https://hal-emse.ccsd.cnrs.fr/emse-03245752v1

Submitted on 2 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exception Handling in Multiagent Organizations:
Playing with JaCaMo

Matteo Baldoni, Cristina Baroglio, Olivier Boissier, Roberto Micalizio,
Stefano Tedeschi

To cite this version:
Matteo Baldoni, Cristina Baroglio, Olivier Boissier, Roberto Micalizio, Stefano Tedeschi. Exception
Handling in Multiagent Organizations: Playing with JaCaMo. 9th International Workshop on Engi-
neering Multi-Agent Systems, EMAS 2021, May 2021, Londres, United Kingdom. �emse-03245752�

https://hal-emse.ccsd.cnrs.fr/emse-03245752v1
https://hal.archives-ouvertes.fr

Exception Handling in Multiagent Organizations:
Playing with JaCaMo

Matteo Baldoni1, Cristina Baroglio1, Olivier Boissier2,
Roberto Micalizio1, and Stefano Tedeschi1

1 Università degli Studi di Torino - Dipartimento di Informatica, Torino, Italy
firstname.lastname@unito.it

2 Laboratoire Hubert Curien UMR CNRS 5516, Institut Henri Fayol, MINES
Saint-Etienne, Saint-Etienne, France

Olivier.Boissier@emse.fr

Abstract. Agent organizations offer powerful abstractions to build dis-
tributed systems. Current models, however, lack of a systematic way to
address exceptions as part of their design. Thus, exception handling is
usually approached by ad-hoc solutions, that hamper code modulariza-
tion and decoupling. We present an extension of the organizational model
and infrastructure adopted in JaCaMo, that explicitly encompasses the
notion of exception as a first-class element in the design of an orga-
nization. Relying on such a model, we propose an exception handling
mechanism that is seamlessly integrated with organizational concepts,
such as responsibilities, goals and norms.

Keywords: Exception Handling · Multi-Agent Organizations · Respon-
sibility · JaCaMo

1 Introduction

Multiagent Systems (MAS) are widely used for the design and development of
distributed, autonomous systems, characterized by multiple autonomous threads
of execution that run in parallel, interact and coordinate with each other.

Several design methodologies and programming platforms that have been
proposed in the field are grounded on the metaphor of organization. Key features
of many organizational models (see e.g., [5, 6, 4, 7, 21]), are a functional decompo-
sition of the organizational goal and a normative system. The functional decom-
position defines how a complex goal can be decomposed into simpler sub-tasks,
and allocates them to roles. By adopting roles in the organization, agents acquire
responsibilities and duties they can discharge by performing tasks. Norms shape
the scope of the responsibilities that agents take when joining the organization,
capturing what they should do to contribute to the achievement of the organi-
zational goal [9, 32, 33]. In particular, they coordinate the distributed execution
by notifying the agents –by way of obligations– when tasks, that are in those
agents’ responsibilities by virtue of their participation to the organization, must
be performed. Since agents are autonomous, Multiagent Organizations (MAO)

2 M. Baldoni et al.

rely on sanctions to persuade them to achieve the organizational goals. Knowl-
edge about possible sanctions, indeed, can be used in the deliberation process by
which the agents decide which goals to pursue. An agent can decide to violate
a norm (e.g., not discharge an obligation) when the sanction associated with
the violation is balanced by the possible achievement of another goal of greater
interest to the agent.

In this vision, norm violation is always the consequence of a deliberate de-
cision by some agent. What is not considered is that the achievement of an
organizational goal might be hindered by exceptional conditions, that are out
of the agent’s control. Sanctioning the agent, in this case, would not help the
organization to get the job done.

What current MAO models lack is a systematic mechanism for treating ex-
ceptions as part of their design. Roughly speaking, exception handling amounts
to equipping a system with the capabilities needed to tackle classes of abnor-
mal situations, identified at design time. An exception is an “event that causes
suspension of normal program execution” [1]. Therefore, the purpose of an excep-
tion handling mechanism is to provide the tools to (i) identify when an exception
occurs, and (ii) apply suitable handlers, capable of treating the exception and
recover. Thus, when an exception breaks the normal flow of execution, a pre-
defined exception handler is executed to manage the specific situation. On its
completion, the execution is possibly directed back to the normal flow of the
program. Raising an exception is a way to signal that a given piece of the pro-
gram cannot be performed normally; whereas, handling an exception refers to
the set of instructions to be performed to restore the normal execution flow [10].

In this paper we show how an exception handling mechanism can be ob-
tained within a MAO. Intuitively, besides the responsibilities about the tasks in
the functional decomposition, we propose to specify also the tasks and responsi-
bilities for managing exceptions, that is, for raising and handling them. Agents
will take on these responsibilities as soon as they enact roles in the organization,
as usual. We show how this mechanism can be grafted on the normative system
of a MAO, and its advantages in terms of increased robustness in the execution.
Specifically, we show how to introduce exception handling in the well-known Ja-
CaMo multi-agent platform [5], integrating it both at a conceptual level, within
the high-level abstractions that are provided by the model of JaCaMo’s organi-
zational component, and at a software level, by enriching its infrastructure.

2 Exception Handling is a Responsibility

The need of treating exceptions emerges from the desire of structuring and modu-
larizing software, separating concerns into independent components that interact
with each other. The seminal work by Goodenough on exceptions in program-
ming languages [10–12], points out how exceptions allow the user of an operation
to extend the operation domain (the set of inputs for which effects are defined),
or its range (the effects obtained when certain inputs are processed). They allow
the invoker tailoring an operation results or effects to the particular purpose

Exception Handling in Multi-Agent Organizations: Playing with JaCaMo 3

for which the operation is used, thus making them usable in a wider variety
of contexts than would otherwise be the case. Consequently, an exception full
significance is known only outside the detecting operation: the operation is not
permitted to determine unilaterally what is to be done after an exception is
raised. The invoker controls the response to the exception, that is to be ac-
tivated. This increases the generality of an operation because the appropriate
“fixup” will not be hard-coded inside the operation itself but, rather, it will vary
from one use to the next, depending on the invoker’s objectives. To make this
possible the invoker should be provided with information about the failure.

Notably, the actor model [16] reflects this vision. Here, all computational
entities are modeled as independent actors, communicating with others through
message passing. In Akka3, one of the most popular actor model frameworks
[14, 13], actors are organized into a supervision hierarchy, which forms the basis
of Akka’s exception handling model. Specifically, actors are always created as
children of some other existing actor, which supervises them and manages their
lifecycle. The rationale is to break the task to perform down into sub-tasks to the
point where each sub-task becomes simple enough to be performed by one single
actor. Parent actors allow the composition of the sub-tasks, that are performed
by their children, so as to meet the overall system objectives. Each time an actor
faces a failure during the execution of a task, it can notify an exception to its
parent actor, which, in turn, either implements suitable supervision strategies,
or escalates the exception to its own parent. Paralleling Goodenough’s vision,
it is easy to see a parent actor as an operation invoker and a child actor as the
invoked operation. This supervision technique can be conceived as a way to move
the responsibility of handling an exception from the component that fails [13]
to the one that, having delegated the sub-tasks, can determine the impact of a
specific failure of one of them onto the concurrent execution of the others.

This perspective brings forward two important aspects of exception handling.
First, it always involves two parties: a party that is responsible for raising an
exception, and another party that is responsible for handling it. Second, it cap-
tures the need for some information/account from the former to the latter that
allows coping with the exception.

Now, coming to MAS, we can observe that software structuring, modular-
ization, and separation of concerns are brought to an extreme – agents are au-
tonomous and less strictly coupled than in the actor model. Still the agents need
to cooperate and they rely on one another to pursue their aims. So, it may
well happen that an agent’s failure in achieving some result has an impact on
the tasks carried out by other agents. In this context, however, despite a few
attempts [31, 24, 26, 15], exception handling – as postulated by Goodenough –
has never been applied. Broadly speaking, what MAS currently lack is a clear
distribution of responsibilities among agents for raising and handling exceptions.
Indeed, a substantial difference between MAS and Actors is that agents are not
structurally bound by parent-child relationships. Thus, when an agent meets a
failure, it cannot easily determine which other agent could handle the related

3 https://akka.io/.

4 M. Baldoni et al.

exception. The agent that failed may ask the other agents but, due to auton-
omy, it would not be guaranteed that its request would ever be considered. The
other agents, that are endowed with the right abilities, may prefer to achieve
some other goal, and, in general, the system will not provide the means for per-
suading them to act otherwise. Multiagent Organizations (MAO) could provide
the structure we need. Since MAOs, in essence, are built upon responsibilities,
we claim that MAOs are naturally suited to encompass an exception handling
mechanism.

In a MAO, each agent has only a partial view of the organizational goal,
whose achievement is distributed among the agents. The normative system en-
ables the orchestration of the activities by generating obligations according to
some functional decomposition; obligations notify agents they should pursue cer-
tain goals. Of course, agents may fail, causing the suspension of the achievement
of the organizational goal. When this happens, a normative system would typ-
ically issue a sanction to the agent that failed, because failure is ascribed to a
misconduct of the agent. It is not possible for the agent to notify the impossibil-
ity to carry out its task due to external reasons. So, the limit of MAOs is that
typically they are not accompanied by exception handling mechanisms that are
oriented towards recovery.

We claim that the concept of responsibility not only allows modeling the
duties of the agents in relation to the organizational goal, but that it also enables
the realization of mechanisms for raising and handling exceptions that occur
within the organization operation. When agents join an organization, they will
be asked to take on also the responsibilities: 1) for providing accounts about the
context where they detected exceptions, while pursuing organizational goals,
and 2) if appointed, for handling such exceptions once the needed information
is available. Responsibilities, thus, define the scope of the exceptions, expressed
with respect to the organizational state, that agents ought to raise or handle.

In the following section we illustrate how to realize such a picture in JaCaMo.

3 Exceptions in JaCaMo

JaCaMo [5] is a conceptual model and programming platform that integrates
agents, environments and organizations. Moise [22, 21, 20] implements the or-
ganization programming model. It comprises a structural dimension, specifying
roles and groups, a functional dimension, including a set of schemes that cap-
tures how the organizational goals are decomposed into sub-goals, grouped into
missions, and a normative dimension binding the previous two. Agents playing
roles, in fact, are held to explicitly commit to missions, i.e., taking responsibility
for mission goals.

3.1 Accommodating Exceptions in the Conceptual Model

Figure 1 shows the conceptual model of JaCaMo extended with some new con-
cepts (in green) required to accommodate exceptions and their handling. We

Exception Handling in Multi-Agent Organizations: Playing with JaCaMo 5

Agent LevelOrganizational Level

1

1

Exception Spec
type

1 1

1

1

Notification Policy
must-notify-when

0..1

1

0..n

1

0..n

Recovery
Strategy

1 1
Catching Goal

commit/leave

Handling Policy
condition

achieve/fail

create/delete

create/delete

adopt/leave

concept mapping

subgoal

Mission
(Responsibility)

Throwing Goal

Goal

Internal
Goal

Agent

subgroup

Norm

Scheme

RoleGroup

Organization

Fig. 1. Conceptual model of a JaCaMo organization extended for exception handling.

propose to enrich the schemes and missions of the functional specification of a
JaCaMo organization with the following new concepts4:

Recovery Strategy encodes when and how a given exception is to be raised
and handled within the organization. Its role is to relate the raising of an
exception to the agent in charge of handling that exception. It includes a
notification policy and one or more handling policies. A scheme may include
several recovery strategies, each one addressing a specific exception that can
possibly be raised during the execution of the scheme.

Notification Policy specifies when the exception must be raised. It is charac-
terized by a condition (must-notify-when) denoting the state of the world
corresponding to the exceptional situation that deserves to be signaled. A
notification policy is also directly associated with a goal, representing the
object of the exception (i.e., the goal that could not be completed), and
with a throwing goal, that is enabled when must-notify-when holds.

Throwing Goal denotes the organizational goal of raising the exception.
Exception Spec encodes the kind of information to be produced by the agent

raising the exception.
Handling Policy specifies a way in which the exception must be handled. It is

characterized by a condition expressing the state of the world in which the
policy is applicable and it is associated with a catching goal.

Catching Goal captures the course of action to follow for handling the excep-
tion and possibly remediate. The aim of its achievement is to restore the
normal execution after an exception is raised.

Throwing goals and catching goals are special kinds of goal specification.
They are incorporated into missions just like standard goal specifications are.

4 The full code of Moise extended with exception handling, together with some exam-
ples, is available at http://di.unito.it/moiseexceptions.

6 M. Baldoni et al.

As a result, missions provide also the means for distributing those responsibil-
ities, that concern the management of exceptional situations. Policies, in turn,
delimit the scope of such responsibilities, specifying when and how they are to
be discharged.

3.2 Accommodating Exceptions in the Normative Program

The normative dimension of a JaCaMo organization is specified in NOPL (Nor-
mative Organization Programming Language) [17–19]. This language allows a
programmer to specify the norms regulating the distribution of responsibilities
among the roles. At runtime, a dedicated engine interprets the normative pro-
gram and generates obligations, and possibly sanctions, depending on what the
agents do in the organization.

A NOPL program is composed of: (i) a set of normative facts (that can
change dynamically during the execution), (ii) a set of inference rules, and (iii)
a set of norms. Norms have the form: id : φ→ ψ; where id is a unique identifier,
φ is a logical formula denoting the activation condition for the norm, and ψ is
the consequence of the norm activation. ψ can either be a failure or the emission
of an obligation directed towards an agent and concerning a state of the world
the agent ought to bring about. To accommodate exceptions, we extended the
normative program so as to properly handle the concepts introduced in Section 3.
Specifically, we added the following facts.

recoveryStrategy(RS) denoting a recovery strategy with id RS.
notificationPolicy(NP,Condition) encoding a notification policy with id NP;

Condition is a logical formula representing the must-notify-when condition.
handlingPolicy(HP,Condition) capturing that there is a handling policy with

id HP which can be applied when the condition Condition holds.
strategy_policy(RS,P) encoding that a policy P belongs to a recovery strategy

RS.
policy_goal(P,G) specifying the relation between a goal G and the policy P.

Depending on the kind of policy (either a notification or a handling one),
the goal will be a throwing goal or a catching goal.

exceptionSpec(E) encoding an exception specification with id E.
policy_exceptionSpec(P,E) denoting that the exception specification E is de-

fined within the scope of a notification policy P.
exceptionArgument(E,Arg) denoting that the exception specification E encom-

passes an argument Arg – a first order predicate, possibly not ground.

While the previous facts reflect the extended conceptual model, the following
ones are used to capture dynamic changes occurring during the execution.

failed(S,G) denotes a failure occurred while pursueing goal G in scheme S.
released(S,G) denotes that goal G has been released. The execution of the

scheme S can proceed because G is not of interest anymore.

Exception Handling in Multi-Agent Organizations: Playing with JaCaMo 7

thrown(S,E,Ag,Args) denotes an exception thrown by agent Ag, compliant to
the exception specification E; Args is a list of arguments, i.e., a set of ground
predicates having the same structures of the arguments that are specified by
exceptionArgument(E,Arg) for exception E.

All these new facts are used in rules and norms, that are specifically devised
for raising and handling exceptions. In particular, rules allow defining when to
enable throwing and catching goals, on the basis of the policy they belong to.
For instance, for throwing goals we have defined the following rule.

1 enabled(S,TG) :- policy_goal(P,TG) &
2 notificationPolicy(P,Condition) & Condition &
3 goal(_, TG , Dep , _, NP , _) & NP \== 0 &
4 ((Dep = dep(or ,PCG) & (any_satisfied(S,PCG) |
5 all_released(S,PCG))) |
6 (Dep = dep(and ,PCG) & all_satisfied_released(S,PCG))).

A throwing goal TG must be enabled as soon as the Condition, defined for the
policy it belongs to, holds, provided that its dependencies (preconditions) are
satisfied. dep(...) is a built-in NOPL predicate that encodes the dependencies
of a given goal, i.e., the other goals that must be achieved before the goal can
be pursued. Dependencies are obtained from the functional decomposition.

For catching goals an analogous rule applies.

1 enabled(S,CG) :- policy_goal(HP,CG) &
2 handlingPolicy(HP ,Condition) & Condition &
3 recoveryStrategy(ST) & strategy_policy(ST,HP) &
4 strategy_policy(ST,NPol) & policy_exceptionSpec(NPol ,E) &
5 thrown(S,E,_,_) & policy_goal(NPol ,TG) &
6 satisfied(S,TG) &
7 goal(_, CG , Dep , _, NP , _) & NP \== 0 &
8 ((Dep = dep(or ,PCG) & (any_satisfied(S,PCG) |
9 all_released(S,PCG))) |

10 (Dep = dep(and ,PCG) & all_satisfied_released(S,PCG))).

Similarly to throwing goals, a catching goal is enabled if the condition speci-
fied in the policy it belongs to holds, and if the precondition goals are satisfied.
We additionally require that an exception has actually been raised, and that the
corresponding throwing goal be satisfied. In this way, we ensure that the agent
in charge of handling the exception (i.e., the one to whom the catching goal is
assigned), is able to take advantage of the information provided by way of the
throwing goal.

Notably, agents are asked to pursue throwing and catching goals by means
of the standard built-in norms for goal achievement. We added some further
regimented norms to ensure consistency. For instance, the following norm ensures
that an exception can only be thrown if the condition of the corresponding
notification policy holds, i.e., when an exceptional situation actually occurs.

1 norm exc_condition_not_holding:
2 thrown(S,E,Ag ,Args) & exceptionSpec(E) &

8 M. Baldoni et al.

3 policy_exceptionSpec(NP,E) &
4 notificationPolicy(NP,Condition) &
5 policy_goal(NP ,TG) & not (Condition | satisfied(S,TG))
6 -> fail(exc_condition_not_holding(S,E,Ag,Condition)).

At the same time, it is important to ensure that only the designated agents
can throw exceptions. The norm inhibits the throwing of exceptions by agents
that have not committed to the mission which encompasse the corresponding
throwing goal.

1 norm exc_agent_not_allowed:
2 thrown(S,E,Ag ,Args) & exceptionSpec(E) &
3 mission_goal(M,TG) & policy_exceptionSpec(NP,E) &
4 policy_goal(NP ,TG) & not committed(Ag,M,S)
5 -> fail(exc_agent_not_allowed(S,E,Ag)).

3.3 Accommodating Exceptions in the Artifacts

In JaCaMo, the environment shared by the agents, from a same organization, is
realized through a set of artifacts, upon which the agents can operate. We en-
riched a specific class of artifacts, for scheme management, to allow the interpre-
tation of our extended normative program. Furthermore, we included three ad-
ditional operations, available to the agents. The first operation, goalFailed(G),
allows agents to signal the occurrence of an exception, i.e., the failure of the ful-
fillment of one of the agent’s responsibilities. Through such an operation, a fact
failed(S,G) is added in the artifact state, enabling the triggering of new obliga-
tions for raising and handling the exception. Operation throwException(E,Args),
in turn, allows the agents in charge of raising an exception. Specifically, by means
of this operation, an agent can provide information about the context in which
the exception occured. Finally, goalReleased(G) allows the appointed agents
to notify the organization that an exception was handled. This allows resuming
the process aimed at the achievement of the organizational goal, which would,
otherwise, remain stuck. It is worth noting that releasing a failed goal is just
a possibility. For instance, the handling agent could decide to retry its achieve-
ment by resetting it, after the restoration of a consistent context. Of course, the
choice for the best way to handle an exception is a responsibility of the agent
that should handle it.

4 Programming Agents with Exceptions: an Example

As already noted, in JaCaMo an agent enacting a role has to take on the re-
sponsibility of accomplishing certain goals by committing to given missions. This
responsibility assumption can help agent programming. In principle, an agent
program should allow discharging all of the agent’s responsibilities; to this aim,
an agent, playing a role, should be endowed with plans for satisfying each kind
of obligation it could receive as role player.

Exception Handling in Multi-Agent Organizations: Playing with JaCaMo 9

The proposed exception handling mechanism follows this approach. The en-
tire management of an exception, from its raising to its handling, is represented
by means of goals, grouped into recovery strategies. When agents want to play
roles in some organization, they are asked to take on responsibility not only
for some missions, but also for some related recovery strategies. This makes the
mechanism of exceptions completely transparent to the programmer, which will
only need to know the responsibilities the agent is expected to discharge,

To illustrate, let us consider the house building example, originally introduced
in [5], where an organization aims at building a house on a plot in a dynamic
environment. Robustness, thus, becomes a critical feature of the organization,
that has to coordinate multiple companies (i.e., agents) in charge of the various
sub-goals, some of which can be executed in parallel, while others can only be
executed in sequence. In such a construction scenario, exceptions are likely to
occur: agents may fail to discharge their responsibilities for a wide number of
reasons, and such failures could impact the organization as a whole.

4.1 Handling Goal Failure Exceptions

Let us consider goal site_prepared, which must be completed before any other
step. Should the agent, which is in charge of it, face a failure, the whole house
construction could not proceed. To make the organization robust against this
eventuality, the programmer can extend the functional specification of the orga-
nization with the following recovery strategy.

1 <recovery -strategy id=" rsSitePreparation">
2 <notification -policy id="np1">
3 <condition type="goal -failure">
4 <condition -argument id=" target"
5 value=" site_prepared" />
6 </condition >
7 <exception -type id=" site_preparation_exception">
8 <exception -argument id=" errorCode" arity ="1" />
9 </exception -type >

10 <goal id=" notify_site_preparation_problem" />
11 </notification -policy >
12 <handling -policy id="hp1">
13 <condition type=" always" />
14 <goal id=" handle_site_problem">
15 <plan operator =" parallel">
16 <goal id=" inspect_site" />
17 <goal id=" notify_affected_companies" />
18 </plan >
19 </goal >
20 </handling -policy >
21 </recovery -strategy >

Listing 1. Recovery strategy targeting the failure of site_prepared.

10 M. Baldoni et al.

house built

site

prepared
[1 week]

floors

laid
[4 days]

walls

built
[2 weeks]

roof

built
[4 days]

windows

fitted
[2 days]

doors

fitted
[2 days]

plumbing

installed
[6 days]

electrical

system

installed
[2 days]

exterior

painted
[1 week]

interior

painted
[4 days]

notify site

problem
[1 day]

inspect site
[3 days]

notify

affected

companies

goal-failure

site preparation exception
• errorCode

notification policy handling policy

site prep contractor

engineer

house owner

Fig. 2. Functional decomposition of the house building organizational scheme extended
with the recovery strategy targeting the failure of site_prepared.

Notification policy np1 specifies that, should a goal failure concerning site_
prepared occur (see the condition at Lines 3-6), the throwing goal notify_site_
preparation_problem should be enabled. Its purpose is to make the agent, that
is responsible for it, provide the information that is needed for recovery. To this
end, an exception type site_preparation_exception (Lines 7-9), specifying an
errorCode, is defined. The handling policy hp1, in turn, encodes what needs to
be done to solve the site preparation exception, after it has been raised and the
error code was provided. In this case, the catching goal is composite (Lines 14-
19): the site should be inspected and the other companies involved in the house
construction should be notified. It is worth noting that the agents in charge of
these goal will likely leverage the information provided. So, for instance, site
inspection will be performed differently, depending on whether the error code
denotes a flooding or the finding of archaeological remains.

Figure 2 illustrates the functional decomposition of the house building organi-
zational scheme, extended with the recovery strategy presented above. Agents,
that are responsible for some goals, are highlighted in red. Specifically, house
owner has the responsibility for goal notify_affected_companies. An engi-
neer, instead, is responsible for inspect_site: according to the raised excep-
tion, the result of the inspection, and its expertise, such an agent will deliberate
the most appropriate countermeasures. Finally, a site prep contractor, in charge
of site_prepared, is responsible for raising an exception by accomplishing goal
notify_site_preparation_problem, when needed.

Having extended the organization specification with a recovery policy for
site_prepared, we can now focus on how agents can be programmed. Listing 2
shows an excerpt of a possible implementation of the site prep contractor agent.

1 +obligation(Ag,_,done(_,site_prepared ,Ag),_)

Exception Handling in Multi-Agent Organizations: Playing with JaCaMo 11

2 : .my_name(Ag)
3 <- !site_prepared;
4 goalAchieved(site_prepared).
5

6 +! site_prepared
7 <- prepareSite. // simulates the action in the environment
8

9 -!site_prepared
10 <- goalFailed(site_prepared);
11 .fail.
12

13 +obligation(Ag,_,done(_,notify_site_preparation_problem ,Ag),_)
14 : .my_name(Ag) &
15 // percepts encoding that the site is flooded
16 <- throwException(site_preparation_exception ,
17 [errorCode(flooding)]);
18 goalAchieved(notify_site_preparation_problem).

Listing 2. Code of the site prep contractor agent, raising the
site_preparation_exception.

Notably, the agent discharges its responsibilities by way of two plans, react-
ing to two obligations. The first one (Line 1) refers to the achievement of goal
site_prepared. The second one (Line 13) refers to the raising of an exception
whenever goal site_prepared fails. In other words, the first obligation is issued
in relation to a mission the agent is responsible for, whereas the second obliga-
tion is issued in relation to a recovery strategy, again under the responsibility of
the agent. The obligation to achieve site_prepared is mapped onto an internal
goal (Line 3). Should, for any reason, the agent fail to achieve such goal, the
plan at Line 6 would be triggered.

The execution of the goalFailed operation, at Line 10, allows the agent to
notify the organization that something went wrong. The organization, in turn,
activates the exception handling mechanism, according to the recovery strategy
described above, by issueing an obligation to achieve notify_site_prepara-
tion_problem to the very same agent. This obligation requests the agent to
raise an exception and to provide an error code, encoding the reason for the
failure. The agent may be equipped with multiple plans to perform this task.
The plan at Line 13 is activated when the reason of the failure is flooding.
The exception is raised by the operation at Line 16. In particular, the second
parameter of this operation is a list of ground predicates (i.e., the exception
arguments), which must follow the structure specified by the Exception Spec in
the recovery strategy. In this case, the agent includes predicate errorCode (of
arity 1) with argument flooding. Generally speaking, the exception arguments
encode the local knowledge that is deemed relevant to handle the exception, and
that need to flow from the agent, responsible for raising the exception (holder
of such knowledge), to the agent responsible for handling the exception.

Having discussed how an exception is raised, we now consider how it is han-
dled. In our simple recovery strategy, the agent, that is responsible for handling

12 M. Baldoni et al.

the failure of site_prepared is engineer. An excerpt of a possible implementa-
tion is shown in Listing 3.

1 +obligation(Ag,_,done(_,inspect_site ,Ag),_)
2 : .my_name(Ag) &
3 exceptionArgument(_,site_preparation_exception ,
4 errorCode(flooding))
5 <- performSiteAnalysis(Result);
6 fixFlooding(Result);
7 goalReleased(site_prepared);
8 goalAchieved(inspect_site).
9

10 +obligation(Ag,_,done(_,inspect_site ,Ag),_)
11 : .my_name(Ag) &
12 exceptionArgument(_,site_preparation_exception ,
13 errorCode(archaeologicalRemains))
14 <- delimitSite;
15 carefullyRemoveRemains;
16 resetGoal(site_prepared).

Listing 3. Code of the engineer agent.

Also in this case, we focus on the plans the agent uses to discharge its re-
sponsibilities. The agent in Listing 3 is equipped with two alternative plans for
discharging its responsibility, depending on the error code that comes with the
site_preparation_exception. The choice is made possible because exception
throwing allows specifying also some exception arguments, which are made avail-
able to the agents as observable properties of the organizational artifacts, and
are automatically mapped on the agents’ percepts. The first plan, triggered when
the error code amounts to a flooding (Line 4), encompasses the execution of a
site analysis (e.g., to estimate the damages) and then some fixes. In this case,
goal site_prepared is released (Line 7), so that after the fix the construction
can proceed. If, instead, the second plan is triggered, denoting the presence of
archaeological remains, the course of actions to undertake is different. In this
case the site is firstly delimited, then the remains are carefully removed, and
finally site_prepared is reset, so that another attempt can be made in the site
preparation.

4.2 Handling Goal Delay Exceptions

Let us now consider another kind of exception that may occur during the house
building, i.e., a delay in the achievement of goal windows_fitted w.r.t. to the
scheduled time of two weeks. We can easily specify a recovery strategy to deal
with the exception, as illustrated in Listing 4.

1 <recovery -strategy id=" rsWindowDelay">
2 <notification -policy id="np2">
3 <condition type="goal -ttf -expiration">
4 <condition -argument id=" target"
5 value=" windows_fitted" />

Exception Handling in Multi-Agent Organizations: Playing with JaCaMo 13

6 </condition >
7 <exception -spec id=" windows_delay_exception">
8 <exception -argument id=" weeksOfDelay" arity ="1" />
9 </exception -spec >

10 <goal id=" notify_windows_fitting_delay" />
11 </notification -policy >
12 <handling -policy id="hp2">
13 <condition type=" custom">
14 <condition -argument
15 id=" formula"
16 value=" thrown(_,windows_delay_exception ,_,Args)
17 & .member(weeksOfDelay(D),Args)
18 & D >= 2"
19 />
20 </condition >
21 <goal id=" handle_windows_fitting_delay" />
22 </handling -policy >
23 </recovery -strategy >

Listing 4. Recovery strategy targeting a delay in windows fitting in the house building
scenario.

In this case, the Exception Spec of the notification policy amounts to win-
dows_delay_exception with an argument weeksOfDelay (Lines 7-9). By this,
the agent raising an exception about the delay of the windows_fitted goal,
will also provide an estimation of the expected weeks of delay. This piece of
information can, then, be used by the handling agent to reorganize the rest of
his work. Indeed, according to the functional decomposition in Figure 2, goal
windows_ fitted can be pursued in parallel with two other goals: roof_built
and doors_fitted. While the latter is to be achieved in two weeks, the former
takes up to four weeks. A designer can, then, define the recovery strategy in a
way that the handling policy is applied only if the estimated delay exceeds two
weeks (Line 18) 5. The rationale is that, if the delay amounts to less than two
weeks, the subsequent goals in the scheme are not affected, because they still
depend on roof_built. In this particular case, even if the exception is raised,
no corrective action is needed. On the other hand, if the delay exceeds 2 weeks,
an obligation to achieve goal handle_windows_fitting_delay will be issued by
the normative system, alerting the agent responsible for such a goal.

5 Exception Handling vs Message Passing

One might argue that robustness could be achieved in agent systems by relying
on inter-agent messages. Message passing, however, brings on the system some
substantial drawbacks. In first lieu, it strengthen agent coupling, as the following

5 The condition is directly expressed as a NOPL formula in the condition argument.
Since in JaCaMo the organizational specification is encoded in XML, some characters
possibly occurring in NOPL formulas (such as &, >, and <) need to be escaped.

14 M. Baldoni et al.

example highlights. Listings 5 and 6 show an implementation of the site prep
contractor and engineer agents, respectively, where the exceptional situation due
to flooding is handled through message passing.

1 +obligation(Ag,_,done(_,site_prepared ,Ag),_)
2 : .my_name(Ag)
3 <- !site_prepared;
4 goalAchieved(site_prepared).
5

6 +! site_prepared
7 <- prepareSite.
8

9 -!site_prepared
10 : group(G,house_group ,_) &
11 play(Eng ,engineer ,G) &
12 play(HouseOwner ,house_owner ,G)
13 <- .send(Eng ,tell ,
14 exception(site_preparation_exception ,
15 [errorCode(flooding)]));
16 .send(HouseOwner ,tell ,
17 exception(site_preparation_exception ,
18 [errorCode(flooding)]));
19 .fail.
20

21 +handled(site_preparation_exception)
22 <- goalAchieved(site_prepared).

Listing 5. Code of the site prep contractor agent, with exception handling realized
through message passing.

The raising of an exception may be replaced with the sending of a message to
notify the occurrence of a failure, and the corresponding error code. The point
is that, since the responsibilities concerning the handling of such a situation
are not clearly distributed among the agents, site prep contractor might not
even know to whom such a message should be sent. Thus, in principle, such a
notification should be broadcasted to all the agents. For the sake of simplicity,
however, let’s assume that site prep contractor knows that engineer and house
owner might be willing to be notified about a failure in the preparation of the
site. Thereby, in Listing 5, site prep contractor sends them the same notification
message (lines 13-18). However, by doing this, we increase the coupling between
the involved agents because the recipients of the message, as well as the shape
of the message, are hard-coded inside the agent itself.

More critically, the lack of an explicit distribution of responsibilities implies
that the the site prep contractor cannot have any rightful expectation about
the behavior of engineer upon reception of its message. In fact, the organization
cannot issue any obligation upon engineer ; the agent might not even be equipped
with the right capabilities to handle the exception successfully.

1 +exception(site_preparation_exception ,Args)
2 : .member(errorCode(flooding),Args) &

Exception Handling in Multi-Agent Organizations: Playing with JaCaMo 15

3 group(G,house_group ,_) &
4 play(SPC ,site_prep_contractor ,G)
5 <- performSiteAnalysis(Result);
6 fixFlooding(Result);
7 .send(SPC ,tell ,handled(site_preparation_exception)).
8

9 +exception(site_preparation_exception ,Args)
10 : .member(errorCode(archaeologicalRemains),Args) &
11 group(G,house_group ,_) &
12 play(SPC ,site_prep_contractor ,G)
13 <- delimitSite;
14 carefullyRemoveRemains;
15 resetGoal(site_prepared).

Listing 6. Code of the engineer agent, with exception handling realized through mes-
sage passing.

At the same time, agent development cannot follow a uniform approach to
address the achievement of organizational goals and the handling of exceptions.
Each exception must be addressed by defining ad hoc interaction protocols,
whose specification falls outside the scope of the organization. To draw an anal-
ogy, this solution bears similarities with the definition of functions, in program-
ming languages, where a particular return value denotes a failure (e.g., -1 is the
typical failure value of Unix system calls). Of course, the implementation is pos-
sible, the drawback is that since the semantics of the values that are returned
is twofold, the code will be burdened with checks (i.e., if statements) on the
return value of every critical function to determine whether the function did its
job or not. The same happens for agents, see for instance the code of engineer
snipped in Listing 6. These two plans are specifically devised to capture the
message from site prep contractor, and are not programmed by following the
responsibilities of the agent (i.e., the set of obligations it has to fulfill), but hard
coded as “if”. Our mechanism, instead, allows to program agents just by looking
at their responsibilities, capturing in a homogeneous way both the normal and
exceptional behavior.

6 Conclusions and Related Work

Exception handling has been addressed by only a few papers in the MAS lit-
erature. Differently than the approach by Platon et al. [28, 30, 29, 31], where
exception handling is seen as a tool that the individual agent can activate inter-
nally, to preserve self-control despite the occurrence of exceptions, the proposal
we have made leverages on the distributed nature of exception handling, typical
of programming languages and of the actor model [16], and suited to distributed
systems made of cooperative parties, like MAO.

In [24, 8, 25], an approach based on a shared exception handling service is pro-
posed. The service provides sentinels, that are equipped with handlers (inspired
by research on management), to be plugged into existing agent systems. The

16 M. Baldoni et al.

service actively looks for exceptions in the system and prescribes specific inter-
ventions from a body of general procedures. Sentinels communicate with agents
using a predefined language for querying about exceptions and for describing
exception resolution actions. Agents, for their part, are required to implement a
minimal set of interfaces to report on their own behavior and modify their ac-
tions, according to the prescriptions given by the sentinels. As a difference, our
proposal seamlessly integrates exception handling into the agents themselves,
without centralizing it. In this way, it accommodates Goodenough’s recommen-
dation that appropriate “fixup” will vary from one use of the operation to the
next.

Mallya and Singh [26] propose to model exceptions via commitment-based
protocols. Anticipated exceptions, occurring during the execution of an interac-
tion protocol (i.e., deviations from the normal flow that occur often enough and
are part of the model), are dealt with by specifying a hierarchy of preferred runs.
Preferences can, then, be used to define exceptional runs. Exception handlers are
treated as runs just like protocols. Handlers can be spliced inside a given proto-
col when an exceptional run is detected. The paper proposes also an approach
to deal with unexpected exceptions (i.e., exceptions that are not part of the pro-
cess model). Exception handlers, in this case, are constructed dynamically from
a basic set of protocols. This approach seems promising, although some concerns
related to scalability can be identified. Indeed, as the authors state, splicing ex-
ception handlers at runtime requires a search through a library of handlers, that
can be computationally demanding. Conversely, inducing a preference structure
over runs requires considerable design-time effort and extensive domain specific
knowledge.

In the context of normative multi-agent systems, [15] propose an approach for
exception handling in interaction protocols, where both interaction protocols and
exception handlers are modeled through obligations in deontic logic. Exceptions
are seen as abnormal situations in which agents cannot release an obligation.
The obligation is canceled and, similarly to [26], a handler is sought for in a
repository. Exception handlers are modeled in terms of new obligations to be
issued. Despite both exploit obligations, this approach differs from ours because:
(1) it is not framed in an organizational dimension; (2) exceptions are not first-
class objects, constituting an account for an exceptional situation, but are rather
simply conceived as abnormal situations emerging during the enactment of an
interaction protocol. At the same time, exception handling is not conceived in
terms of responsibilities taken by the agents. Finally, the proposal is mainly
theoretical, no integration in any MAS platform is discussed.

To conclude, in this paper we presented an exception handling mechanism
for MAOs that relies on the notion of responsibility. This makes the treatment
of exceptions, from their raising to their handling, an integral part of a MAO
model, enabling a systematic and homogeneous treatment of exceptions, and
simplifying the implementation of the agents, as we have exemplified in JaCaMo.
This is a pretty novel use of normative systems, which are traditionally used
to support the realization of correct systems. Robustness and correctness are

Exception Handling in Multi-Agent Organizations: Playing with JaCaMo 17

complementary concepts: while correctness is “the ability of software products
to perform their exact tasks, as defined by their specification.” [27], robustness
guarantees that if different cases do arise, the system will terminate its execution
cleanly. We have shown that, introducing a proper infrastructure, both properties
can be supported by the normative system uniformly. The proposal could find
application also in the area of Business Processes where tools like WS-BPEL
[23] are currently used. An inspiration is provided by works like [2, 3].

Acknowledgments

Stefano Tedeschi’s research project has been carried out thanks to the grant
“Bando Talenti della Società Civile” promoted by Fondazione CRT with Fon-
dazione Giovanni Goria.

References

1. ISO/IEC/IEEE International Standard - Systems and software engineer-
ing – Vocabulary. ISO/IEC/IEEE 24765:2010(E) pp. 1–418 (Dec 2010).
https://doi.org/10.1109/IEEESTD.2010.5733835

2. Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., Tedeschi, S.: Accountability
and responsibility in multiagent organizations for engineering business processes.
In: Dennis, L.A., Bordini, R.H., Lespérance, Y. (eds.) Engineering Multi-Agent
Systems - 7th International Workshop, EMAS 2019, Montreal, QC, Canada, May
13-14, 2019, Revised Selected Papers. Lecture Notes in Computer Science, vol.
12058, pp. 3–24. Springer (2019)

3. Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., Tedeschi, S.: Engineering
business processes through accountability and agents. In: Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems, AA-
MAS ’19, Montreal, QC, Canada, May 13-17, 2019. pp. 1796–1798. International
Foundation for Autonomous Agents and Multiagent Systems (2019)

4. Bauer, B., Müller, J., Odell, J.: Agent UML: A formalism for specifying multiagent
software systems. Software Engineering and Knowledge Engineering 11(3), 207–
230 (2001)

5. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013).
https://doi.org/10.1016/j.scico.2011.10.004

6. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopou-
los, J.: Tropos: An agent-oriented software development method-
ology. Autonomous Agents and Multi-Agent Systems 8(3), 203–
236 (2004). https://doi.org/10.1023/B:AGNT.0000018806.20944.ef,
http://dx.doi.org/10.1023/B:AGNT.0000018806.20944.ef

7. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements
acquisition. Science of Computer Programming 20(1), 3 – 50 (1993).
https://doi.org/https://doi.org/10.1016/0167-6423(93)90021-G

8. Dellarocas, C., Klein, M.: An experimental evaluation of domain-independent fault
handling services in open multi-agent systems. In: Proceedings Fourth International
Conference on MultiAgent Systems. pp. 95–102. IEEE (2000)

18 M. Baldoni et al.

9. Feltus, C.: Aligning Access Rights to Governance Needs with the Responsabil-
ity MetaModel (ReMMo) in the Frame of Enterprise Architecture. Ph.D. thesis,
University of Namur, Belgium (2014)

10. Goodenough, J.B.: Exception handling design issues. SIGPLAN
Not. 10(7), 41–45 (Jul 1975). https://doi.org/10.1145/987305.987313,
https://doi.org/10.1145/987305.987313

11. Goodenough, J.B.: Exception handling: Issues and a proposed notation. Com-
mun. ACM 18(12), 683–696 (Dec 1975). https://doi.org/10.1145/361227.361230,
https://doi.org/10.1145/361227.361230

12. Goodenough, J.B.: Structured exception handling. In: Proceedings of the
2nd ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. p. 204–224. POPL ’75, Association for Computing Machin-
ery, New York, NY, USA (1975). https://doi.org/10.1145/512976.512997,
https://doi.org/10.1145/512976.512997

13. Goodwin, J.: Learning Akka. Packt Publishing Ltd (2015)
14. Gupta, M.: Akka essentials. Packt Publishing Ltd (2012)
15. Gutierrez-Garcia, J.O., Koning, J., Ramos-Corchado, F.: An obligation approach

for exception handling in interaction protocols. In: 2009 IEEE/WIC/ACM Int. J.
Conf. on Web Intelligence and Intelligent Agent Tech. vol. 3, pp. 497–500 (2009)

16. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for ar-
tificial intelligence. In: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence. p. 235–245. IJCAI’73, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (1973)

17. Hübner, J.F., Boissier, O., Bordini, R.H.: A normative organisation programming
language for organisation management infrastructures. In: Proceedings of the 5th
International Conference on Coordination, Organizations, Institutions, and Norms
in Agent Systems. p. 114–129. COIN’09, Springer-Verlag, Berlin, Heidelberg (2009)

18. Hübner, J.F., Boissier, O., Bordini, R.H.: From organisation specification to nor-
mative programming in multi-agent organisations. In: International Workshop on
Computational Logic in Multi-Agent Systems. pp. 117–134. Springer (2010)

19. Hübner, J.F., Boissier, O., Bordini, R.H.: A normative programming language for
multi-agent organisations. Annals of Mathematics and Artificial Intelligence 62(1),
27–53 (2011)

20. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organ-
isations with organisational artifacts and agents. Autonomous Agents and Multi-
Agent Systems 20(3), 369–400 (5 2010)

21. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised mul-
tiagent systems using the MOISE+ model: Programming issues at
the system and agent levels. Int. J. Agent-Oriented Softw. Eng.
1(3/4), 370–395 (2007). https://doi.org/10.1504/IJAOSE.2007.016266,
http://dx.doi.org/10.1504/IJAOSE.2007.016266

22. Hübner, J.F., Sichman, J.S., Boissier, O.: A model for the structural, functional,
and deontic specification of organizations in multiagent systems. In: Bittencourt,
G., Ramalho, G.L. (eds.) Advances in Artificial Intelligence. pp. 118–128. Springer
Berlin Heidelberg (2002)

23. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland, Y., et al.: Web services business process execution
language version 2.0. OASIS standard 11(120), 5 (2007)

24. Klein, M., Dellarocas, C.: Exception handling in agent systems. In: AGENTS ’99
(1999)

Exception Handling in Multi-Agent Organizations: Playing with JaCaMo 19

25. Klein, M., Dellarocas, C.: A knowledge-based approach to handling exceptions in
workflow systems. Computer Supported Cooperative Work (CSCW) 9(3-4), 399–
412 (2000)

26. Mallya, A.U., Singh, M.P.: Modeling exceptions via commitment protocols. In:
Proc. of the 4th Int. J. Conf. on Auton. Agents and Multiagent Systems. pp. 122–
129. AAMAS ’05, ACM (2005)

27. Meyer, B.: Object-oriented software construction, vol. 2. Prentice Hall New York
(1988)

28. Platon, E.: Modeling exception management in multi-agent systems. Ph.D. thesis,
Université Pierre et Marie Curie, France (2007)

29. Platon, E., Sabouret, N., Honiden, S.: Challenges for exception handling in multi-
agent systems. In: Choren, R., Garcia, A., Giese, H., Leung, H.f., Lucena, C.,
Romanovsky, A. (eds.) Software Engineering for Multi-Agent Systems V. pp. 41–
56. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

30. Platon, E., Sabouret, N., Honiden, S.: A definition of exceptions in agent-oriented
computing. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) Engi-
neering Societies in the Agents World VII. pp. 161–174. Springer Berlin Heidelberg,
Berlin, Heidelberg (2007)

31. Platon, E., Sabouret, N., Honiden, S.: An architecture for exception management in
multiagent systems. International Journal of Agent-Oriented Software Engineering
2(3), 267–289 (2008)

32. Sommerville, I.: Models for Responsibility Assignment, pp. 165–186. Springer Lon-
don, London (2007)

33. Sommerville, I., Storer, T., Lock, R.: Responsibility modelling for civil emergency
planning. Risk Management 11(3), 179–207 (2009)

