Skip to Main content Skip to Navigation
Conference papers

Un modèle sémantique en vue d’améliorer la FAIRisation des données météorologiques

Abstract : Making meteorological data FAIR in order to ease its reuse is a strategic issue because this data is essential to advance research in many fields. This work proposes a semantic model which combines a metadata model and a data model for describing meteorological observation data. Indeed, modeling (meta)data is an essential step towards their FAIRification. We use the SYNOP open dataset made available by Météo-France to illustrate how difficult data access and understanding can be, and how the use of the proposed model to represent meteorological data improves their compliance with the "F", "I" and "R" principles.
Document type :
Conference papers
Complete list of metadata

https://hal-emse.ccsd.cnrs.fr/emse-03260061
Contributor : Florent Breuil <>
Submitted on : Monday, June 14, 2021 - 4:13:48 PM
Last modification on : Tuesday, July 6, 2021 - 10:04:52 AM

File

actes_IC_CH_PFIA2021_20-29.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : emse-03260061, version 1

Citation

Amina Annane, Mouna Kamel, Nathalie Aussenac-Gilles, Cassia Trojahn, Catherine Comparot, et al.. Un modèle sémantique en vue d’améliorer la FAIRisation des données météorologiques. Journées Francophones d'Ingénierie des Connaissances (IC) Plate-Forme Intelligence Artificielle (PFIA 2021), Collège SIC (Science de l’Ingénierie des Connaissances) de l’AFIA, Jun 2021, Bordeaux, France. pp.20-29. ⟨emse-03260061⟩

Share

Metrics

Record views

49

Files downloads

33