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Abstract
Slacklining, the neuromechanical action of balance retention on a tightened band, 
is achieved through self-learned strategies combining dynamic stability with 
optimal energy expenditure. Published slacklining literature is recent and limited, 
including for neuromechanical control strategy models. This paper explores 
slacklining’s definitions and origins to provide background that facilitates 
understanding its evolution and progressive incorporation into both prehabil-
itation and rehabilitation. Existing explanatory slacklining models are considered, 
their application to balance and stability, and knowledge-gaps highlighted. 
Current slacklining models predominantly derive from human quiet-standing 
and frontal plane movement on stable surfaces. These provide a multi-tiered 
context of the unique and complex neuro-motoric requirements for slacklining’s 
multiple applications, but are not sufficiently comprehensive. This consequently 
leaves an incomplete understanding of how slacklining is achieved, in relation to 
multi-directional instability and complex multi-dimensional human movement 
and behavior. This paper highlights the knowledge-gaps and sets a foundation for 
the required explanatory control mechanisms that evolve and expand a more 
detailed model of multi-dimensional slacklining and human functional 
movement. Such a model facilitates a more complete understanding of existing 
performance and rehabilitation applications that opens the potential for future 

https://www.f6publishing.com
https://dx.doi.org/10.5312/wjo.v12.i6.0000
http://orcid.org/0000-0001-8354-4545
http://orcid.org/0000-0001-8354-4545
http://orcid.org/0000-0002-0748-9369
http://orcid.org/0000-0002-0748-9369
http://orcid.org/0000-0002-5181-4894
http://orcid.org/0000-0002-5181-4894
http://orcid.org/0000-0002-8819-799X
http://orcid.org/0000-0002-8819-799X
mailto:cp.gabel@bigpond.com


Gabel CP et al. Slacklining: Origins, neuromechanics and therapy

WJO https://www.wjgnet.com 1 June 18, 2021 Volume 12 Issue 6

NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Manuscript source: Invited 
manuscript

Specialty type: Rehabilitation

Country/Territory of origin: 
Australia

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: December 4, 2020 
Peer-review started: December 4, 
2020 
First decision: January 24, 2021 
Revised: January 27, 2021 
Accepted: May 19, 2021 
Article in press: May 19, 2021 
Published online: June 18, 2021

P-Reviewer: Byeon H 
S-Editor: Zhang L 
L-Editor: A 
P-Editor: Xing YX

applications into broader areas of movement in diverse fields including 
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Core Tip: Slacklining is an ancient activity; however, modern scientific literature is 
very recent and limited. This paper explores slacklining’s origins to provide 
background on its evolution and incorporation into prehabilitation and rehabilitation. 
Existing mechanical models and neurophysiological explanations are considered, 
summarised, and their applications and knowledge-gaps highlighted. Consequently, the 
need for improved understanding and descriptive and mathematical models are 
highlighted to ensure a multi-tiered understanding of slacklining’s unique and complex 
neuro-motoric requirements for its multiple applications, including human functional 
movement. With understanding slacklining’s history and fundamentals comes the 
potential for future broader applications for functional movement, prosthesis, 
automation, and machine-learning.

Citation: Gabel CP, Guy B, Mokhtarinia HR, Melloh M. Slacklining: A narrative review on the 
origins, neuromechanical models and therapeutic use. World J Orthop 2021; 12(6): 0-0
URL: https://www.wjgnet.com/2218-5836/full/v12/i6/0.htm
DOI: https://dx.doi.org/10.5312/wjo.v12.i6.0000

INTRODUCTION
Slacklining is defined as a complex neuromechanical task involving achievement of 
functional independence while maintaining dynamic stability through balance 
retention. This occurs from the interactions of the individual’s whole-body where 
internal dynamics drive the response to external environmental changes, while 
treading on an unstable, three-dimensional moveable, tightened, webbing-band fixed 
at each end[1,2]. The concepts explored in this paper consider and address what 
slacklining is, and its historical origins, in order to provide essential background 
understanding of the activity and its evolution, recognition and progressive 
incorporation into prehabilitation and rehabilitation. With this background 
knowledge, the existing explanatory models can be considered, how they apply to an 
individual’s capacity to achieve stability, and whether they provide a complete 
recognition and understanding of the explanatory control mechanisms for multi-
directional instability and complex multi-dimensional movement. As such, they 
should be able to explain slacklining as a harmonious functional movement (HFM), 
namely the integrated inter-relation of neural and muscular components to facilitate 
and enable a stable harmonized full-body functional movement[3]. Examining these 
current models enables the determination and recognition that there are knowledge-
gaps, which indicates that existing models must be evolved and expanded in order to 
encompass the broad conceptual circumstances that achieve slacklining stability.

THE ORIGINS AND ACTIONS OF SLACKLINING
As a trend-sport, modern slacklining is an adaptation of the ancient performing art of 
traditional rope-walking. Modern slacklining was initially started by climbers and 
outdoor enthusiasts in the 1960s and 1970s in the European Alps of Switzerland, 
France and Austria as well as in Yosemite National Park in the United States of 
America, where ropes and cables were replaced with adapted lightweight webbing 
and ratchet technology that incorporated an easier, safer and more elastic line[4,5]. 
Slacklining was originally termed “line-walking” or “funambulaire” (the precursor 
term to slacklining) in Latin European regions and “Jultagi” or “Eoreum” in Korea as a 
representation of Central Asia[5,6]. Slacklining has very ancient, established history 
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and cultural traditions. The earliest records are insinuated as being possible from 
approximately 40000 years Before Christ (BC) when man first invented ropes[7]. 
Consequently, the necessity and challenge arose to walk along these ropes to enable 
the completion of normal tasks in construction, movement along and between 
habitation sites such as cliffs and trees[8], for communication and social interaction 
such as crossing gorges as continues in the Russian Dagestan region, on the ropes of 
early Phoenician sailing vessels in ancient Crete around 1000 BC, and eventually for 
entertainment[4,9]. More direct inference is made at approximately 20000 BC where, 
“line-walking” or “funambulaire” was an established societal activity in pre-ancient 
Greece, China and the Korean Peninsula[4,6,10]. The earliest documentation appears 
to be in pottery and figurines of Cycladic acrobats from around 3000 BC[11]; and as a 
performance component of the ancient Greek Olympics from 776 BC and earlier Greek 
Games where the “Thaumatron” was awarded to those who performed a marvelous 
act or spectacle[6].

However, historical writings suggest the ancient Olympics were an extension of 
games from earlier periods, particularly the bronze age of Anatolia (3000-2500 BC), 
Crete (3000-1100 BC) and Mycenae (1600-1100), with some archaeological data 
suggesting games dated back to the 10th century BC[12]. Funambulaire was an integral 
social performing art from at least 3000 BC[4,6]; and demonstrated in the fresco 
paintings of Selini funambulist rope-walkers from the Villa of Cicero in Pompeii’s ash 
covered ruins estimated as approximately 100-50 BC[13]. The natural progression from 
ropes and cables to ratchets and webbing reflects human evolutionary capacity found 
in multiple incorporations and replacements of traditional and established items into 
modern product developments and activities[8]. The graded incorporation into 
rehabilitation could have been initiated at any time, but medical literary writings 
insinuate at least around 150 Anno Domini (AD) during the period of Imperial Roman 
(31BC-AD476)[10,14], while the first published papers were in European sports science 
literature around 2009[15,16] (Figure 1).

SLACKLINING: EXERCISE, REHABILITATION AND THERAPY
Slacklining in exercise and rehabilitation
The incorporation of such a fundamental yet physically complex recreational or 
cultural activity into the fields of therapy and rehabilitation is another evolutionary 
reflection. Slacklining, as therapy, has only been formally investigated and 
documented in the published scientific literature over the last decade[15-17]. There is 
anecdotal evidence of slacklining’s therapeutic use since the 1970’s and 1980’s as both 
prehabilitation and rehabilitation for Alpine sports and athletes. This includes Ingemar 
Stenmark for downhill slalom ski[15], within Australia’s competitive surfing 
community and elite training programs that led to the high performance center at 
Casuarina on the Australian East Coast[2], and for rock-climbing[17,18]. However, its 
first recorded application may be inferred from the Greek-Roman physician Galen-of-
Pergamon from 150-200 AD. Galen is recognized as the father of “Exercise in 
Medicine”[10,19] with over 500 medical Treatises[20] that provide potential 
documentation for the use of rope walking for rehabilitation and prehabilitation 
purposes. The texts considered[21-23] do not mention rope walking specifically as an 
activity, but such an activity or exercise is highly likely to have been used and can be 
insinuated from the following knowledge: rope walking was, as mentioned, an 
accepted and integral activity within Imperial Roman Society[4,6]; Galen is considered 
the “father of rehabilitation” who advocated the importance of exercise, his texts and 
teaching were the recognized authority for almost 1600 years[24], particularly for 
exercise and health[22,25]. Galen wrote extensively on knee injuries including loss of 
function and balance in athletes and Gladiators, noting that knee muscle control 
required considerable time to regain due to loss of muscle activation, with “wasting in 
the absence of local muscle or nerve damage”[24], a reference to arthrogenic muscle 
inhibition (AMI)[6,11,14,18]. Galen prescribed exercise for rehabilitation and prehabil-
itation as essential for “… health and good condition”[26], and ”… strength for 
function”[19,22]. Consequently, though not specific in detail, slacklining could have 
occurred through the informal or guided inclusion of an existing, recognized and 
challenging balance activity. Consequently, the incorporation of slacklining into 
rehabilitation may not be “that” recent, but actually date back some 2000 years.

Slacklining and arthrogenic muscle inhibition
The discussion of AMI is an important consideration as slacklining appears to negate 
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Figure 1  Historical progressions: Rope walking to slacklining and use in rehabilitation. BC: Before Christ; AD: Anno Domini.

the local muscular inhibitory action, particularly in the knee quadriceps[2] and 
potentially in the spinal lumbar multifidi[27]. AMI is defined as muscular activation 
failure, about a damaged or distended joint, due to ongoing neural activation deficit[28
,29]. AMI has been well recognised since at least the 19th century as having a central-
neural basis[30], being a consequence of articular sensory receptor discharge from joint 
afferents[31] due to swelling, inflammation, joint laxity[32] and tissue damage. The 
presence of AMI is consistent across different joints and joint pathologies, particularly 
the knee[29,30,32,33], hip[34], elbow[35], shoulder[31] ankle[36] and intersegmental 
spinal muscles[37]. Evidence indicates that with AMI, supra-spinal pathways 
potentially play a significant role through inhibitory down regulation that affects 
central nervous system (CNS) neural inhibition, that in-turn prevents full muscle 
activation. This is in conjunction with spinal reflex contributions through the Group-I 
non-reciprocal inhibitory pathway reflexes including the flexion and Gamma (γ)-loop[
28]. Today, the full understanding of AMI remains incomplete and is the subject of 
significant investigative research[38]. However, slacklining’s recognized effect in over-
riding this down regulation, in the lumbo-pelvic[27] and lower limb regions[2,18] is 
gradually being recognized and is a significant advancement in anatomical and 
condition specific regional rehabilitation[39,40].

Slacklining as therapy
The therapeutic direction of slacklining has evolved over the past decade to become an 
adjunct in both injury prevention, such as falls in the elderly[41], and specific sports 
including judo[42], basketball[43], badminton[44], handball[45], and football/ soc-cer[
46]; as well as in rehabilitation[2], including orthopedics[2,27], neuro-logy[27,39,40], 
sports training[47], general physical training[46] perfor-mance[43], and recreation[5]. 
This inclusion of slacklining with other prevention and rehabilitation themes derives 
from the triad of sensory system contributors of proprioception, vision, and vestibular 
somatosensory inputs[48]. This is a consequence of the unique properties of 
slacklining[2] due to its distinct action from other conventional balance activities[49] 
and apparatus[41,43] as a composite-chain activity, i.e. there is a weak link in the 
kinetic chain resulting in abnormal motor synergy patterns due to the contact surface 
of the loaded limbs having free, partially supported but unstable movement on a recoil 
resistance surface[50]. The coupling of these qualities and the CNS contributors results 
in slacklining having four integrated qualities[2]: Balance - the equilibrium control 
regulating the body’s segmental dynamic movement and center-of-mass (CoM) within 
the base of support[51]; postural control - the body's positional control in space[52]; 
muscle strength - the muscular generated forces[43,53]; and neuromechanical demand 
- the integration of neurobiology and biomechanics[1].
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MATHEMATICAL AND GENERAL MODELS THAT EXPLAIN SLACKLINING
Manifold models
It is recognised that the neuromechanical control strategies employed during 
slacklining are not fully understood[54]. Several detailed proposed models seek to 
explain slacklining and predominantly utilise a conceptual “manifold model”. 
However, the term manifold has two denotations: firstly, within a general context as a 
“conceptual dimension inside a general discussion”; and secondly, within a mathem-
atical context as a “mathematical subset with lower dimension inside a mathematical 
model”[55]. The latter context is a defined shaped space where all activity and analysis 
occurs[56], which for slacklining likely simulates a saddle-shape within ordinary task 
space[57]. This saddle-manifold is shaped concave in the dimensions of the direction 
of the slackline (X) and convex in the direction of its lateral shift (Y) and the dimension 
of gravity or sag (Z)[58,59].

Scientifically and mathematically a “manifold” has the same or lower 
dimensionality as the underlying mathematical model, though mathematically the 
number of dimensions possible is arbitrary. Each point within the manifold has its 
own “homeomorphic” space. Consequently, a “bi-continuous function” exists between 
all points being on both a continuum in a given direction, while concurrently having 
an opposing continuous inverse function[60]. The manifold model concept was 
initially proposed within robotics as the “self-motion manifold”[61], and, subsequently 
applied to human movement and functional tasks as the “un-controlled manifold” 
(UCM) model[62]. Such a model suitably explains quiet-standing[58,59] and simple 
functional frontal plane movements e.g., walking and postural sway[57,63], but was 
not proposed for complicated tasks involving dynamic contact, e.g., slacklining[1,54].

The UCM may still, however, provide a potential solution as it proposes a motor 
control strategy for redundant systems by using the abundant solutions inherent to 
them[62]. This postulates that the task redundant space of the effector is not 
homogeneous, but structured according to task requirements[61,64]. Consequently, the 
UCM model may be expanded to accommodate slacklining as the increased variability 
and redundancy found in such challenging actions can be redistributed, allowing 
acceptable levels of task variability to be maintained[56,65].

In human quiet-standing and frontal plane movement on stable surfaces, the 
Newtonian equations in classical mechanics of an inverted pendulum are generally 
considered acceptable mechanical models for self-balancing[51,59,66]. These consider-
ations are critical in acknowledging “how” the body estimates its current orientation 
in space, in order to, subsequently, generate the corrective stabilizing actions required 
to maintain what is a mechanically unstable upright stance. However, for slacklining, 
this model is not suitable. The base is not fixed: Consequently, body neuromechanical 
dynamics are coupled with the slackline’s external dynamics, and the natural actions 
and subsequent responses of body-sway[1,54,67].

Application of the manifold model to slacklining 
To consider these attributes within a global encompassing model to describe 
slacklining as a dynamic and changing series of quantitative factors, Paoletti et al[1] 
proposed that “an optimal strategy is achieved” for self-balance. This is through the 
consideration of a nonlinear model that accounts for potential parameter coupling and 
overall CNS performance delays that occur on multiple time scales. These can be 
visualized as a system with passive coupled dynamics working in unison with sensory 
modalities, enabling orientation and activated motor coordination of the body to be 
self-directed or “inferred”. In Serrien et al[68], where the balance strategy was 
examined within an “expanded manifold of a higher dimension” that the subjects 
must remain within, this approach in turn enabled the model to account for 
coordination from the perspective of “self-organizing maps”[68]. This model-
modification allowed an entire kinematic chain response where equilibrium is 
achieved as an integrated CNS solution to the presented task-environment-subject 
dependent situation and allows for a large set of degrees of freedom (DoF) that 
facilitate understanding of postural control within the human motor system[69]. 
Additional perspectives from Vallery et al[53] clarify that these neuromuscular actions 
involve a decoupling of the stance leg/s, and its produced vector forces from the 
residual body, through muscular co-contraction at the hip. This is augmented by arm 
movement and bimanual arm coordination[70] that act as the primary initial 
compensatory reaction to CoM displacement[47], and in turn the arms concurrently 
provide angular momentum influences[54].
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BALANCE AND HARMONIOUS FUNCTIONAL MOVEMENT
In the balance model for achieving slackline independence through human HFM, the 
manifold’s defined space contains variables with a significant set of DoF that 
contribute to particular movements or functions[69], some of which provide the 
amalgamation of stability and mobility[3] through CNS control[56]. Consequently, the 
model’s manifold contains both stable controlled variables and unstable un-controlled 
variables, where no action control is required as a task-variable’s position is not 
affected[62]. Any given set of CNS controlled DoF that provide stability, consequently, 
have variables separated into two orthogonal/opposing-directional subspaces: one 
with actions that have no effect (on the controlled variables); the other with 
orthogonal-subspace actions that do[62]. If variability in the controlled subspace is 
smaller than that of the opposing orthogonal-subspace, then the CNS, and, 
consequently, stability control, is unaffected[56]. These manifold models simplify 
reality[1] and enable a mathematical representation and analysis. They also provide 
insight into what CNS control aspects are present when postural balance strategies are 
implemented[71,72], and that all responses occur within physically defined boundary 
limitations[47].

SUMMARY
The outlined existing hypothetical models of slacklining describe the neuromechanical 
control strategies that achieve this activity, predominantly through use of a conceptual 
“manifold” that simulates a “saddle-shaped” task space[58,59]. Through the use of 
classic mechanics this is envisaged as a self-balancing mechanical model of an inverted 
pendulum[51,66]. These concepts critically acknowledge spatial orientation and 
subsequently corrective stabilization actions. However, this is generally hypothesized 
around a stable or fixed base which is inadequate for a body dynamically coupled with 
external changes and response actions[1,54,67]. Consequently, there is a knowledge-
gap and a required evolution and expansion of these ideas, not only from the 
perspective of mechanics[1,51,54], but also from that of the neurological[73] and 
biopsychosocial[74] constraints of the individual.

PHYSICAL FORCES AND ORDINARY SPACE
Existing models of harmonious functional movement
Models of human HFM and self-balancing generally consider two concurrent spheres 
of input: firstly, mathematical mechanical precision models bound by classical 
mechanics equations and; secondly, supplementary sensory and motoric neural 
control[47,67]. The mechanical models were initiated over the last 600 years, most 
likely from Da Vinci’s documented model proposition: “motion is created by the 
destruction of balance, that is, of equality of weight, for nothing can move by itself 
which does not leave its state of balance, and that thing moves most rapidly which is 
furthest from its balance”[75]. In contrast, the importance and relevance of the control 
aspects of a neural source were not proposed till the mid to late 1800’s, when the 
understanding of sensory input and neural latency were detailed in seminal German 
publications.

The initial aspects of sensory control include the perspective of frames of reference 
as used by the nervous system, and the kinematic constraints that these place upon 
any control aspect. Initially, this came from the role of vision and was established from 
Donders[75]’ Law, namely “that there is a unique orientation of the eye when looking 
in any specific direction”[76]. This was supplemented by Listing's law which “… 
specifies what this orientation is”[77,78], being a principle that governs eye 
movements through the three dimensional (3D) planes of horizontal, vertical, and 
torsional, and is actively implemented by a neural mechanism[79]. Fick[79] proposed 
that Listing’s law enhanced motor efficiency by “minimizing the rotational eccentricity 
of the eye”[80]. This sensory-motoric control system was quantified by von Helmholtz[
80] who measured the time delay that occurs due to the finite speed of neural signal 
transmission, where response time is dependent on the input-output delays of single 
neurons and neural chains. Donders[81] furthered these control phenomena in his 
work related to “The speed of mental processing”, which determined a relationship 
was present between an individual’s “choice-response” and the number of stimuli 
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present[82]. This was, subsequently, supported and progressed by Merkel[82] who 
defined that “the response time is longer when a stimulus belongs to a larger set of 
stimuli”. This eventually led to Hick’s Law[83], or the Hick-Hyman Law almost 100 
years later that proposed “…information is intimately concerned with reaction time” 
and describes “… the rate of gain of information”, and assesses the involvement of 
“cognitive capacity”[84].

The Hick-Hyman Law denotes that the time an individual requires for decision-
making results from the choices available, and will increase logarithmically with the 
number of choices. In slacklining, these choices increase dramatically compared to 
simple frontal plane movements[54,57,63]. Consequently, transmission rates vary 
significantly between cell types and transmission mediums being affected by neuron 
size, the presence of axon myelination and its composition[85], sheath number, length, 
thickness and distribution[86], the size and distance between nodes of Ranvier, types 
of intervening synapses and how many occur between the CNS and peripheral 
receptors, and the stimuli strength, and quality[85,87]. The sphere of task control and 
the time-delay present is due to the sensory and motoric neural pathways necessary 
signaling processes, such that delay increases as the system and its requirements 
become more complicated[58,73]. This accounts for the balance organ with the 
integrated labyrinthine and vision systems that are adapted to account for these time 
delays[67], and ensure the essential limitations necessary for the human body to 
remain stable[64].

This is particularly relevant for more complex movements, such as those that occur 
on unstable surfaces, at higher speeds and require greater skill, with slacklining being 
such an example. Accordingly, in human movement, the more complex the task and 
the more stimuli present, the slower the action[17,88] or the greater the response time, 
Fitts’s[88] Law (Table 1), and the higher the neuronal firing rate[1]. Further consider-
ations are the large variation in effects of normal and pathological ageing[85] on 
human mechanical structures[67,86], neural system time delays[64]; and that injured 
tissue and individuals at the global level (such as neurological conditions) will not be 
able to achieve the required levels of adaptation, and, consequently, the individual 
will exhibit postural deficiency or balance loss[53,89,90]. The overall consequence is a 
simplified large-scale time-delayed model that provides insight from classical 
mechanics into the integrated functioning of the body systems and organs that support 
the theories and hypotheses of “integrated control”[48,67].

The subsequent progressions in the mathematical mechanical human movement 
and self-balancing models came at the start of last century when Graham-Brown[90] 
reported on “dynamic principles involved in progression”. He stated that: “The cycle 
of progression may be supposed to commence at a point at which one of the limbs is 
perpendicular to the ground. The “initial velocity” then carries the body past this 
point, and it then falls forwards along the circumference of a circle the radius of which 
is the limb in contact with the ground”. Over the last half century there has been 
further evolution and progression with Bresler et al[91] who remarked that the 
“Dynamic balance of the “head, arms and trunk” about the supporting hip is 
dependent upon the control of pelvic motion by the hip musculature”; while Saunders 
et al[92] recognised the significance of “Pelvic lateral tilt (being) identified as one of the 
primary determinants of gait”.

In 1971, Adams[93] proposed the Classical model of “…a closed-loop theory for 
learning simple movements”, that incorporated feedback, error detection and error 
correction as key elements. This model required that the output of the system had 
feedback, and compared the reference for error detection and, if necessary corrected 
for this to provide the resulting movement, such that it was “… self-regulating by 
compensating for deviating from the reference”. More recently, MacKinnon et al[50] 
described “Control of whole body balance in the frontal plane during human walking” 
through the model of the “inverted pendulum” which relies on the principles of 
equations from classical mechanics. This model was progressed through a series of 
evolving modifications to account for the influence of both random disturbance and 
control torque. This neurologically controlled delay is effectively present at the ankle 
joint due to the concurrent relationship between: the passive stiffness from the visco-
elastic nature of the muscle-tendon-ligament complex; and the active modulating 
influence of regional muscles[73]. This is supplemented by the triceps surae muscles 
that maintains balance by ”predictively controlling the proximal offset of the spring-
like element in a ballistic-like manner”[94,95].

Within the mechanical model it is also critical to consider that the inherently 
unstable upright position, where the smallest deviation eliminates equilibrium, is 
retained through uniformity between retarding and controlling forces[67,96]. These 
provide contributing components that can be low-level, such as passive ankle stiffness, 
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Table 1 Glossary of definitions and explanation of scientific terms

Scientific Term Explanation/definition

Fitts Law Time to accomplish movement linearly increases with the logarithm of the index of the task difficulty

Hopf bifurcation point A critical point where a system's stability switches and a periodic solution arises

Two-thirds Power Law Expresses the robust local relationship between the geometrical and temporal aspects of human movement

Elliptic geometry Non-Euclidean (or non-ordinary) geometry stating that there are no lines parallel to any given line, this is an example of 
Riemannian geometry 

Affine Transformations A transformation that preserves lines and parallelism

Equi-affine 
Transformations

a transformation that preserves areas, in addition to lines and parallelism

Temporal Segmentation The central or brain action of breaking down motion sequences into different actions

Isochrony Principle The duration of voluntary movement remains approximately constant across a range of movement distances; that is, 
movement duration is independent of movement extent

Kinematic redundancy Kinematic redundancy occurs when a manipulator has more degrees of freedom than those strictly required to execute a given 
task. Additional active joints and interlinked segments improve both mobility and the available degrees of freedom

Inter-segmental law of 
coordination

A kinematic law that describes the coordination patterns among the elevation angles of the lower limb segments during 
locomotion (Borghese). It is reliant on accurate progressive timing of muscular contractions in adjacent segments and 
appendages

vs high level, such as the growth-rate of the gravitational toppling torque[58,95]. 
Together these forces are considered a simple closed-loop control model[48] as a 
progression of Adams “closed loop” model[94]. A further mechanical model input 
consideration integrates neural sensory aspects, where feedback mechanisms are 
based predominantly on body-sway motion[63] from balance perturbations[97]. These 
evoke “sensory weights”, a form of neural control representing comparative contri-
butions of each sensory systems and integrated as a “package”[48]. This provides an 
internal estimate of orientation[71], where the assessed and adjusted responses are 
determined by how these inputs contribute to the total balance system as a single 
component[1]. Consequently, this “package” is itself dynamic and varies sufficiently to 
ensure equilibrium and prevent instability from corrective actions being either over- or 
under-produced[48]. The inputs themselves therefore exhibit bi-fold competing 
variations, due to the quality of the sensory information received. This is a 
consequence of changes in: (1) The external environmental conditions; and (2) The 
internal conditions affected by injury, neurologic disorders[90,98], or other psycho-
social factors[65,74]. In the presence of a moving platform, as with slacklining, the 
vestibular and somatic sensory feedback is more highly weighted; while in quiet-
standing the proprioceptive and visual systems are dominant[71]. Further, during 
afferent motor control the CNS creates “muscle synergies” where groups of muscles 
are combined as a common neural signal to control a range of movements which can 
be modulated differently by each individual, consequently demonstrating the 
neuromuscular capacity for adaptive strategies to facilitate stability while slacklining[
99]. This reinforces the findings of neuroplastic change, automatic or “packaged” 
signals[48,71], engrams[100] and homunculus smudging[37], all of which occur as a 
response to complex, demanding, balance challenge activities[100], which will, 
consequently, include slacklining[2,101].

The consequential reactive motoric action that produces the stability, in the 
mechanical paradigm perspective, is achieved through the generation of joint torques 
that appropriately correct for any deviations from a desired orientation[48,72]. The 
original perturbation changes are detected primarily by inputs from the visual, 
proprioceptive, and vestibular sensory sub-systems[67,71], with the resultant reflex 
delay[1,72] enabling a “Hopf bifurcation point”[2] (Table 1). This achieves a 
temporary, though dynamic, “solution” for equilibrium and self-balance, with suitable 
active control strategies[58,67]. This “equilibrium solution” is explained by both the 
mechanical and sensory aspects within a “saddle-like” 3D phase-space that is charac-
terized by geometrical properties and spatial relations of position and velocity[58]. It is 
achieved through the optimal parity between two competing manifolds: one which is 
stable along the saddle and provides slow convergent motion in a direction toward the 
equilibrium; and the other which is unstable and provides divergent spiral motions 
such as pitch, roll, and yaw[97] about the axis of the phase planes, which further 
increase the number of dimensions and DoF present, as these actions occur in 
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directions away from the equilibrium[58]. This “solution” is overseen by an 
intermittent “proportional and derivative” feedback system controller, that is charac-
terized by the switching function at the “Hopf bifurcation point” in such a way that 
the proportional and derivative control is “off” when the net force is near the stable 
manifold of the saddle and is “on” in all other circumstances. This controller is able to 
use considerably smaller regional space and feedback parameters, which make it more 
robust[58] in the designated phase plane, as it exhibits the “two-thirds power law”[3] 
(Table 1) scaling regimes typically found in physiological sway movements in humans. 
Concurrently, the nominal equilibrium state is itself surrounded by a “dead zone” that 
reflects the time-delay from the sensory neural control inputs[72] that will allow a 
motoric reaction[64] that provides spontaneous movement patterns, like sway, to 
occur[95]. As a simple feedback loop system, this can provide an acceptable model for 
dynamic stability to ensue[52,58]. It also accounts for: Age-related differential findings 
due to physiological change - such as passive joint stiffness and damping from osseous 
degeneration, and proprioceptive delay, which affect center-of-pressure-based sway 
behaviors[57,66]; plus notably increased “noise” from larger amplitude, plus false and 
extraneous input signals[57,73] that can all be viewed from a “classical mechanics” 
influence perspective[67].

Any integrated mechanical and sensory model must also consider and discuss 
optimization approaches occurring, concurrently, within both aspects of the model, 
and that account for the “smoothness” or “flow” of HFM[3,102], e.g., compare a curve 
joining multiple points to a series of straight lines. This smooth, HFM is a consequence 
of the process of “speed-curvature coupling”[103] which is optimized by the 
coordinated brain action of sensory and motoric control under the influence of pre-
planning and “temporal segmentation”, the process that “…identifies motion 
breakpoints and separates the different constituent phases”[104]. These sensory 
considerations are based on the mechanical assumptions of Riemannian or elliptic 
geometry[4,103] (Table 1). There is also a need to consider geometrical transformations 
that are both “affine”[5] (Table 1) and “equi-affine”[6] (Table 1), particularly in 
unstable settings, such as on a slackline, where the involved rotation, translation and 
shearing actions are both achieved and minimized in order to provide constant speed[
102], such as occurs in the jerk response or Hoffman reflex[105].

This is of significant importance in relation to sensory input, particularly visual 
processing, as it confirms that “temporal segmentation”[7] (Table 1) of movement 
control complies with “equi-affine geometry”[103]. This geometrical transformation 
consequently accounts for the “two-thirds power law”, which governs the relationship 
between the geometrical and temporal parameters of human movement. This is 
centrally represented in “motion-planning”[61] and “human vision processing” and 
ensures that the “Isochrony principle”[8] (Table 1) is upheld[103]. This, consequently, 
allows for the application of differentiable manifolds of higher dimensions, an 
important consideration for complex activities on unstable mobile surfaces, such as 
slacklining. The consideration of these additional aspects within a mechanical model 
clarifies that human locomotion complies with the principles of “Kinematic 
redundancy”[9] (Table 1); and the “Inter-segmental law of coordination”[10,103] 
(Table 1).

Together, these multiple aspects and considerations form the sensory and motoric 
neural control sphere, as noted previously from 18th Century German scientists, 
concepts that were, subsequently, integrated with the mechanical sphere. In unison 
they explain functional independence and balance control as the aforementioned 
closed-loop feedback system[94], with parity between the different integrated sensory 
orientation source information on one hand, and system feedback control constraints 
on the other[48]. However, such a conceptual model and presentation of balance, 
functional independence, and postural control, is only truly valid on stable surfaces[58
]. When unstable surfaces, such as a slackline, are considered in such models, then 
further descriptive initiates, progressions, and evolutions are required[1,54] to account 
for the dynamic changing postures and positions[2,27,106]. This has led to the concept 
of “dimensionally-bound” manifold models, which require that the size-volume of the 
manifold is expanded. This accounts for the patterns of movement, control and 
balance-retention, that require higher levels of complexity within the significant DoF 
available for human motor system postural control[54].

THE CURRENT DESCRIPTIVE MODEL OF SLACKLINING
The concept of functional independence and self-balance being explained by 
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dimensionally bound models, with expanded size-volume, takes into account activities 
such as slacklining that are significant progressions from those found in quiet-standing 
and simple frontal plane walking. This complexity occurs through the forces being 
produced more rapidly with the requirement for greater control occurring through 
smaller, more precise action-reaction dissipation[68]. There is a simultaneous 
reduction in both frequency and velocity in most available DoF, coupled with 
increased control of range of motion (RoM)[69]. This expanded manifold model allows 
greater distance in the Y and Z dimensions for any given X dimension position, but is 
limited by the physical constraints of the given slackline length (X dimension), its 
width and how far it can be moved laterally (Y Dimension) and the elastic-stretch that 
enables an optimal sag (Z Dimension). Consequently, a minimal effort or energy 
expenditure must be achieved and utilized to maintain stability in the presence of any 
perturbation[47]. This is consistent with the strategies of quiet-standing and stable 
surface walking[70]. However, any perturbation must be limited within the Y Axis, or 
lateral component of movement, to a distance in the order of 10 cm, for novices to 
moderate skilled slackliners, if control and balance on the line is to be retained[47]. 
Expert slackliners appear to exhibit greater lateral movement limitations within an 
expanded manifold[69].

This 3D model form has been envisaged and detailed with mathematical equations 
to validate positions[1,58]. However, to compound the descriptive difficulty of the 
model, it must be recognized that the optimal adopted strategy is individually 
selected. It can only be one of two methods prior to the introduction of any 
perturbation: (1) Two feet on the slackline, including use of an unloaded limb to touch 
and stabilize the line; or (2) One foot[2,5], with the other not touching but as a counter-
balance that indirectly affects the manifold of the contacted and weight bearing foot[47
]. In recognition of this deficiency the model was subsequently modified[54] through 
introducing a regional decoupling at the hips of the arms and trunk from the legs. This 
then accounted for the discrepancy that action-reaction forces generated by the arms, 
trunk, or free leg, could influence the point of contact, without moving the foot or 
changing the anterior-posterior direction by virtue of sheer forces, and ensures the 
principle of “energy optimization” was maintained[54]. This then allowed for 
individual joint torque and segmental interplay, where there is task distribution 
between the legs as the ultimate dissipater of the force vectors via the CoP dynamics at 
the foot/feet, but decoupled at the hips from the trunk and arms that influence, but do 
not control, angular momentum[47].

This 3D model then has the context that simulates the following example: an 
inverted pendulum[51] (the person), mounted on a cart (the slackline), that is moving 
on a circular or elliptical track[1] (the physical finite 3D ordinary space limitations of 
possible slackline movement), to a maximal distance from the slackline contact point[
47] during instantaneous stability. Concurrently, the segments of the arms and trunk 
facilitate angular momentum control, and are decoupled by muscular co-contraction at 
the hips from the stance leg/s, that dynamically direct the vector forces[54].

The acquired movement control to achieve balance on a slackline is a set of self-
learned patterns[96]. These form an instantaneous but fluid and interactive dynamic 
saddle-shaped manifold[58] that the individual must remain within to ensure stability[
69] through balance control[66]. Stability is retained by the production of forces that 
are pro-active and re-active to those of the slackline’s 3D reciprocal forces at and 
through a point/s of fixed contact with the body via the foot[47] or feet[47]. 
Consequently, the slackline’s reactionary forces line of action always passes through 
the subject’s contact foot/feet and cannot be influenced without a dissipated moment 
from the force vector. This force, via the foot to the leg, is in the X-dimension or 
anterior-posterior direction[54], the Y-dimension of lateral deviation within the 
physical limit of the slackline’s topographical space[47], and the Z-dimension of 
available sag or reactionary bounce[107]. These forces form within the “high-
dimensional manifold” “… in which the subjects have to stay in order to maintain 
balance”[68].

The expansion of this manifold can be learnt, with the improved balance then 
interpreted as enabling an increased RoM before the manifold edges are reached and 
balance is lost. Because the expanded manifold’s edge is now further, the frequency of 
movement change is lower, as the need to adapt or change is less, which in-turn leads 
to a reduced velocity of motion and less kinetic energy being required when reaching 
the manifold’s edge. Consequently, maintaining balance is easier and the energy used 
to counter the perturbation is dissipated in a stepwise manner[47,97].
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FACTORS THAT NECESSITATE CHANGES TO THE CLASSICAL 
MECHANICS MANIFOLD MODEL
Currently, the models of HFM and self-balance are limited to those described above. 
They can account for all available DoFs as found with dynamic unpredictable 
movement on unstable surfaces that consider and account for kinematic redundancy 
in consort with inter-segmental coordination.

This can be summarised as follows: An integrated mathematical mechanical 
precision model, bound by classical mechanics equations in parity with sensory and 
motoric neural controls that approximates a dynamic “saddle-like” phase-space, high-
dimensional manifold characterized by two internal competing manifolds of 
convergent and divergent motion.

This hypothetical model facilitates understanding the mechanisms for independent 
HFM and balance. These mechanical and neural components increase their complexity 
when considering the influence of “qualitative-implicit-knowledge”, such as the 
physics of gravity[108]. Generally, the brain hypothetically uses a qualitative internal 
model that incorporates classical mechanics-based equations from its existing 
knowledge of gravity and time as a multi-faceted perspective that include a quantified 
unit and both a spatial and cortical experience, even if this knowledge is quantitatively 
based[108]. This supplements sensory information when estimating more complex 
activities that involve external components, and not simply a body activity in isolation, 
including interceptive actions like hitting or catching[109]. However, when performing 
a “catch” in zero-gravity, movement is initiated earlier[109] as “qualitative-implicit-
knowledge” is relied upon to pre-empt and approximate interceptive timing through 
pre-information that compensates for “no-gravity”[108]. This is analogous to core 
muscle pre-activation when using a limb. Further, “qualitative-implicit-knowledge” is 
influenced by the individual’s psychological state, motivation level, past activity-
specific experience, the social context where the activity is performed and the presence 
of positive support or negative perceived social pressure to participate or “perform”[
53,74]. Current movement models do not accommodate or acknowledge these 
additional aspects. By considering a highly skilled complex activity, such as 
slacklining as opposed to quiet standing, the intent is to consequently, recognize the 
areas of knowledge-gap so an evolved and expanded hypothetical model and 
paradigm can be proposed.

CONCLUSION
The successful achievement strategy that enables an individual to balance and remain 
on a slackline is currently explained as: A saddle shaped manifold model, where a 
moving inverted pendulum is subjected to self-generated and environmental forces 
within a defined 3D space, where the arm and trunk segments provide dynamic force 
influences but are decoupled from the hips and legs. This model integrates with 
gravity and the slackline’s elastic reactive properties being governed by classical 
mechanics. However, there remains a knowledge-gap as this dynamic stability is 
transitory, momentary, and acquired through the integration of additional dimensions 
not hereto considered. Consequently, within the context of historical and contem-
porary slacklining, the existing models are insufficient for the required explanatory 
control mechanisms that can accommodate multi-directional instability and complex 
multi-dimensional human HFM. This knowledge-gap requires an evolved and 
expanded model in order to provide an explanation for the control mechanisms in 
place. This evolved model will represent multiple, integrated dimensions that will 
facilitate the understanding of existing performance and incorporate general and 
rehabilitation activity. With such a model these applications can be applied more 
broadly in the future to movement in diverse fields that would potentially include 
prostheses, mechanized automation, altered gravity, robotics, mechatronics, artificial-
intelligence-driven movement and machine-learning related to movement phenotypes.
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