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Abstract—In this paper, the robustness of tessellation images
segmentation using Convolutional Neural Network (CNN) is
presented. Particularly, this paper aims to study the effect of
the quality and number of the images used for training on the
robustness of the edge segmentation and completion. Three kinds
of image deterioration are considered : the absence of a part
of the tessellation, the discontinuity of the edges constituting
the tessellation and the presence of a background noise. Five
CNNs are trained with several kinds of deteriorated images and
the trained models are then compared according to the results
obtained with four classes of images.

Index Terms—Tessellation, Cell Segmentation, Edge Comple-
tion

I. INTRODUCTION

Segmentation of tessellation or mosaic images can often
arise in biological or industrial problems, such as the segmen-
tation of corneal endothelium images [1]. Many articles have
been proposed to deal with this issue: using watershed [2],
active contours [3] or directional filters [4]. With the recent
breakthrough of deep learning methods, several solutions have
been studied using neural networks and CNN [5] [6] [7], even
though, a common problem that occurs using CNN is the
lack of a sufficient number of images and their relatively poor
quality. The present paper constitutes a study of the robustness
of the segmentation, based on CNN, of tessellation images de-
pending on the quality and the number of images used to train
a deep learning model. In order to control the quantity and
the diversity (number of cells, deterioration) of images used,
the tessellations are synthetic and computed with a Poisson-
Voronoi model (Poisson Point Process (PPP) coupled with a
Voronoi Diagram). By being spatially completely random, the
PPP offers the most diversified Voronoi Diagrams possible.

The present paper is organised as follows. Sect. II presents
the tessellation model used to generate the images. Then, Sect.
III introduces three different ways of deteriorating the images.
Sect. IV offers details about the experimentation procedures.
Sect. V presents the results obtained. And finally Sect. VI
concludes this study and offers new perspectives.

Fig. 1: Left : Result of a PPP. Right : Voronoi Diagram
associated

II. TESSELLATION MODEL

A tessellation is a partition of the plane, defined by a set
of points (the seeds) and a distance (generally the Euclidean
distance). The set of points is randomly generated by the
realization of a PPP, and the partition is defined as a Voronoi
diagram on these seeds.

A. Poisson Point Process

The PPP is a fast and simple way to generate seeds for a
Voronoi Diagram. The PPP uniformly generates nλS random
points {pi} in the spatial domain of the subset D ⊂ R2. nλS
comes from a Poisson law P with parameter λS, where S
represents the Lebesgue measure of D in R2 (area) and λ is
a density parameter.

nλS ∼ P (λS) (1)

For D = [a, b]× [c, d] with a, b, c, b ∈ R:

∀i ∈ [[1;nλS ]] : pix ∼ U ([a, b]) and piy ∼ U ([c, d]) (2)

Fig. 1 shows on the left a realization of the PPP with λ =
0.0005 and S = 224 pixel2.



B. Voronoi Diagram
A Voronoi Diagram of a set of points {pi} in a subset D ⊂

R2 with regard to a distance d corresponds to the partitioning
of D into cells {Ci}, defined as followed :

Ci = {x ∈ D | d (x, pi) ≤ d (x, pj) ∀j 6= i} (3)

The Voronoi Diagram, as the one in Fig 1, is the intersection
of all the cells.

V or ({pi}) =
⋃

i,j ; i 6=j

Ci ∩ Cj (4)

For more details about Voronoi Diagrams, the reader can
refer to [8].

III. DETERIORATION MODELS

The following section describes the three alterations applied
on the images used in order to train the models. We group
these three alterations into two kinds of deterioration: a
deterioration concerning the entire image, which is presented
in Sect. III-A, to study the robustness with regard to an
additionnal noise and deteriorations concerning only the edges
of the cells, described in Sect. III-B and III-C, in order to study
the robustness concerning the lack of edges information and
the capacity of the trained models to close edges [1].

A. Gaussian Random Field Background
A Gaussian Random Field (GRF) is a specific Random Field

[9] defined by the following covariance:

∀x, y ∈ R2 C (x, y) = C (τ) = e−
τ2

2σ2 ; τ = ||x− y||R2 (5)

This defines a continuous and stationary Random Field. A
noisy background based on GRF can be applied to a given
tessellation image TV or({pi}) built from a Voronoi Digram
V or ({pi}):

TV or({pi}) : D ⊂ R2 −→ R

x 7−→

{
1 if x ∈ V or ({pi})
0 otherwise

(6)

The resulting image TGRFV or({pi}) is defined as:

TGRFV or({pi}) = F
−1
(√
F (C0)F (S)

)
S =W + snr ×

(
1− TV or({pi})

) (7)

With C0 : x ∈ R2 7→ C (02, x). F corresponds to the
Fourier Transform, σ represents the standard deviation, 02 is
the neutral element of R2 for the usual addition, W is a white
noise and snr is the signal-to-noise ratio.

For all images used with a GRF background deterioration
σ follows a Poisson law of parameter 4 and snr follows a
Poisson law with parameter 10: σ ∼ P (4) and snr ∼ P (10).

The aim of adding a GRF background is to simulate a
potential texture of the cells. Fig. 2 represents the result
(bottom left) of a tessellation (top left) immersed into a GRF
(top right). An example of a real corneal endothelium image
is given as a comparison (bottom right).

Fig. 2: Top Left: Tessellation. Top Right: Gaussian Random
Field. Bottom Left: Tessellation with the Gaussian Random
Field background. Bottom Right: Endothelium Corneal Image

B. Boolean Model Holes

This degradation consists in removing the cell edges which
intersect a Boolean Model [10] realization whose germs are
computed by a PPP with parameter λBMS and whose grains
are disks. The radius of each disk is uniformly chosen between
two extremum values Rmin and Rmax. Given a Voronoi
Diagram V or ({pi}) , and a boolean model BM , the result
V orBM ({pi}) is defined as follows:

V orBM ({pi}) = V or ({pi}) ∩BM c (8)

.c represents the complementary.
An example of a resulting image is showed in Fig. 3

(bottom images), before and after being embedded in a GRF
respectively.

C. Density Reduction

Contrary to the holes created by using the Boolean Model
Holes (BMH) alteration which concentrates the loss of in-
formation in few areas, the Density Reduction (DR) aims to
remove uniformly the edges information. Each point of the
edges is removed or kept depending on the realization of a
Bernoulli law B of parameter q. We define as V orq ({pi}) the
resulting set.

V orq ({pi}) = {x ∈ V or ({pi}) | ux = 1 ; ux ∼ B (q)}
u ∼ B (q)⇔ P (u = k) = qk (1− q)1−k ; k ∈ {0, 1}

(9)



Fig. 3: Top Left: Tessellation. Top Right: Boolean Model.
Bottom Left: AND(Tessellation, NO(Boolean Model)). Bot-
tom Right: Resulting Image

Fig. 4: Left: V or ({pi}) with a GRF background. Right:
V orq=0.5 ({pi}) with a GRF background

An example is given in Fig. 4. The image on the
left (resp. on the right) corresponds to V or ({pi}) (resp.
V orq=0.5 ({pi})) immersed in a GRF.

IV. EXPERIMENTATION

A. Experimental Design

The notations used are the same as in the previous sections.
All the images have a size (M,N) = (224, 224) with S =
MN .

Five CNNs have been trained with different datasets de-
scibed below. The architecture is the same for each CNN and
is the U-net [11] based architecture inspired from [6], see Fig.
5.

All datasets are generated with 3 different values of λ :
0.0002, 0.0008, 0.0016 equally split during the image gener-
ation.

?×224×224×1

Conv2D

kernel〈3×3×1×32〉
bias〈32〉

MaxPooling2D

Conv2D

kernel〈3×3×32×64〉
bias〈64〉

MaxPooling2D

Conv2D

kernel〈3×3×64×128〉
bias〈128〉

MaxPooling2D

Conv2D

kernel〈3×3×128×256〉
bias〈256〉

Conv2DTranspose

kernel〈2×2×128×256〉

Concatenate

Conv2D

kernel〈3×3×256×128〉
bias〈128〉

Conv2DTranspose

kernel〈2×2×64×128〉

Concatenate

Conv2D
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bias〈32〉

Conv2DTranspose

kernel〈2×2×32×32〉

Concatenate

Conv2D

kernel〈1×1×64×2〉
bias〈2〉

Activation

input_1

softmax_1

Fig. 5: U-net architecture.

A morphological dilation was applied on each ground truth
as better results were observed when using thicker ground truth
edges.
• BIN-BMH: The BIN-BMH dataset is composed of 3000

images. The only deterioration used is the BMH process
with two similarly divided sets of parameters: λBMS =
2, Rmin = 20, Rmax = 30 and λBMS = 15, Rmin =
10, Rmax = 15. As there is no background alteration,
the images of this dataset are binary images.

• GRF: The GRF dataset is composed of 3000 images only
deteriorated with a GRF background.

• GRF-BMH-3k: This dataset contains 3000 images dete-
riorated with a GRF background and the BMH using the
same two sets described in the BIN-BMH dataset.

• GRF-BMH-9k: This dataset contains the same kind of
images used in the GRF-BMH-3k dataset, the difference
is that it is composed of 9000 images.

• GRF-BMH-DR: All kinds of deterioration have been
used to compute this last dataset. All the images have



a GRF background. 3000 images are only altered by a
background, 3000 others are images corresponding to the
same kind of images as in the GRF-BMH-3K dataset and
the last 3000 other images are deteriorated with a GRF
background and a DR process : the following values of
q have been evenly used : 0,25 0.3, 0.35, 0.4, 0.45, 0.5,
0.55, 0.6, 0.65, 0.7.

B. Evaluation

1) Images: In order to evaluate the robustness of the five
trained CNN, four classes of images are used. Two of them
are computed in the same way as the images used to train the
CNN models, but were not used for the training process. The
two others are used to determine the ability of the models to
close edges.
• EV-GRF-DR: This class of images represents a tessella-

tion immersed in a GRF background, iteratively deterio-
rated by a DR process. The corresponding values of q go
from 0.1 to 0.9 with a step of 0.01 between each image.
The background is the same for the 81 images. Fig. 6
shows an example of tessellation for q = 0.3, q = 0.7 and
the associated ground truth. Results presented in Sect. V
represent the mean values calculated over 100 iterations
of this class.

• EV-GRF-BMH: The images of this class correspond to
a tessellation iteratively altered by an BMH deterioration
with disks of radius r = 10. Each image corresponds
to a remaining proportion of edges information. The
proportions go from 0 to 0.95 with a step of 0.05 between
each image. The background is the same for the 20
images. Fig. 7 represents the image with 90% of the
initial edges information, the image with 15% of the
initial edges information and the corresponding ground
truth. Results presented in Sect. V represent the mean
values calculated over 100 iterations of this class.

• BIN-GI: The binary grid images class represents a grid
with iteratively growing holes at the intersection points.
The holes are disks with radius going from 0 to 15 pixels,
with a step of 1 between each image. The length of a side
of one square of the grid in the initial situation (before
any holes) is 32 pixels. Fig. 8 shows the grid with disk
holes having respectively 3 and 13 as radius and the initial
grid used as the ground truth.

• BIN-KAN: This last class of images represents binary
Kanizsa triangle patterns [12] as it is a reference in

Fig. 6: Left: Tessellation for q = 0.3. Center: Tessellation for
q = 0.7. Right: Tessellation ground truth.

Fig. 7: Left: Tessellation with 90% of edges information.
Center: Tessellation with 15% of edges information. Right:
Tessellation ground truth.

continuation pattern. The images correspond to the three
vertices of an equilateral triangle iteratively moved away
by steps of 2 pixels. The initial edge size of the triangle
is 80 pixels. Each vertex is moved with its two 40
pixels edges. Fig. 8 displays the patterns having a gap of
40 pixels and 80 pixels with their correponding ground
truths. This last class is composed of 71 images : from
the equilateral triangle to a pattern with a 140 pixels gap.

2) The ε Dissimilarity Criterion: The criterion used to
measure the segmentation accuracy is the criterion presented in
[13] [14], its definition is the following. A simple definition
of this criterion would be that it corresponds to a symetric
difference with a tolerance introduced be the Minkowski
addition of a ball of radius ρ.

ερG (X) =
#{(X\G⊕ B (0, ρ)) ∪ (G\X ⊕ B (0, ρ))}

#{G⊕ B (0, ρ)}
(10)

With #, ⊕, B (0, ρ), G and X representing respectively
the cardinal sign, the Minkowski addition, the disk of center
0 and radius ρ (the tolerance) as a structural element for
the Minkowski addition, the ground truth and the predicted
segmentation.

As all the ground truths in the training datasets were dilated,
the ground truths used in Sect. V were morphologically dilated
before computing the values of ε. The value of the tolerance
ρ is fixed to 1.5 for the rest of the paper.

V. RESULTS

Fig. 10 and Tab. I summarize the results obtained.
In the rest of the paper, each trained model holds the

name of its training dataset.The BIN-BMH (respectively GRF,
GRF-BMH-3k, GRF-BMH-9k and GRF-BMH-DR) model

Fig. 8: Left: Grid with disk holes of radius 3. Center: Grid
with disk holes of radius 13 Right: Grid ground truth.



Fig. 9: Top Left: Kanizsa motif with a gap of 40 pixels. Top
Right: Kanizsa motif with a gap of 80 pixels. Bottom Left:
Ground truth of the Top Left images. Bottom Right: Ground
truth of the Top Right image.

corresponds to the model trained on the BIN-BMH (respec-
tively GRF, GRF-BMH-3k, GRF-BMH-9k and GRF-BMH-
DR) dataset .

• EV-GRF-DR (Fig. 10-a): The results highlight an impor-
tant difference between the BIN-BMH model and the four
others, as it has been trained without images containing
a GRF background. The best results are obtained by the
GRF-BMH-DR model which is the only model trained
with images deteriorated by a DR process. Nevertheless,
the gain obtained by training the model with a DR
deterioration is smaller than the gain obtained by using
a GRF background.

• EV-GRF-BMH (Fig. 10-b): The same comment done
for EV-GRF-DR images is observable: the BIN-BMH
model has poor results compared to the other models.
As the the GRF-BMH-9k model has been trained with
the most important number of images deteriorated by a
BMH process, it presents the best results. Moreover, the
fact that the GRF-BMH-DR model has better results than
the GRF-BMH-3k model highlights the importance of the
quantity of images.

• BIN-GI (Fig. 10-c): As it has been trained with binary
images with BMH deterioration, the results given by the
BIN-BMH model are better than the other models, as
it can be seen in Fig. 11, only the two most difficult
images are not properly completed by the BIN-BMH
model. The GRF model which was not trained with
images deteriorated by a BMH deterioration gives the
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Fig. 10: (a): Results of the EV-GRF-DR images. y-axis: ε, x-
axis: q.
(b): Results of the EV-GRF-BMH images. y-axis: ε, x-axis:
Proportion of remaining edges information.
(c): Results of the BIN-GI images. y-axis: ε, x-axis: Radius
of the disk holes.
(d): Results of the BIN-KAN images. y-label: ε, x-label: Size
of the gap in number of pixels

worst results (Fig 11). Finally, as it can be observed in
Fig. 11, even though the GRF-BMH-9k properly extends
the grid, it obtains worst results than GRF-BMH-3k as it
adds false positive pixels.

• BIN-KAN (Fig. 10-d): For this class of images too, the
BIN-BMH model gives good results (see Fig. 11), for
the same reasons as the ones described for the BIN-GI
images. But by adding barbules, the BIN-BMH model
obtains scores close to the GRF model which only
segments the existing edges (Fig. 11).
Here again, by the important number of false positive
pixels, the GRF-BMH-3k, the GRF-BMH-9k and the
GRF-BMH-DR models obtain worst results than the two
other models.

Images \ Models BIN-
BMH

GRF GRF-
BMH-
3k

GRF-
BMH-
9k

GRF-
BMH-
DR

EV-GRF-DR 7 3 3 3 3
EV-GRF-BMH 7 ∼ 3 3 3

BIN-GI 3 7 3 ∼ 3
BIN-KAN 3 7 ∼ ∼ ∼

TABLE I: Summarized Results

VI. CONCLUSION

Results showed that a CNN can either learn accurately a
segmentation or a completion task if the training dataset is



Fig. 11: From top to bottom and from left to rigth: Image 1: Input image from the grid images. Image 2: Output of image 1
by the BIN-BMH model. Image 3: Output of image 1 by the GRF model. Image 4: Output of image 1 by the GRF-BMH-9k
model. Image 5: Input image from the Kanizsa images. Image 6: Output of image 5 by the BIN-BMH model. Image 7: Output
of image 5 by the GRF model. Image 8: Output of image 5 by the GRF-BMH-DR model.

well build, as it is the case for the BIN-BMH model for the
BIN-GI class of images, but without being able to generalize in
unknown situations (in the presence of a GRF background).
The overall better results of the GRF-BMH-DR model over
the GRF-BMH-9k model (except for EV-GRF-BMH) show
that the diversity of images is an important factor. Moreover,
the completion process tends to penalize the models by adding
unwanted edges or isolated pixels. Finally, as the main aspects
underlined are the presence of a GRF background and the lack
of constraints for the completion process, a new perspective to
this work would be to use numerical twin images adapted to a
specific application domain to study the capacities of a CNN
on real life tessellation images. A first approach could be to
use specific shapes of mosaics for a particular application to
constrain the completion process to a certain range of angles
or situations. Indeed, the Voronoi Diagrams resulting from the
realisations of the PPP used in Sect. II, present a high cells
shape diversity, due to the lack of spatial interaction in this
process.
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