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leriche@emse.fr

Keywords: Model Calibration, Uncertainty Quantification, Mixed-effects models, Composite

Abstract. The quantification of model parameter uncertainty is a long-standing issue in model
calibration. Classical techniques provide methods to handle some type of uncertainties (e.g.
experimental noise or model bias). However, usual calibration techniques are not designed to
take into account the variability between the different individuals. This is not a problem if the
individual variability is negligible but it is an important issue if the individual variability is sig-
nifcant. The mixed-effects models provide a statistical framework to calibrate the parameters of
a model taking into account the individual variability. The objective of this paper is to introduce
the mixed-effects in material science. The ONERA Damage model (ODM) is considered, first
with synthetic data, then with thirteen experimental strain-stress curves of a ceramic matrix
composite material. The robustness of the mixed-effects approach regarding the variability and
the number of specimen is investigated. Model choices such as the correlation between ODM
parameters and other settings are discussed. The ability of mixed-effects models to characterize
the material variability and to provide accurate estimates of the parameters associated to each
specimen is illustrated.
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1 GENERAL INTRODUCTION

Model calibration is an active research topic which is common to all scientific domains such
as hydrology [1], economics [2], biology [3] and mechanics [4]. The goal of calibration may
be described as follows: for a given set of experimental observations and a model whose pre-
dictions are controlled by parameters, find the model parameters values that provide the best
adequation between the model responses and the observations. Most of the time, the observa-
tions are noisy, the models may not be able to reproduce perfectly the observations (model bias),
the specimens are subject to variability (due to the production process). As a consequence, the
inferred model parameters are uncertain. Characterizing the uncertainty of the calibrated model
parameters is essential before carrying out further analyses (uncertainty propagation, sensitivity
analysis, etc.).

In the field of mechanics, for a given experiment (a tensile test for instance) and a given ma-
terial, international standards impose to repeat the tests on different specimens of this material
([5] in aeronautics) to quantify the effects of material variability on the mechanical properties
(e.g., the Young’s modulus, the ultimate tensile strength). As a consequence, databases used to
characterize materials are often composed of the results of an experiment on different specimens
of the same material. Taking into account experimental variability in the calibration process is
necessary when the model parameters are sensitive to them.

A large number of calibration procedures exist which are commonly divided into the fre-
quentist [6, 7] and the Bayesian methods [8, 9]. The frequentist approach consists in mini-
mizing over the model parameters a misfit function [6] which quantifies a difference between
the model output and the data. The least-square criterion and other Lp-norms [7, 10, 11] are
usual misfit criteria. In [12], other criteria such as the weighted least squares are proposed. The
results of the calibration depend on the chosen criterion and on the optimization algorithm. An-
other type of criterion commonly used is the maximum likelihood estimator (MLE) [9, 13, 14].
For a given statistical hypothesis over the misfit (e.g., the misfit follows a Gaussian distribu-
tion), the likelihood measures how well the model output matches the data. The frequentist
framework also provides methods to handle the calibration of multiple experiments assuming
a single value for the input model parameters [15]. This scenario can arise if the database is
composed of repetitions of a tensile test. In this case, the criterion to be minimized is a vector
containing the scalar misfit criteria associated to each repetition. To solve such multi-objective
optimization problem, either the problem is transformed into a single objective problem (for
instance by a weighted sum of the objectives) or a multi-objective algorithm is used [16]. In
the multi-objective formulation, the result of the calibration is a set of parameters values called
the Pareto frontier which contains all the tradeoffs between the different misfit criteria. This set
is made of the parameters which are consistent in the Pareto sense with respect to the different
repetitions. In the frequentist framework, irrespectively of the number of misfit criteria, model
parameters are assumed to be deterministic. However, because of the presence of experimental
noises and specimens variability, the model parameters should be considered as uncertain. The
frequentist framework provides methods (such as the asymptotic theory [2, 6, 11] and bootstrap
[9, 17, 18]) to quantify model parameter uncertainties but they 0are mainly dedicated to char-
acterize the experimental noise, not the material variability.

In the Bayesian framework [6, 9], the parameters are considered as random variables. The
aim of the Bayesian inference is to get a description of their probability density function (PDF).
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It relies on an assumed prior density and on a likelihood function. The prior density sums up
the available knowledge before calibration. The choice of the prior may be difficult and has an
impact on the calibration results. As in the frequentist framework, the likelihood function ex-
presses the goodness of fit of a given set of model parameters. The result of Bayesian inference
is a PDF of the model parameters called the posterior distribution or a set of samples of it. This
PDF combines information from the prior density, the likelihood and the available data [6, 8].
Most of the time, the posterior distribution cannot be computed analytically. In case no analyt-
ical expression of the posterior distribution is available, Monte Carlo Markov Chain (MCMC)
methods allow to generate samples from this posterior density [19, 20]. The MCMCs build a
random walk in the parameters space which selects samples of the posterior density[19]. The
properties of the random walk ensure that the approximate posterior distribution converges to
the exact posterior distribution as the number of iterations goes to infinity. Among the MCMC
algorithms, one of the most popular algorithms is the Metropolis-Hastings algorithm [21, 22].
In practice, it may be challenging to define the settings of MCMC algorithms and to ensure an
appropriate convergence to the exact posterior distribution.

Both frequentist and Bayesian frameworks rely on the likelihood function which expresses
the goodness of fit of the model response to the data given a set of model parameters. In the
material engineering literature [23, 24], both approaches make the same hypothesis towards
material variability. Indeed, in the derivation of the likelihood function, it is assumed that all
the specimens can be described by a unique set of model parameters. If the material variability
can be neglected, this assumption is correct and allows to calibrate a single specimen. Under
such an hypothesis, material model calibration has been carried out using both frequentist and
Bayesian approaches. For instance, Avril et al. [23] gave examples of mechanically suited crite-
ria to be minimized in a frequentist approach like the Finite Element Method Updating approach
or the Constitutive Equation Gap Method. Within the frequentist framework again, Chongshuai
et al. [25] calibrated a visco-elastic model and Solanki et al. a non-linear damage model [26].
Bayesian inference has long been applied to mechanical problems. Isenberg presented in [24]
the calibration of elastic properties. Gogu et al. compared results from both frequentist and
Bayesian approaches [27]. Gogu et al. later proposed the identification of elastic properties
using Finite Element Model for composite materials [28]. Non-linear models can also be cal-
ibrated thanks to Bayesian inference. Liu & Au [29] calibrated a non-linear hysteretic model,
Rizzi et al. [30] proposed the identification of a finite element plasticity model and Rappel et
al. calibrated visco-elastic models [31]. Rappel et al. [4] also proposed a tutorial to Bayesian
inference for different mechanical models among which elastic linear, linear elasticity-perfect
plasticity models and viscoelastic models.

When material variability is significant, the specimens should no longer be described by
a unique set of model parameters. It is possible to calibrate individually each specimen, but
the parameter vector inferred on one specimen is not necessarily consistent with the observa-
tions of the other specimens. In fact, the simple likelihood function is not designed to take
into account material variability. The result of this calibration consists of a set of parameter
vectors, one for each calibrated specimen. Yet, these parameter vectors are somehow related
as all of them characterize the same material on which has been carried out the same experi-
ment. Rizzi et al. [30] proposed a way to take into account material variability in the calibration
process. They made the hypothesis that for all the available specimens, the model parameters
vary between a lower and upper bound (defined by expert knowledge through mathematical
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constraints). This is equivalent to assuming that, for all the specimens, the model parameters
are uniformly distributed between those bounds and thus can be approximated with a first order
Legendre uniform polynomial chaos expansion (PCE). The objective was to find the coefficients
of the PCE for each model parameter. This approach is useful as the calibration process tries
to take explictly into account the material variability. However, it does not estimate the param-
eters of every specimen which are necessary for physical interpretations. To sum up, none of
the previous methods allows to calibrate a material model parameter taking into account both
experiment repetitions and material variability.

The aim of this paper is to propose a calibration method compliant with specimens repe-
tition (defined in the following as a population) in the presence of material variability. The
approach relies on mixed-effects models [32]. We seek to demonstrate the ability of the method
to both describe the individual variability and to provide estimates of the individual parameters.
In Section 2.1, the mixed-effects approach is presented. Section 2.3 gives two different methods
to estimate the likelihood function. Then, this new methodology is applied for the first time to a
simplified damage model derived from a material model for ceramic matrix composite materials
(called ONERA Damage Model (ODM) [33, 34, 35]) with four parameters to be calibrated. In
Section 3.3, the method is tested on virtual data to study the calibration methodology settings
and the consequences of the mixed-effects. Then, in Section 3.4, thirteen individual replicate
tensile experiments (that each contains a dozen to a hundred observations) are processed with
the method. The specimens are made of CERASEP A400 [36, 37], a ceramic-matrix composite
material.

2 POPULATION-BASED APPROACH AND MIXED-EFFECTS MODELS

The mixed-effects models and the population-based approaches are now described. The
models are first presented under a general scope to illustrate how this point of view can help to
analyze the material variability (in section 2.1). Then, the models are detailed and specified for
the calibration of a material.

2.1 Introduction to the population-based and the mixed-effects models

Population-based models attempt to describe the variability of physical phenomena observed
in a population of individuals. This type of approaches finds its origin in pharmacometrics
[38, 39] where it is important to quantitatively describe interactions between drugs, diseases and
patients. For instance, during a drug test, every subject is given the same amount of drug but his
response heavily depends on his genome [32, 39]. The mixed-effects notion comes from the fact
that there are “fixed” effects that are shared by the entire population of individuals and “random”
effects that are specific to each individual of the population. For a given model of interest, the
specimen parameters (also referred as the individual parameters) can be decomposed as

individual parameters = fixed effects + random effects (1)

In a mechanical context, if the studied parameter is the Young’s modulus, Eq.(1) states that
the Young’s modulus of each specimen is the combination of a reference value (for instance
given by the producer) and of a deviation due to the production process. Depending on the
relationship between the input parameters and the responses, linear [40, 41, 42] and non-linear
[43] mixed-effects models have been developped.

In Figure 1, the differences between the classical and the population-based approach are
highlighted. On the left of the Figure, in the classical approach, the underlying hypothesis is that
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Figure 1: Comparisons of the assumptions made with respect to the individual variability in the
classical approach (left) and in the population-based approach (right).

all the specimens can be described by a unique set of parameters. In the population-based ap-
proach (on the right), each sample is assigned a set of parameters. In the mixed-effects models,
it is assumed that there exists an underlying probability distribution (noted fΘ) whose outcomes
are the individual parameters set θ1,θ2, . . . ,θn with n the number of individuals [32, 44]. This
is an improvement from the classical approach as it establishes a relation between the individ-
ual parameters set. In this framework, both the underlying probability distribution of the model
parameters and the value of the individual parameters are determined. In addition, it remains
possible to include other sources of uncertainty (experimental noise, model bias, etc.) on the
individual parameters.

Thanks to its ability to describe individual variability, the population-based approach is used
in cases where this variability is important. To the best of our knowledge, this approach has
never been applied to material models to account for the variability introduced by the repetition
of mechanical tests over a population of specimens.

2.2 Formalization

We now describe the mixed-effects approach of [32, 44] in the context of of tensile tests
performed on different specimens. All the specimens are samples from the same material, for
example SiC-SiC composites CERASEP A400. They share the same dimensions and features.
There are n specimens and i ∈ J1, nK is the corresponding index. The number of observations
the ith specimen (or individual) is Ni and j stands for the index of the j th measure (with j ∈
J1, NiK). The j th output measure of the ith individual is labeled as yij and tij stands for the
j th input measure of the ith individual. The random vector of the output measures of the ith

individual is written Yi and its outcome yi = (yij)j∈J1,NiK. The set of parameters of the ith

individual is denoted θi = (θ1
i ,θ

2
i , . . . ,θ

d
i ) ∈ Rd, with d the number of model parameters to be

calibrated. The model of the material is noted F(·). PDFs will be noted by the generic letter f .
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2.2.1 Mixed-effects models approach

The mixed-effects framework [32, 44] assumes that there exists a probability distribution fΘ

whose outcomes are the individual parameters:

∀i ∈ J1, nK, θi ∼
i.i.d.

fΘ (2)

where i.i.d. stands for independent and identically distributed. Both fΘ and the θi are unknown
and the aim is to determining them. In addition, if fΘ is parametric (Gaussian distribution
for instance), Π stands for its parameters and fΘ = fΘ,Π. Identifying fΘ,Π is tantamount to
determining Π. Given Π and θi ∼ fΘ,Π ∀i ∈ J1, nK, the model output yi can be written as:

∀i ∈ J1, nK, yi ∼
i.i.d.
F(·,θi) + ξ (3)

In Eq. (3), ξ stands for the random vector of the errors. It represents the experimental noise and
the model bias. Without any other hypothesis, the outcomes of ξ labeled (ξij)(i,j)∈J1,nK×J1,NiK

are different for each individual and for each observation. The global mixed-effects models for
the j th output measure of the ith individual yij reads:

yij = F(tij, θi) + ξij (4)

Classically, several additional hypotheses are assumed. First, fΘ,Π is chosen to be a multivariate
Gaussian distribution (of dimension d):

fΘ,Π = N (µ,Σ) (5)

with µ ∈ Rd the mean vector and Σ ∈ Md(R) the covariance matrix. This choice has to be
made taking into account expert knowledge, experimental and physical problem characteristics.
As a consequence, individual parameters can be written as follows

θi = µ + bi (6)

with bi ∼
i.i.d.
N (0,Σ). Comparing Eqs.(1) and (6), µ stands for the fixed effects (the same for

the whole population) and bi the random effects (different for each individual). The second
hypothesis is that for each individual and each measure, the error term is a Gaussian white
noise (no bias, no correlation):

ξij ∼
i.i.d.
N (0, ωij) (7)

with ωij the variance of the noise of the j th output measure of the ith individual. The noise
further is supposed to be homoscedastic, that is to say ωij = ωi ∀ (i, j) ∈ J1, nK × J1, NiK.
Finally, the vector of parameters to be calibrated is denoted Ψ :

Ψ =
(
µ, Σ, Ω

)
∈ Rn+d+

d(d+1)
2

with Ω = diag(ω1, . . . , ωn). The mixed-effects models seek Ψ and gives an estimate of the
individual parameters (θi)i∈J1,nK.
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2.2.2 Likelihood of mixed-effects models

The calibration is often achieved by maximizing the likelihood of Ψ,L(Ψ) = f(y1, . . . ,yn|Ψ),
even if other methods can be found to estimate Ψ [45].
The first step consists in writing the PDF of ouput measurements for a given set of individual
parameters and error term. Combining the Eqs.(4) and (7), this density is expressed as:

f(yi|θi, ωi) =
1

(ωi
√

2π)Ni

Ni∏
j=1

e
− 1

2

(
yij−F(tij ,θi)

ωi

)2

(8)

The individual parameters are distributed according to a Gaussian PDF (Eq.(5)). For a given Ψ,
their density can be written as follows:

f(θi|Ψ) =
1√

|Σ|(2πd)
e−

1
2

(θi−µ)T Σ−1(θi−µ) (9)

Following the use of the conditional probability rule, the PDF of the individual parameters θi
and model output yi for a given Ψ, that is to say f(yi,θi|Ψ), is:

f(yi,θi|Ψ) = f(yi|θi,Ψ)f(θi|Ψ) (10)

Using Eqs.(8), (9) and (10), f(yi,θi|Ψ) can be written as :

f(yi,θi|Ψ) =
1

ωNi
i

√
|Σ|(2π)Ni+d

e
− 1

2

(
(θi−µ)T Σ−1(θi−µ)+

∑Ni
j=1

(
yij−F(tij ,θi)

ωi

)2
)

(11)

Because the θi’s are not observed, The likelihood of the ith individual Li(Ψ) is the integral of
f(yi,θi|Ψ) with respect to all possible θi over Rd :

Li(Ψ) =

∫
Rd

f(yi,θi|Ψ)dθi (12)

Under the assumption of independent individuals, the likelihood of Ψ reads as the product of
all the individual likelihoods,

L(Ψ) =
n∏
i=1

Li(Ψ) (13)

The maximum likelihood estimator Ψ̂ is obtained as the result of the following maximization
problem over the set of all the possible parameters Ξ:

Ψ̂ = arg max
Ψ∈Ξ

L(Ψ) (14)

In practice, the log-likelihood is computed to ease numerical optimization.

Mixed-effects models approach consists in calibrating a (multivariate) probability distribu-
tion. To do so, a minimum number of samples is required. However, in the material field, the
number of repetitions of a given experiment is small (in the order of 10 for some tests, see [5]
for tensile tests). This has to be confronted with the number of parameters to be calibrated
which is here in O(n + d2). As a consequence, the chosen modeling must be consistent with
the available number of repetitions.
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2.3 Computing the likelihood

The evaluation of the likelihood function requires to compute the individual likelihoods,
which imply to estimate the multi-dimensional integrals of Eq.(12). A fundamental method to
compute the integral is the Monte-Carlo method [46]. To compute the integral of a function g(·)
with respect to any density f , the Monte-Carlo method works as follows: samples are generated
with respect to the PDF f (potentially with MCMC methods); the integral is approximated as
the empirical mean of the function g(·) calculated at each sample. The main issue is that the
sampling density f(θi|Ψ) does not necessarily generate model parameters that result in a proper
adequation of the model responses and the observations. Therefore, the likehood function often
collapses to 0. In order to generate model parameters that better suit the observations, an im-
portance sampling scheme (written MCMC-IS) [32, 47] is implemented and described next. It
will be compared to another usual methods to compute multidimensional integrals, the Laplace
approximation [48]. This approach is based on an approximation of the integrand. It does not
involve any sampling technique but requires to perform an auxiliary minimization.

2.3.1 Computation of the likelihood by importance sampling

Importance sampling scheme belongs to the same family of integration schemes as the clas-
sical Monte-Carlo [9]. An auxiliary PDF is used to generate samples in place of the initial
density function. The idea is to generate model parameters associated to the model responses
that are more consistent with the available observations. As a result, the likelihood function
does not collapse to 0, a necessary condition for its maximization. The integral of Eq.(12) is
rewritten as follows:∫

Rd

f(yi|θi,Ψ)f(θi|Ψ)dθi =

∫
Rd

f(yi|θi,Ψ)
f(θi|Ψ)

πi(θi|Ψ)
πi(θi|Ψ)dθi (15)

with πi(θi|Ψ) the importance sampling density. The chosen importance sampling density is
πi(θi|Ψ) = f(θi|yi,Ψ) which allows to generate model parameters conditioned on both Ψ
and the available observations yi. To compute the integral in Eq.(15), it is necessary to generate
samples from πi(θi|Ψ) which can be done with MCMC methods since this density is known up
to a normalization constant (with respect to θi). Indeed, the conditional probability rule gives

f(θi|yi,Ψ) =
f(yi,θi|Ψ)

f(yi|Ψ)
(16)

and the numerator is known from Eq.(11). It can be noticed that the denominator which appear
in Eq.(16) is in fact the individual likelihood Li(Ψ) defined in Eq.(12). Computing the integral
requires to evaluate f(yi|θi,Ψ) (which is known in closed form with Eq.(8)) and the importance
sampling ratio f(θi|Ψ)

πi(θi|Ψ)
(which demands to evaluate f(θi|yi,Ψ)). Samples can be generated

thanks to MCMC technics but it remains necessary to evaluate the PDF value f(θi|yi,Ψ). To
provide an estimation of f(θi|yi,Ψ), it is possible to use Kernel Density Estimation methods
[49]. However, with such methods, the accuracy of the PDF estimation decreases when the
dimension of θi increases. Therefore, it is instead decided to approximate this density by

πi(θi|Ψ) = N (m(θi,yi,Ψ), C2(θi,yi,Ψ)) (17)

with m(θi,yi,Ψ) = E(θi|yi,Ψ) the empirical mean of the MCMC samples of f(θi|yi,Ψ)
and C2(θi,yi,Ψ) = V(θi|yi,Ψ), the empirical covariance matrix with only diagonal terms in
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Md(R). Finally, for M i.i.d. samples generated with respect to πi(θi|Ψ) as defined in Eq.(17)

(labeled θ̃
k

i , k ∈ J1,MK), the integral of Eq.(15) is approximated as follows:∫
Rd

f(yi|θi,Ψ)f(θi|Ψ)dθi ≈
1

M

M∑
k=1

f(yi|θ̃
k

i ,Ψ)
f(θ̃

k

i |Ψ)

πi(θ̃
k

i |Ψ)

This computation is carried out for each individual likelihood (typically the likelihood associ-
ated to each specimen). The most computationally demanding part of the likelihood estimation
is the generation of MCMC samples which requires thousands of repeated material model eval-
uations.

2.3.2 Computation of the likelihood through the Laplace approximation

The Laplace approximation [50] applies to integrals of the type

A =

∫
Rd

eh(x)dx

with h(·) a function which complies with some constraints:

1. h(·) admits a global maximum x0 that belongs to the integration interval,

2. h(·) is a twice-differentiable function,

3. its Hessian matrix computed at x = x0 is a symmetric definite negative matrix.

The main idea is to state that only points close to x0 significantly contribute to the integral.
The different calculations that allow to establish the equations of the Laplace approximation are
presented below. The Taylor expansion of h(·) at x0 can be written as :

h(x) = h(x0) + (x− x0)T∇h(x0) +
1

2
(x− x0)TH(h)(x0)(x− x0) + o(‖x− x0‖2) (18)

with:

• ∇h(x0) = ( ∂h
∂xi

(x0))i∈J1,dK the gradient vector of h(·) at x0,

• H(h)(x0) = ( ∂2h
∂xi∂xj

(x0))(i,j)∈J1,dK2 the Hessian matrix of h(·) at x0.

As x0 is the global maximum, the gradient vanishes and the substitution of h(x) in Eq.(2.3.2)
by its approximation determined in Eq.(18) gives:∫

Rd

eh(x)dx ≈
∫
Rd

eh(x0)+ 1
2

(x−x0)TH(h)(x0)(x−x0)dx = eh(x0)

∫
Rd

e
1
2

(x−x0)TH(h)(x0)(x−x0)dx

(19)
H(h)(x0) is symmetric definite negative so −H(h)(x0) is symmetric definite positive. As
a result, in Eq.(19), the integrand is a Gaussian PDF of mean x0 et and covariance matrix
−H(h)(x0)−1. As a PDF always integrates to 1,∫

Rd

e−
1
2

(x−x0)TM−1(x−x0)dx = (2π)
d
2

√
|M | (20)
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Applying Eqs.(19) and (20), the Laplace approximation of A is obtained as

A ≈ eh(x0)) (2π)
d
2√

|−H(h)(x0)|
(21)

For a given Ψ = (µ,Σ,Ω), the individual likelihood reads as [48]

Li(Ψ) =

∫
Rd

f(yi|θi,Ψ)f(θi|Ψ)dθi =

∫
Rd

1

(ωi
√

2π)Ni

√
|Σ|(2πd)

e
− gi(µ,∆i,yi,bi)

2ω2
i dbi (22)

with θi = µ + bi where µ stands for the mean (i.e. the fixed effects) and bi are the individual
deviations (i.e. the random effects). ∆i is the result of the Cholesky decomposition of ω2

i Σ
−1

(so ω2
i Σ
−1 = ∆i∆

T
i ). The function gi(·) is defined by

gi(µ,∆i,yi,bi) = ‖yi −F(ti,µ + bi)‖2 + ‖∆ibi‖2 (23)

The Laplace method is applied in two steps:

1. Search for the individual parameters (or rather the deviations), b̂i, minimizing gi(·) (23),

2. Computation of the Laplace approximation with formula in Eq.(21).

The Hessian matrix of gi(·) at b̂i is [48]:

H(gi)(b̂i) =
∂2F(µ,yi, b̂i)

∂bi∂bTi
(yi−F(µ,yi, b̂i))+

∂F(µ,yi, b̂i)

∂bi

T
∂F(µ,yi, b̂i)

∂bi
+∆T

i ∆i (24)

In practice, ∂2F(µ,yi,b̂i)

∂bi∂bT
i

(yi − F(µ,yi, b̂i)) can be neglected if the model F(·) is close enough

to the experiment yi [51]. The term ∂F(µ,yi,b̂i)
∂bi

is evaluated using a finite difference scheme. As
a result, the negative log-likelihood is finally expressed as:

− ln(L(Ψ)) = −
n∑
i=1

ln (Li(Ψ)) = −
n∑
i=1

ln

(∫
Rd

f(yi|θi,Ψ)f(θi|Ψ)dθi

)

≈ n

2
ln(|Σ|) +

n∑
i=1

(
1

2
ln(−|H(gi)(b̂i)|) +

gi(µ,∆i,yi, b̂i)

2ω2
i

+Ni ln(ωi
√

2π)

)
(25)

In both approaches (MCMC-IS and Laplace), the computation of the different individual
likelihoods is independent. As a result, to reduce the computational time, the calculation of the
individual likehoods is performed in parallel.

2.4 Maximizing the likelihood

Now that the expression of the likelihood for a mixed-effects model has been established,
the model parameters can be estimated by maximizing it, or equivalently (although numerically
better conditioned), by minimizing minus the log-likelihood,

Ψ̂ = arg min
Ψ∈Ξ

− ln(L(Ψ)) (26)

10
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Remember that computing the likelihood is numerically challenging as it is necessary to es-
timate a multi-dimensional integral with respect to the unobserved variables Eq.(12). To solve
the minimization problem (Eq. (26)), the first possibility is to rely on gradient-based algo-
rithms which need either to compute the gradient or an approximation of the gradient of the
objective function. Here, the gradient of − ln(L(Ψ)) with respect to Ψ is difficult to compute
analytically. The application of classical differentiation formulas shows that it is necessary to
differentiate the individual likelihoods which is a tricky task as it requires to differentiate the
integral of Eq. (12). Indeed, differentiating the integrals is difficult as both the integrand and
the integration variable depend of Ψ via Eq. (2). A second possibility is to use gradient-free
optimization algorithms such as evolutionary algorithms but they tend to require too many like-
lihood estimations. As a result, neither gradient-based algorithms nor evolutionnary algorithms
are used in this paper to solve the problem defined in Eq.(26).

Others methods based on likelihood maximization include the Stochastic Approximation Ex-
pectation Maximization algorithm (SAEM) [47]. The algorithm is an adaptation of the classical
Expectation Maximization algorithm which uses a stochastic approximation of the likelihood
[52]. The algorithm builds a sequence of estimate of Ψ, (Ψk)k∈N which converges to the exact
optimal value of Ψ under regularity assumptions on the likelihood [47]. This algorithm is im-
plemented for instance in the toolbox SAEMIX [53].

In the current work, to speed-up the convergence of the optimization, a Bayesian optimiza-
tion scheme is chosen [54]. Bayesian optimization works as follows. The search starts by
computing the objective function over a design of experiment (DoE) a latin hypercube sam-
pling [55] for instance. Next, a surrogate model of the objective function is constructed with a
Gaussian process [56]. The Gaussian process allows the defnition of an infill criterion (here the
expected improvement [57]) which is maximized in the search space Ξ to determine the location
where the next exact likelihood function should be evaluated. The procedure is repeated until a
stopping criterion is met, here a maximum number of likelihood estimations.

2.5 Estimating the individual parameters

The mixed-effects models approach allows to infer the individual parameters. With the two
methods (Laplace approximation and importance sampling scheme) chosen to compute the like-
lihood, individual parameters are by-product of the likelihood function calculation at Ψ̂. In
the importance sampling scheme, individual parameters are predicted as the mean of the PDF
πi(θi|Ψ), i.e., the empirical mean of θi|yi,Ψ. Note in passing that MCMC samples can be
used to propagate uncertainties through the model. With the Laplace approximation, individual
parameters are computed through the minimization of function gi(·) at Ψ̂ and θ̂i = µ + b̂i.
These individual parameters can be interpreted as the mode of f(θi|yi, Ψ̂).

3 APPLICATIONS

In this section, the mixed-effects methodology is applied to the calibration of amaterial model
of ceramic-matrix composite materials called the ONERA Damage Model (ODM) and pre-
sented in [33, 34, 35]. The ODM model is presented in Section 3.1. In Section 3.2, the choices-
regarding the statistical model. In Section 3.3, the approach is tested on synthetic experimental
data in order to carry out different sensitivity analyses of the method. Eventually, in Section
3.4, real experimental data are calibrated.

11
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3.1 The ONERA Damage Model

A simplified uni-axial version of the ODM model is now presented. The stress (in MPa) will
be labeled σ and the strain (without units) ε. The strain-stress relation is

σ(t) = Eeff(ds(t))ε(t)− E0εr(t) (27)

with E0 the Young’s modulus, Eeff the effective Young’s modulus which takes into account the
loss in stiffness of the material caused by the damage ds, εr is the residual strain and t the time.
The residual strain is the strain left in the absence of load. The effective Young’s modulus reads

Eeff(ds(t)) =
E0

1 + η(t)ds(t)
(28)

The damage desactivation index, η, represents the fact that damage does not impact the stiffness
for compressive loads. It is given by η(t) = h(ε(t)) with h the Heaviside function. The damage
ds is computed from the thermodynamical force y. The damage equations are the following

y(t) =
1

2
E0〈ε(t)〉2+ (29)

gs(y(t)) =

√
ymax(t)−

√
y0s√

ycs
with ymax(t) = sup

τ∈[0,t]

y(τ) (30)

ds(t) = dc(1− e−〈gs(y(t))〉p+) (31)

〈x〉+ stands for the positive part of x (i.e. 0 if x < 0 and x if x > 0). Eq.(29) defines the
thermodynamical driving force. The positive part means that damage is created only under
tensile stress. In Eq.(30), the parameter y0s is the damage threshold, ycs the damage evolution
celerity, and p a shape parameter called the damage evolution exponent. The damage threshold
indicates the beginning of damage. Indeed, in Eqs.(29) and (30), for thermodynamical forces
smaller than ys0, the damage does not increase and the model sums up to σ = E0ε using Eq.(28).

To this damage threshold can be associated a strain damage threshold given by εs0 =
√

2y0s

E0
.

The parameter dc stands for the damage saturation. The damage evolution exponent controls
the regularity of the transition between the linear and non linear parts of the curve. If p > 1, the
derivative of the stress with respect to the strain (known as the tangent matrix), ∂σ

∂ε
, is continuous

on the whole curve. However, if p < 1, the tangent matrix is not continuous at ε = ε0
s and it can

create numerical issues in finite element calculations. Nevertheless, contrary to the case p > 1,
the damage threshold is much easier to calibrate if p < 1 as it is directly related to a kink on
strain-stress curves.
The residual strain evolves according to the following equation:

∂εr
∂t

= χη
∂ds
∂t

(
Eeff

E0

)2

ε (32)

In Eq.(32), only χ has to be identified. The model parameters are summed up in Table 1.

3.2 Settings of the statistical model

We now seek to apply the mixed-effects models methodology on strain-stress curves which
can be modeled by the ODM model. The first step consists in applying the methodology to
virtual data to investigate its ability to calibrate stress-strain curves and describe the material

12
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Table 1: ODM Model parameters.

Young’s
modulus

damage
threshold

damage evolu-
tion celerity

damage
saturation

damage evolu-
tion exponent

residual
strain

E0 y0s ycs dc p χ

variability. Since the data is generated directly from the model, one knows the exact model
parameters distribution and the individual parameters values, and we can confront them to the
calibration results. It is also possible to evaluate the robustness of the calibration technique to
the number of available individuals. More formally, for a given mean µ and covariance matrix Σ
(this set of parameters will be denoted Ψexact), it is possible to sample the individual parameters
which are labeled θi,exact. For each of these individual parameters , the ODM model outputs
σi,calc are computed, which stand for the different specimens. Using the mixed-effects approach,
a calibrated distribution characterized by the estimated distribution parameters (labeled Ψ̂) and
the corresponding individual parameters (denoted θ̂i) is obtained. One objective consists in
checking that the calibrated distribution is consistent with the exact distribution, the virtual data
and the exact individual parameters. Other items will be investigated such as the impact of the
number of individuals on the calibration process and how the results of the calibration depend
on the involved specimens.

Throughout this work, the following indicators will be studied:

• The Kullback-Leibler divergence [58] between the exact fexact and the approximated dis-
tribution f̂calibrated: KL(fexact, f̂calibrated) =

∫
Rd fexact(θ|Ψexact) ln

(
fexact(θ|Ψexact)

f̂calibrated(θ|Ψ̂)

)
dθ

• Error in the parameters space : for all the individual parameters set, it reads as 1
n

∑n
i=1

|θi,exact−θ̂i|
θi,exact

(division is elementwise, with no target value equal to 0)

• Error of distribution parameters : |Ψexact−Ψ̂|
Ψexact

(division is elementwise, with no target value
equal to 0)

• Error in model space : for all the experiments, it can be written as 1
n

∑n
i=1

1
Ni
‖σi,calc −F(ti, θ̂i)‖2

Only the last criterion can be used to study the results obtained with experimental data be-
cause in this case neither the exact model parameters distribution nor the exact individual pa-
rameters are known.

Several Assumptions are made here. First, only monotonic loadings are considered so that,
from the original 6 parameters of the ODM model, the residual strain component can be ne-
glected. Consequently, χ is set to 0 because this parameter is only involved in the computation
of the residual strain component. In addition, the material model implies strong correlations
such as those between ysc and p or ys0 and p. To avoid correlations at the beginning, it is decided
to set p to 1.2, a usual value for this kind of materials. As a consequence, all the parameters
are considered as independent and the covariance Σ is a diagonal matrix made of the variance
terms. This simplifying assumption is discussed in the perspectives of the paper. It is also
decided to assign to each specimen the same error term

∀(i, j) ∈ J1, nK× J1, NiK ωij = ω

13
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Table 2: Exact values of the parameters distribution.

E0 [MPa] y0s [MPa] ycs [MPa] dc

Mean 1.89× 105 2.50× 10−2 2.24 3.77

Standard deviation 1.79× 104 8.00× 10−3 0.439 0.893

As a result, 8 to 9 parameters have to be calibrated (depending on if ω is calibrated or fixed
which stand for 4 mean and 4 variance parameters.

For the computation of the likelihood with the importance sampling scheme, 104 MCMC
samples are generated and the first 500 samples burnt. The thinning is set to 20. Once all these
samples are discarded, it remains 4750 of the 104 initial samples. The MCMC sampler used can
be found in [59]. The algorithm used to minimize the function gi(·) (Eq.(23)) is the CMA-ES
algorithm [60] with a budget of 103 iterations and a population size of 50.

The algorithm that maximizes the likelihood function is the EGO algorithm from the GPy
library [61]. The initial DoE is a latin hypercube sampling with 45 points to which 160 points
are added during the optimization. Variables are normalized between 0 and 1. Optimization
bounds are discussed in the hereafter.

3.3 Calibrating with virtual data

3.3.1 Generating virtual data

The targeted mean and standard deviations of the parameters are chosen at values which
are consistent with usual observations as presented in Table 2. 20 i.i.d samples from fΨexact

are generated. For each of these samples and given a strain profile (the strain rate ε̇ = ∂ε
∂t

is
equal to 3.00 × 10−4 s−1), the corresponding model outputs (σi,calc)i∈J1,20K are computed. An
heteroscedastic noise is added to the experimental data:

σi,noisy = σi,calc × (1 + βζ) with ζ ∼ N (0, 1) and β = 0.02 (33)

Exact and noisy data are depicted in Figure 2. The bounds on both means and standard
deviations used for the optimization are shown in Tables 3 and 4. Within these bounds, the
search space of the model parameter distribution is large and the different distributions exhibit
significant variety. This can be seen in Figure 3 where some marginals for different means and
variances of E0 are represented.

3.3.2 Calibration with a fixed error

This section is dedicated to the presentation of the results of the calibration of the ODM
model with the virtual data presented in Figure 2. The results from both approaches (Laplace
and MCMC-IS) are presented. The standard deviation of the error ω is fixed to 1 MPa. The
10 specimens involved in the calibration process are presented in Figure 2. The presented
calibration process is run with the different settings introduced in Section 3.2.

To analyze the results, it is possible to look at the calibrated parameters distribution char-
acterized by its mean and standard deviation. These values are presented in Table 5. The first
comment is that the calibrated distributions are rather close to the exact distributions, except
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Figure 2: Model with exact individual parameters (lines) and noisy data (dots).
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Figure 3: Possible marginal distributions for the parameter E0.

Table 3: Bounds for the mean parameters µ.

E0 [MPa] y0s [MPa] ycs [MPa] dc

Lower bound 1.20× 105 5.00× 10−3 1.10 1.30

Upper bound 2.35× 105 5.00× 10−2 3.50 6.00

Table 4: Bounds for the standard deviation parameters, Σ.

σE0 [MPa] σy0s [MPa] σycs [MPa] σdc ω [MPa]

Lower bound 1.40× 104 3.00× 10−3 0.250 0.600 0.381

Upper bound 2.00× 104 1.00× 10−2 0.500 1.08 12.5
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for y0s. The corresponding marginals are displayed in Figures 5a, 5c, 5d. Both approaches
seem to provide a different result as as two order of magnitude separate their Kullback-Leibler
divergences (see Table 7). However, omitting the y0s makes the KL divergence fall to 0.81 for
the MCMC approach and 0.33 for the Laplace approach. The two approaches provide similar
results except for the damage threshold. The marginal distributions associated to the Young’s
modulus and the damage evolution celerity are well calibrated. The distribution associated to
the Young’s modulus is generally the best calibrated parameter distribution as it appears to be
the most sensitive parameter in the ODM model, followed by ycs and dc. The differences be-
tween the different coordinates are further discussed later.

On Figure 6, the resulting calibrated individual parameters value for each specimen is dis-
played. It is important to notice that the values of the individual model parameters are all
different allowing to express the variability of the material specimen. This is a key aspect of the
proposed approach compared to existing techniques discussed in the introduction. Considering
the results about the individual model parameters, the mean relative errors (over the 10 individ-
uals) between the exact and the calibrated individual parameters is presented in Table 8. The
relative error on the Young’s modulus, which is from both a numerical and mechanical points
of view the most sensitive parameters, is the smallest with respect the other mean errors. The
damage saturation dc and the damage evolution celerity ycs are also properly calibrated in both
approaches. However, as it was possible to expect, the mean of relative errors on y0s is the high-
est in each approach. It is also possible to check that the data used in the calibration process is
properly calibrated. For that, the model outputs corresponding to the estimated parameters are
plotted in Figure 7a in which it is possible to notice that the model is properly calibrated as the
model responses are in adequation with the virtual data. This can be assessed by checking the
averaged distance in the model space given in Table 9. For each specimen, the difference betwen
the model responses with the exact individual parameters and with the calibrated individual pa-
rameters are illustrated in Figure 7b. It illustrates the efficient calibration of the ndividual model
parameters for all the considered specimens. Even if the marginal distributions for the model
parameters are assumed to be independent, in the MCMC-IS approach, the generated model
parameter samples by the importance density using MCMC (Figure 8) exhibit the correlations
between the parameter coordinates in order to generate model responses in adequation with the
available virtual data.

Neither the marginals nor the individual parameters of the damage threshold y0s are well
calibrated. One of the hypotheses which can explain this fact is the lack of sensitivity of the
damage threshold in the objective function. To check this assumption, it is possible to carry
out a raw sensitivity analysis by studying the lengthscales of the Gaussian process involved in
the optimization process. This interpretation comes from the fact that the lengthscale acts as a
wavelength of the Gaussian process which is here a surrogate model of the mixed-effects like-
lihood function. If the wavelength along one axis of the Gaussian process is small, it means
that the range of variations of the objective function along this direction is small, which may
be interpreted as a limited sensitivity of the objective function along this coordinate. On the
contrary, if the wavelength is large, the variations of the objective function along this direction
exhibit large variations, which means the objective function varies significantly along this axis
and the corresponding parameter is sensitive. For the Laplace calibration, the order of mag-
nitude of the lengthscales (standard and normalized with respect to the optimization bounds)
are presented in Table 6. Standard numerical values give `(E0) � `(dc), `(ycs) > `(y0s) as
expected. Normalized lengthscales only indicate that `(E0) � `(dc), `(ycs), `(y0s), which is
still consistent with physical knowledge. The low sensitivity of y0s in the likelihood function,
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Figure 4: On the left (a), model outputs for different damage thresholds varying between [0.9×
µy0s , 1.1 × µy0s ] (µy0s and other parameters correspond to the mean parameters presented in
Table 1). On the right (b), model outputs for different damage thresholds varying between
[0.9×µycs , 1.1×µycs ] (µycs and other parameters correspond to the mean parameters presented
in Table 1).

which explains the differences encountered along the y0s (Figure 5b) axis can come from the
choice of p. In Section 3.1, it was stated that y0s was complicated to calibrate for p > 1 with
only strain-stress curves, which means that previous remarks are consistent with expert knowl-
edge. To investigate the sensitivity of the model ouput towards the damage threshold, another
simple solution can consist in computing the model outputs for different damage threshold and
the other parameters fixed. On Figure 4a, it is possible to notice that the damage threshold,
for a variation of 20% around the corresponding mean value µy0s , does not influence much the
model output as for all strain values, the difference between the extreme stress curves is beneath
5 MPa. The relative variation of the stress is below 5% which can be considered as non signif-
icant. Yet, the model responses exhibit greater sensitivity for the same relative variation of the
damage evolution celerity ycs (see Figure 4b). The same observations can be made on the other
model parameters. This ascertains the results obtained with the analyses on the lengthscales.
In practice, y0s is usually calibrated using acoustic data which are not available here. Damage
starts when the first fibers of the composite material break. It produces acoustic events which
can be recorded and help to indicate when the first failure (and the start of damage) happens.

In this section, the ability of the mixed-effects models methodology to calibrate the ODM
model has been illustrated. This framework allows to characterize the material variability and
its impact on the model parameters. In addition, to provide information on the distribution of the
model parameters, it allows to determine reliable estimates of the individual model parameters.
Furthermore, both computational methods of the likelihood (i.e. MCMC-IS and Laplace) give
similar results in terms of calibrated model parameter distributions and individual parameter
values. Given that the computation of the likelihood with the Laplace method is much faster to
compute (for 10 specimens of 29 measurements each on a multi-threaded code with 4 CPU on a
standard machine with processor Intel Core I5, MCMC-IS approach takes 2 minutes to compute
the likelihood while the Laplace approach takes about 4 seconds), all further analyses will be
conducted using the Laplace approximation method for the computation of the likelihood.
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Figure 5: Exact and calibrated marginals along the E0 axis (a), the y0s axis (b), the ycs axis (c),
and the dc axis (d).

Table 5: Calibrated means and standard deviations with fixed error term. The relative error
between the exact Ψexac and the calibrated Ψ̂ in % is indicated between brackets.

E0 [MPa] y0s [MPa] ycs [MPa] dc

Exact means 1.88× 105 0.0250 2.24 3.77

Laplace cali-
brated means

1.95× 105(4) 0.0301(20) 2.15(4) 3.36(10)

MCMC-IS cali-
brated means

1.81× 105(4) 0.0500(100) 2.05(8) 2.74(27)

Exact standard deviations 1.79× 104 8.00× 10−3 0, 439 0, 893

Laplace calibrated
standard deviations

1.62× 104(9) 7.31× 10−3(9) 0.647(47) 0.871(2)

MCMC-IS calibrated
standard
deviations

1.67× 104(7) 3.00× 10−3(62) 0.431(1) 0.910(2)
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Figure 6: Exact marginals, exact and calibrated individual parameters along the E0 axis (a), the
y0s axis (b), the ycs axis (c), and the dc axis (d).

Table 6: Order of magnitude of the Gaussian process lengthscale along each direction at the the
last iteration for the Laplace calibration process.

`(E0) `(y0s) `(ycs) `(dc)

standard lengthscale ` 109 10−2 100 100

normalized lengthscale `r 104 10−1 10−1 10−1

Table 7: Kullback-Leibler divergences for the virtual data case, the error term being fixed.

MCMC-IS Laplace

Kullback-Leibler divergence 37.3 0, 53

Table 8: Mean relative errors for the 10 calibrated individual parameters compared to the exact
parameter values.

E0 [MPa] y0s [MPa] ycs [MPa] dc

Laplace relative error (%) 1.59 23.5 10.6 3.25

MCMC-IS relative error (%) 3.04 43.15 13.4 6.04
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Table 9: Mean approximation error for the 10 model outputs corresponding to the calibrated
individual parameters compared to model outputs corresponding the exact parameter values.

Laplace MCMC-IS

Distance in model space (MPa) 0, 311 0, 348
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Figure 7: In (a), exact data used for calibration vs model responses for the estimated indi-
vidual parameters. In (b), differences between model with exact parameters and with Laplace
calibrated parameters.
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Figure 8: Pairplot of the MCMC samples of f̂(θ|y0, Ψ̂).

3.3.3 Calibration with an optimized error term

In this Section, the variance ω of the error term is not considered fixed anymore and it is
calibrated along with the other parameters in Ψ. Moreover, the objective of this section is to
study the influence of the number of available individuals in the calibration method.

The number of available observations plays a key role in calibration. In general, a high num-
ber of observations allows to reduce the uncertainty associated to the calibrated parameters.
However, in mechanics, the number of specimens is limited due to time and cost considerations
and the usual number of specimens varies from 5 to 10 in the best cases. As a result, to study
the influence of the number of individuals on the calibration results, it is decided to calibrate the
model with respectively 5, 10 and 20 individuals (all depicted in Figure 2) to take into account
representative constraints on the number of available specimens. The upper bound on the vari-
ance of the error term is set to 10 MPa and the lower bound to 0.1 MPa.

The presented calibration approach using the Laplace technique for the likelihood estima-
tion is carried out for 5, 10 and 20 individuals generated with the same exact model parameters
distribution. To analyze the obtained results, it is possible to plot the marginals along the E0

axis for 5, 10 and 20 individuals (see Figure 9). In this figure, it is possible to notice the marginal
along the ycs axis is better inferred as the number of specimens increases. This phenomenon
can also be noticed for the marginal along the dc axis (see Figure 17). However, the marginal
along the E0 axis is downgraded from 10 to 20 individuals (see Figure 16). As the marginal
distributions are jointly calibrated, it is necessary to measure the improvement of the calibration
using Kullback-Leibler divergences for 5, 10 and 20 individuals (y0s is ommited in the KL cal-
culation, see discussion in the previous section). The KL divergence decreases with the increase
of the number of individuals (Table 10), therefore the distribution of the model parameters is
better calibrated as the number of available specimens increases. In addition, on Figure 11b,
it can be noticed that the damage threshold is always the parameter with the highest associ-
ated error: in other words, this parameter is complicated to calibrate regardless of the number
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Table 10: Kullback-Leibler divergences for 5, 10 and 20 individuals (without consideration of
y0s marginal).

Number of specimens 5 10 20

Kullback-Leibler divergence 0.82 0.42 0.32

Table 11: Mean error (for all the deformation values) for 5, 10 and 20 individuals between the
calibrated model responses and the model responses with the exact parameters.

Number of specimens 5 10 20

Mean approximation error (MPa) 0.226 0.327 0.357

of specimens. To illustrate the impact of the model parameter distribution convergence on the
model responses, it is possible for each calibrated distribution (for 5, 10 and 20 individuals) and
for the exact distribution to generate parameter samples (2000 in the present case). Then, for
each parameter sample, the ODM model is computed. Eventually, the 5% and 95% quantiles in
the model response space are estimated (Figure 10).

From Figure 10, it can be seen that the estimated 5% quantiles for the model responses
using the calibrated distribution and the exact distribution converge one to another as the num-
ber of individuals increases. Similar analysis can be done for the 95% quantiles. It allows to
see that the convergence of the calibrated model parameters distribution toward the exact dis-
tribution as the number of individuals increases, enables the generation of model responses that
cover the entire set of possibilites (and not just a subset as for 5 individuals). This is of prime
importance if this calibrated model parameter distribution is then used for uncertainty propaga-
tion in structure analysis for instance. It is therefore important to keep in mind that with a small
number of individuals (around 5 specimens), the calibrated model parameter distribution might
not be enough representative of the entire set of possible outcomes (due to the lack of individual
diversity with only 5 specimens). Therefore, with a limited number of specimens, the calibrated
model parameter distribution has to be used with attention.

Eventually, it is important to notice that the resulting model parameter values for each in-
dividual is closed to the exact parameter values even when only 5 individuals are considered.

In this section, the sensitivity to the number of individuals has been studied. It was has
been that as the number of specimens increases, the calibrated marginals get closer to the exact
marginals, and the same thing is observed in the model space. Finally, it was also noticed even
with few specimens, the mixed-effects methods calibrates well the involved specimens.

3.3.4 Robustness of the model calibration with respect to different available individuals

Calibration in the mixed-effects models framework relies on specimens to determine the
model parameter distribution and later estimate the individual parameters values. The objective
of this section is to evaluate the robustness of the calibration using mixed-effects models with
respect to the available specimens. In other words, whatever the specimens are, the population-
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Figure 9: Exact and calibrated marginals along the ycs axis for 5 individuals (a), 10 individuals
(b) and 20 individuals (c).
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based approach is able to approximate correctly the model parameter distribution and the indi-
vidual parameters values. To check this assumption, the calibration process is repeated 20 times
with different sets of specimens. For each of these repetitions, 10 different individual param-
eters values set are generated from the same exact distribution fΨexact , the corresponding model
outputs are computed and noise is added as in Eq.(33). The individual parameters are different
from one repetition to the other. All the repetitions are calibrated with mixed-effects models
methodology using the same settings (i.e. initial DoE, number of iterations, bounds, etc.).

For each repetition, the Kullback-Leibler divergence is computed (see Figure 11a). The
advantage of the Kullback-Leibler divergence is that this quantity takes into account all the dif-
ferent variations of the joint distribution. It is also possible to compute the mean error between
the estimated individual parameters and the exact individual parameters for the 10 considered
individuals and that for the 20 repetitions (see the boxplots 11b).

The objective is to check that calibration using mixed-effects models approach does not de-
pend of involved specimens. With Figure 11a and Figure 11b, it is possible to notice that for all
the repetitions, the range of variation of the Kullback-Leibler divergences and the mean relative
errors are rather small. This tends to indicate that for the distribution parameters, the calibration
results do not depend too much to the involved specimens. It is also possible to consider the
calibrated variances of the error term. The different calibrated standard deviations of the error
terms with 10 specimens are shown in Figure 11c. For all the repetitions but one, the stan-
dard deviation of the error term varies between 4.53 to 6.41 MPa. As the hypothesis made on
the noise in the likelihood function is different from the noise which was added to the virtual
data, there is not any reference value. Nevertheless, it can be noticed that calibrated standard
deviations are within a rather small range, which tends to confirm that the calibration of this
parameter is rather independent of the specimens used for calibration.

Up to now, virtual data have been used in the calibration process in order to illustrate the
approach with a pedagogical point of view. It allowed to compared to obtained calibration
results with respect to a known model parameters distribution and to the known individual
parameters values. With this virtual data, the sensitivity to the number of individuals and their
repartitions have been analyzed.

In the next section, a test case using experimental data is carried out, using the same calibra-
tion process.

3.4 ODM model calibration with experimental data

We now apply the mixed-effects models to calibrate the ODM model with 13 tensile tests
performed on CERASEP A400, a woven composite material. The available tests are plotted in
Figure 12. The methology settings (i.e. initial DoE, number of iterations, kernel of the Gaussian
process) are the same as in the previous sections. The calibration bounds are given in Tables 12
and 13.

Notice in Figure 12 that all curves are less disparate than the virtual data generated in Section
3.3.1. Material failure happens at different strains and thus the ultimate tensile strength varies.
Moreover, the transition between the linear and non-linear regimes is also subjected to variabil-
ity. These obervations constitute an interesting test case for a population-based approach such
as the mixed-effects models. Finally, the experiments have different number of observations

24



C. LABOULFIE , M. BALESDENT, L. BREVAULT, S. DA VEIGA, F.-X. IRISARRI, R. LE RICHE, J.-F.
MAIRE

Repetitions with 10 specimens0
1
2
3
4
5
6
7
8

DK
L

(a)

E0 y0s ycs dc
0

10
20
30
40
50
60
70
80

er
ro

r (
%

)

(b)

5.0 5.5 6.0 6.5 7.0 7.5 8.0
calibrated standard deviation of the noise (MPa)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

nu
m

be
r o

f s
am

pl
es

(c)

Figure 11: With 10 specimens: (a) boxplot of Kullback-Leibler divergence for all repetitions,
(b) boxplot of the error of the individual parameters for all repetitions, (c) histogram of the
calibrated standard deviation of the error term.

points (from 20 to 700). To make sure all individuals have the same weight in the likelihood
function, it is decided to subsample those with more than 20 observation points. Experiments
are subsampled peridiodically and always include the last point.

Figure 13 shows the calibrated marginals. The marginal along E0 seems well calibrated
in the sense that all the individual parameters belong to the interval [µE0 − 3σE0 , µE0 + 3σE0 ]
which concentrates 99% of possible values for a Gaussian random variable. Along the y0s axis,
the same situation as as in Section 3.3 is encountered as all the individual parameters are con-
centrated around the mean. The individual parameters are also concentrated around the mean
for ycs so that the variance seems overestimated. An explanation could be that the Bayesian op-
timization has not converged yet to the maximum likelihood estimator of Ψ. Along the dc axis,
the individual parameters seem consistent with the marginal even if without the point whose
damage saturation is between 3 and 3.5, the variance of dc would have been considered as
overestimated. More classically, the adequation between the model responses for the estimated
individual parameters and the experimental data is displayed in Figure 14 for two individuals
(others can be found in appendix, Figures 19 and 20). In both plots, the estimated individual
properly matches the experimental data (the same applies to the other experiments, see Figures
19 and 20)).

Eventually, it is possible to propagate the uncertainties of the calibrated distribution to the
model parameters and to compare the results to the experimental data. In Figure 15, 1000 sam-
ples from the calibrated distribution are drawn and the corresponding model outputs computed.
Notice that the experimental data are included in the bundle of model outputs, which shows
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Figure 12: Experimental strain-stress curves of the CERASEP A400 material.

that the calibrated distribution conservatively learns the observed variability. The variability of
the inferred distribution is more important than the one observed on the experimental curves.
This overestimated variance of model parameters may be caused by the fact that the Bayesian
optimzation has not converged yet with in the given number of iterations. Taking into account
correlations between model parameters in the calibration process might help to reduce the esti-
mated variances.

4 CONCLUSIONS & PERSPECTIVES

In this paper, a population-based mixed-effects model was applied to calibrate a material
model and to characterize material variability. First, the mixed-effects model has been described
with an emphasis put on the numerical estimation of the likelihood. Then, this methodology
has been applied to virtual data to compare the results with known model parameters distribu-
tion and individual parameters values. It has allowed to analyze the effects of the number of
specimens and the specimens variability. Finally, the mixed-effects approach has been applied
to experimental data obtained with a woven ceramic matrix composite material.

Our investigation show that mixed-effects models offer a promising framework to calibrate
material parameters while taking into account specimen variability. Even if the accuracy of the
calibrated parameter distribution seems sensitive to the number of specimens, the method typ-
ically provides accurate estimates of the individual parameters and captures well the observed
variability. The number of specimens should also help to choose the level of details of the prob-
abilistic model. For instance, calibrating correlations with a limited set of individuals yields
estimates which may not be trustworthy.

In terms of future work, two major directions should be investigated. Firstly, it is important
to include in the calibration process the correlations between the model parameters. A study of
the relationship between the number of available individuals and the accuracy of the calibration
correlations is essential. Secondly, improvements in the mixed-effects models are required in
order to account for different types of data (for instance acoustic measures in addition to tensile-
stress observations). In doing so, the likelihood will be more sensitive to this parameter and as
a matter, the marginal along the y0s will be better calibrated and should make the estimation of
the damage threshold more accurate.
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Figure 13: Calibrated model (histograms) and individual (squares) parameters along the E0 (a),
the y0s (b), the ycs (c) and the dc axes (d) using the 13 CERASEP A400

specimens.
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Figure 14: Model outputs vs. experimental data for the second (a) and the third (b) experiments.
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Figure 15: Uncertainty propagation from the calibrated distribution.
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A Calibrated model parameter marginals of ycs and dc with the Laplace approach using
virtual data
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Figure 16: Exact and calibrated marginals along the E0 axis for 5 individuals (a), 10 individuals
(b) and 20 individuals (c).
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B Calibrated model parameter marginals of dc with the Laplace approach using virtual
data
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Figure 17: Exact and calibrated marginals along the dc axis with 5 individuals (a), 10 individuals
(b) and 20 individuals (c).
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C Bounds of optimization for the Laplace approach

Table 12: Bounds for mean parameters.

E0 [MPa] y0s [MPa] ycs [MPa] dc

Lower bound 1.40× 105 5.00× 10−3 2.8 2.75

Upper bound 2.2× 105 5.00× 10−2 5.50 8.00

Table 13: Bounds for standard deviation parameters.

σE0 [MPa] σy0s [MPa] σycs [MPa] σdc σω [MPa]

Lower bound 8.00× 103 5.00× 10−5 0.100 0.005 0.500

Upper bound 1.80× 104 1.00× 10−4 1.2 0.9 2.00
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Figure 18: Model with exact individual parameters and noisy data.
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E Results of calibration for all experiments from CERASEP A400 material
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Figure 19: Model output vs experimental data for the first experiment (a), the second experiment
(b), third experiment (c), fourth experiment (d), fifth experiment (e), sixth experiment (f) and
the seventh experiment (g).
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Figure 20: Model output vs experimental data for the eighth experiment (a), the ninth experi-
ment (b), the tenth experiment (c), the eleventh experiment (d), the twelfth experiment (e), and
the thirtheenth experiment (f).
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