
HAL Id: emse-03345991
https://hal-emse.ccsd.cnrs.fr/emse-03345991

Submitted on 25 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Collaborative Cyber-Physical Microservices Platform
– The SITL-IoT Case

Carlos Gonçalves, A. Luis Osório, Luis Camarinha-Matos, Tiago Dias, José
Tavares

To cite this version:
Carlos Gonçalves, A. Luis Osório, Luis Camarinha-Matos, Tiago Dias, José Tavares. A Collaborative
Cyber-Physical Microservices Platform – The SITL-IoT Case. 22nd Working Conference on Virtual
Enterprises (PRO-VE 2021), Nov 2021, Saint-Etienne, France. pp.411-422, �10.1007/978-3-030-85969-
5_38�. �emse-03345991�

https://hal-emse.ccsd.cnrs.fr/emse-03345991
https://hal.archives-ouvertes.fr

A Collaborative Cyber-Physical Microservices Platform

– The SITL-IoT Case

Carlos Gonçalves1, A. Luís Osório1, Luís Camarinha-Matos2, Tiago Dias1, José

Tavares3
1ISEL – Instituto Superior de Engenharia de Lisboa, IPL – Instituto Politécnico de Lisboa,

and POLITEC&ID, Portugal, carlos.goncalves@isel.pt, lo@isel.ipl.pt, tiago.dias@isel.pt

2School of Science and Technology, NOVA University of Lisbon and CTS-UNINOVA,

Portugal, cam@uninova.pt
3FORDESI, Informatics Systems, and Solutions Company, jose.tavares@fordesi.pt

Abstract. Managing heterogeneous software and hardware artifacts from

multiple suppliers is a complex and challenging process. The integration of

sensors, actuators, and their controllers, modeled as IoT elements, also presents

significant challenges. Typically, a vendor supplies one or more parts, each one

with its proprietary interface, which may raise vendor lock-in and supplier

dependencies that can compromise the replacement of some of the artifacts by

equivalent ones from competing vendors. The research presented in this paper

addresses such challenges in the context of the SITL-IoT project aiming at

transforming an industrial agri-food environment towards an open, integrated

system-of-systems. We present and discuss a reference implementation of a

collaborative platform to simplify the management of different artifacts,

supplied by alternative suppliers, modeled as services. More specifically, the

concepts of ISystem (Informatic System), CES (Cooperation Enabled Service),

and Service are used to manage the different elements that compose an agri-

food environment transparently and uniformly. We argue that the adopted

model simplifies the collaboration among technology suppliers along the life

cycle maintenance and evolution of their enabled products.

Keywords: Internet of Things, Systems Integration, Collaborative Networks,

Cyber-physical systems, Microservices, Distributed systems.

1 Introduction

Organizations that use different software or hardware elements face challenging

problems when updating or upgrading their technological infrastructures. Typically,

each technology solution or product is provided by a different supplier with its own

proprietary protocols, which quite often makes it very difficult and expensive to

replace a given element with an equivalent one from a competing supplier. On the

other hand, the Internet of Things (IoT) enables industries to manage their existing

sensors and actuators as elements that exist on their local networks or WAN.

However, because collaborating suppliers deliver sensors and actuators using

different protocols and Application Programming Interfaces (APIs), the integration of

Gonçalves C., Osório A.L., Camarinha-Matos L.M., Dias T., Tavares J. (2021) A

Collaborative Cyber-Physical Microservices Platform – the SITL-IoT Case. In:
Camarinha-Matos L.M., Boucher X., Afsarmanesh H. (eds) Smart and Sustainable

Collaborative Networks 4.0. PRO-VE 2021. IFIP Advances in Information and

Communication Technology, vol 629. Springer, Cham. https://doi.org/10.1007/978 -3-

030-85969-5_38

mailto:carlos.goncalves@isel.pt
mailto:lo@isel.ipl.pt
mailto:tiago.dias@isel.pt
mailto:cam@uninova.pt
mailto:jose.tavares@fordesi.pt

398 C. Gonçalves et al.

such technology artifacts results in complex and demanding processes both in terms

of the development and maintenance cycles. Indeed, competing suppliers source

elements under technology diversity, raising risks of vendor lock-in or supplier

dependencies. Such dependencies compromise the replacement of artifacts, being an

obstacle to sustainable innovation.

This paper presents and discusses a reference implementation of an Informatics

System of Systems (ISoS) platform [8] that contributes to the Model-Driven Open

Systems Engineering (MDEOS) and promotes an open market competitive

technology landscape for organizations. The ISoS model establishes a system-of-

systems where each system might have market competitors able to provide possible

substitutions. The main objective is to make a system, or elements of a system,

replaceable by an equivalent technology artifact from an alternative supplier. The

notion of Cooperation Enabled Services (CES) is adopted as part of the strategy to

attain partial substitutability, a challenging endeavor to achieve. The ISoS model

comprises three abstraction layers: i) ISystem, establishing a coarse computational and

cooperation responsibility border; ii) CES, as a composite of Services; and iii)

Service, as the operating element that can be a pure software artifact or a cyber-

physical element, e.g., an IoT sensor/actuator, as the finer-grained computational

responsibility border. By ISoS reference implementation, we mean the instantiation of

an operating ISystem, named ISystem0, aiming to validate and certify the compliance

of all the ISystem/CES/Service products.

This work expands further the initial approach of the SITL-IoT project [12],

aiming to evolve an industrial agri-food environment towards an agri-food ecosystem

supported by an open, integrated system-of-systems. We present the first ISoS

reference implementation and discuss its utilization for simplifying the management

of artifacts supplied by alternative vendors. Such ISoS reference implementation is

the first effort to deliver an actual implementation of the ISoS model, thus allowing

organizations to be ISoS enabled. As a case study, we demonstrate the ISystem, CES,

and Services instances developed within the SITL-IoT project devoted to structure

and manage the agri-food silos environment transparently and uniformly.

The remainder of this paper is organized as follows. Section 2 briefly presents the

ISoS background, while Section 3 reviews the SITL-IoT project and its strategies to

integrate the ISoS reference implementation. Finally, Section 4 presents the

conclusions and discusses future work.

2 Enterprise Architecture with ISoS Background

By adopting the ISoS framework [8], an enterprise platform architecture is based on

three core modeling elements: ISystem, CES, and Service. Furthermore, to be ISoS

enabled, an organization needs to instantiate the meta-ISystem, i.e., an instance of the

ISystem0, an ISystem with the unique role of managing the ISoS landscape. Fig. 1

depicts the primary elements that make an ISoS organization using a SysML Block

Definition Diagram. The ISoS abstraction is a composite of exactly one ISystem0 and

zero or more ISystems. Each ISystem is composed of one or more CES, which are

composed of one or more Services. The ISoS elements model the technology artifacts

A Collaborative Cyber-Physical Microservices Platform 399

through a set of properties, e.g., name, version, supplier, or description. In the case of

a Service, the modeling element instance has associated the meta-data required for a

peer Service to access the implemented functionalities.

Fig. 1. The simplified SysML block definition diagram of the ISoS model

The ISoS model considers a meta-element with management or coordination roles

at the ISoS, ISystem, and CES levels, respectively ISystem0, CES0, and Service0. A

primary role of the ISystem0 is to act as a directory service managing the metadata of

the ISoS elements that exist within an organization. In the current version of the ISoS

reference implementation, the ISystem0 relies on Apache Zookeeper [4]. Fig. 2 depicts

the internal structure of the ISystem0 linked to the ISoS Znode, the children nodes

ISystem0, ISystem1, ..., ISystemN, the corresponding children CES, and, for each CESJ,

the children Services. ISystem0 has a CES0 composed by Ser0 and Ser1. The ISoS

administration user interface has a CESUI composed of Ser0 and SerUI that makes

possible the navigation across ISoS instance elements, facilitating introspection of its

properties.

Apache Zookeeper /

ISystem1 ISystem2 ISystemN

ISoS

CESKCES0

ServiceZService0

ISoS
Administration

ISystem0

Server1 Server2 Server3 ServerN
. . .

ISystem0

CES0

SerI0

Ser1

CESUI

Ser0

SerUI

CESUICES0

SerUISer0
. . .

. . .

Ser0 Ser1

. . .

Fig. 2 The internal organization of the ISystem0

The adoption of the open-source Zookeeper system is motivated by ISystem0 being

a critical system since the other ISystems depend on its availability. If configured in

redundancy mode, the Zookeeper system maintains a consistent replica in N

independent servers, preferably based on separate hardware. The approach follows the

strategy proposed in [10], considering a reliable ISystem0 dependent on the fault-

tolerant configuration of the Zookeeper, implementing the Zab distributed

coordination algorithm [3], [4]. Furthermore, beyond the fault-tolerance and

distributed coordination strategies [6], the ISystem0 implementation is prepared to

400 C. Gonçalves et al.

scale several Service instances through the Observer nodes concept to speed up read-

only service lookup operations [5].

One important feature of the ISoS is its capability to make any Service instance

accessible both inside and outside the organization. The ISystem0 is accessible at

isos.organizationDomain:2058. Business partners, such as a technology supplier of an

ISystem, a CES, or a Service, can use this access to collaborate in the maintenance or

evolution of the supplied technology artifacts. The access facility offered by ISoS,

through ISystem0, is accessible in any business collaboration context by following the

appropriate authentication and security mechanisms. In the next section, we detail

implementation issues of the reference ISystem0 developed in the SITL-IoT project

with further contributions from [12].

3 The SITL-IoT Project Case Study

The SITL-IoT research and development project aims at developing an open IoT Bus

for cyber-physical elements modeled as Services. The project answers the research

question of how to evolve towards an open multi-supplier technology landscape. In

this section, we show how the ISoS model was used to structure the computing

elements that compose the SITL-IoT project.

3.1 The SITL-IoT Base Scenario

Fig. 3 depicts a simplified view of an agri-food company located nearby the seaport of

Leixões in the north of Portugal, identified as Organization A.

Fig. 3. Case study scenario

In this scenario, we consider only a subset of the elements necessary for loading

and unloading cereals to/from trucks for reasons of simplicity. For truck control,

access to the industrial facilities is done using two gates: North for inbound and South

for outbound. Moving agri-food barges inside the seaport requires an authorization

issued by the Port Authority, represented by Organization B. The purpose of the gate

in Organization B is to control the trucks discharging the bulk-carrier ships from the

seaport area. This area is the Portuguese and EU border with customs and border-

police control. As such, the movement of products between the seaport and the agri-

food organization requires drivers to authenticate and validate its transport. As shown

in Fig. 3, trucks are weighted both inbound and outbound using industrial scales from

A Collaborative Cyber-Physical Microservices Platform 401

different suppliers with its own specific weigh controller technology and interfaces.

The silos include several temperature sensors that are used to manage the temperature

at regularly spaced levels of its structure. This weighing bridge infrastructure, the

temperature sensor elements, and other cyber-physical systems of Organization A are

modelled as IoT devices. Each IoT device is a Service element of the ISoS

framework. All ISystem, CES, and Service elements may have an associated synoptic

panel for the monitoring and operating of the physical elements. For the visualization

of interrelated technology elements, from ISystems to Service, a generic Synoptics of

Things framework is being developed to simplify central supervision interfaces [13].

3.2 The SITL-IoT Project Structure and Elements

The ISoS reference implementation groups the artifacts into specialized projects as

Application Programing Interface and Model Elements (APIM), Operations Elements

(OPE), Deployment and Operations Elements (DOE), and Monitoring Elements

(MOE). This approach aims to facilitate the integratation of complex technology

landscapes, complying to the reference structure and following the guidelines

suggested by the Collaborative Enterprise Development Environment (CEDE) [7].

Fig. 4 shows the ISoS reference implementation structure with the ISystem0 and the

corresponding CES and Service elements. The elements ISystem and CES are

organized using the above-mentioned specialized projects (modules) DOE and MOE,

since the APIM and OPE are exclusive of the Service elements.

Fig. 4. ISoS Reference Implementation project structure (CEDE concerns)

The DevOps approach inspires the DOE project incorporating the mechanisms to

coordinate the development and instantiation of executive parts of ISoS [1]. The MOE

aims to deal with the monitoring mechanisms, e.g., by adopting the Simple Network

Management Protocol (SNMP) with the respective Management Information Base

(MIB) to model the instrumentation of Service elements. The technology selection

can also use the Java Management Extension (JMX) protocol and the respective

instrumentation modeling using Mbean to be managed by JMX agents. The

402 C. Gonçalves et al.

monitoring of technology artifacts is of paramount importance to achieve reliable

integrated systems, as discussed in the ISoS framework reliability [11]. OPE

organizes the computational logic making a Service entity. The project of a Service

also includes: i) the APIM module, to define interfaces and models specific to the

Service; ii) the MOE module, to support the implemented monitoring elements; iii)

the DOE module, responsible for deploying the Service. An alternative is to associate

the CES DOE module responsible for deploying the composing Service elements.

Another option is to consider an integrated deployment of an ISystem done by its

DOE project element. In the current ISystem deployment, the strategy is to invoke the

DOE projects of the ISystem or CES composites recursively. For each CES, the

element executes the deployment logic until the leaf Service elements.

The ISoS reference implementation was developed based on the Java ecosystem,

using Apache Maven to structure the project, manage the dependencies, and generate

isolated and composed artifacts. Nevertheless, very similar principles can be used to

develop an ISoS reference implementation using any other technological ecosystem.

As discussed in [7], while ISoS aims to contribute to the substitutability of

technology artifacts (Service, CES, or ISystem), technology independence needs to be

completed by a unified development environment for unique technology artifacts.

Accordingly, the ISoS reference implementation establishes a separation between

ISystems, CES, and Service elements as concepts, what we refer to as system thinking

to enforce technology independence. The realization of Services in some technology

and executed within the organization (on-premises) or on the cloud refers to software

and deployment/management issues. Fig. 4 depicts System Thinking and Software

Development dotted boxes. The System Thinking dotted box represents the ISoS

ISystem, CES, and the Service concept as system elements. The Software

Development box represents the software and integration issues considering the

required technology artifacts making the Service an executable entity.

As presented and discussed in section 2, the ISystem0 primarily acts as the ISoS

directory service of an organization (to locate Service technology elements). Thus,

depending on the current state of Service (Deployed, Running, Undeployed,

Restarting, Shutting-down, etc.), such state is reflected in the administration interface

of the ISystem0. The diversity of technologies and strategies to address the DevOps

approach, e.g., Ansible, and Kubernetes (container orchestration), motivated a

comparative study for a continuous architecting with Microservices and DevOps [14].

Our reference implementation aims to make the ISystem0 a governance platform

generalized to manage the life cycle of Service concept instances and their

containment structures (CES and ISystems). Since a Service exists in the context of a

CES and a CES exists in the context of an ISystem, we can consider the registering of

a Service within the ISoS landscape involving the following steps:

a. Create (or update) the meta-information of the corresponding ISystem;

b. Create (or update) the meta-information of the corresponding CES(s);

c. Create (or update) the meta-information of the Service(s);

d. Start the OPE and MOE modules of the Service(s).

As a result, the ISoS reference implementation includes i) a generic ISystem DOE

capable of implementing step a; ii) a generic CES DOE capable of implementing step

b; and iii) a generic Service DOE capable of implementing steps c and d.

Furthermore, since in this case study the Java ecosystem was used as the base for the

A Collaborative Cyber-Physical Microservices Platform 403

ISoS reference implementation, the above artifacts are made available as independent

JAR files. This approach allows us to change the implementing artifact by a

competing one (substitutability). Although the discussion presented in this work is

focused on the Java ecosystem, the proposed concepts can be extended to other

ecosystems. In fact, that extension can be a very straightforward process that consists

only in the configuration of the above mentioned JAR files to execute native

Operating System processes rather than Java processes.

For an ISystem reference implementation, the DOE project module is a Java

command-line tool (CLI) that receives two XLM files as arguments. The ISystem

metadata is specified with the argument -d isystemDef.xml. The list of configuration

elements used to start all the CES included in this ISystem is set with the argument -c

cesCfg.xml. Each configuration element has the location of: i) the CES DOE module;

ii) the file containing the CES metadata; and iii) the file containing the configuration

of the services included in the CES. All file paths in the configuration elements are

relative to a base directory, specified as an attribute in the configuration file.

Additionally, the configuration file has two attributes to specify the path of the Java

Virtual Machine (JVM) and the base working directory of the modules to start.

The CES reference implementation considers that the DOE module follows a

similar approach to the one used in the ISystem DOE module. It is a Java CLI

application that receives as arguments the name of the XML file containing the

metadata of the CES (-d cesDef.xml) and the name of the XML file containing the

configuration of the Service elements that compose the CES (-c serviceCfg.xml).

The file used to define the Service configuration has all the information to start a

Service, including the DOE, OPE, and MOE modules and the corresponding

arguments. Please note that the OPE and MOE modules are the only ones committed

to specific functionalities, represented using a darker blue in Fig. 4. The ISoS

reference implementation offers a default DOE module, assuming that the OPE and

MOE Service modules are JAR files receiving their arguments in the command line.

3.3 The ISoS Administration User Interface for the SITL-IoT Case

An administrator can use the ISoS user administration interface to register the

different Services that compose the ISoS landscape organization using only the OPE

and MOE modules of each Service and a set of configuration files, as discussed in the

previous section. The fulfillment of the ISoS interface with the tree

ISoS/ISystem/CES/Service is, therefore, a quite straightforward task, as a result of the

reference implementation discussed in the previous sections.

It is worth mentioning that advanced abstractions are under evaluation, namely the

use of container orchestrations, e.g., the Kubernetes automated container deployment,

scaling, and management toolset. However, our approach does not aim exclusively for

the cloud. In fact, we strive for a balanced strategy for the organization´s computing

technology landscape that can be deployed either on-premises or on the cloud,

depending on resource allocation needs and the most advantageous options that can

change dynamically. The vendor lock-in risks motivated the proposal of a “… overlay

layer that provides users with an inter-operable and visibility-supported environment

404 C. Gonçalves et al.

for MSA-based IoT-Cloud service composition over the existing multiple clouds” [2].

Nonetheless, the proposed layer seems to introduce additional complexity. The DOE

project structuring element can manage the deployment issues in our approach,

eventually providing alternative implementations to cope with cloud provider`s

heterogeneity.

3.4 Revisiting the SITL-IoT Scenario under a Collaborative Perspective

The ISoS implementation described in the previous sections also enables to analyze

the SITL-IoT scenario presented in section 3.1 under the collaborative network

perspective. As discussed above, every time a truck needs to enter the agri-food area

located on-premises of Organization A, it is necessary to obtain inbound access issued

by Organization B. Using the ISoS model and its associated reference

implementation, the collaboration between the two organizations is a straightforward

process. Each of the gates shown in Fig. 3 is running a Service, denoted as ServiceA,

performing the following actions:

1. Collect the driver and truck identification;

2. Contact the ISoS landscape of Organization B (isos.organizationB:2058) to

get an instance of its ISystem0, denoted as ISystem0B;

3. Using ISystem0B, ServiceA performs a lookup operation to obtain the Service

responsible for granting the entry access, denoted as ServiceGateB;

4. ServiceA uses ServiceGateB to authenticate the driver and the truck;

5. If the authentication is successful, the truck can access the agri-food area.

This simple example shows that the presented ISoS reference implementation

allows establishing collaboration among two different organizations, each with well-

identified responsibilities, without knowing the internal details of the involved

organizations. However, the example can be extended to more complex scenarios

involving several organizations. The only requirement is that the involved

organizations can access the ISoS landscape of each other, i.e., access the involved

ISystem0. One main problem is that for ServiceA of Organization A to access

ServiceGateB of Organization B, there is a need for ServiceA to know a priori the path

ISystemi/CESj/ServiceGateB and with it obtain the ServiceGateB meta-data. This

problem can be resolved using ISoS. With the ServiceGateB metadata, the ServiceA

client from Organization A can get the necessary data to configure the client proxy to

access the implemented functionalities properly.

The collaboration infrastructure offered natively by the ISoS framework can be

enhanced by adopting the ECoNet collaborative infrastructure [9]. In this case,

ServiceA of Organization A used its ECoM ISystem to have access to a collaboration

context shared with Organization B, that provides the required interaction with

ServiceGateB using an ECoM instance in Organization B. The advantage of

collaboration through the ECoM ISystems is that domain application ISystems share

low-level communication, security mechanisms, and higher-level virtual collaboration

contexts multi-tenant groups.

A Collaborative Cyber-Physical Microservices Platform 405

4 Conclusions and Further Research

This paper presents and discusses a reference implementation of the ISoS framework,

which models the computing technology landscape of an organization. The Java

ecosystem adopting the Apache Zookeeper and other open-source projects supports

the validation of the framework in the context of the SITL-IoT project. Beyond the

ISystem0 as a core technological element for any ISoS enabled organization, we

present and discuss a project structure to avoid dependency from subcontracted

developments. Furthermore, we discuss a modeling schema for the automatic

management of ISoS concept instances. Also, we demonstrate how this approach

enables configuring operating system services to automatically register an ISoS

Service and the corresponding ISystem and CES when the computer (physical or

virtual) supporting the Service´s execution starts.

We further discuss a monitoring strategy based on SNMP agents operationalized

by the ISoS Service concept and managed by the MOE project structuring element.

The association of monitoring Service agents to domain application Services requires

further research considering the need to abstract legacy protocols, following the

adaptive ISoS Service interoperability mechanism.

For software solution providers like Fordesi, ISoS is a tool that brings industrial

IoT solutions to the transport and logistics sector. The modularity and decoupling

strategies used by the framework enables a quick-wins project management approach

that leads to time and cost-effective solutions.

Concerning collaboration issues, the proposed approach based on the ISoS

framework offers collaboration support facilities, since services from collaborative

organizations can mutually find each other and interoperate based on the I0 canonical

entry point and ISoS metadata facilities. In addition, we discuss the alternative

ECoNet using the collaborative contexts and virtual collaboration contexts as shared

infrastructure elements. While the collaboration mechanisms offered by ISoS proved

to be sufficient for the current business case, further research will validate the

adoption of ECoNet infrastructure as a more general approach.

Acknowledgments. The research conducted by GIATSI/ISEL/IPL was developed

in collaboration with the SOCOLNET scientific network and its ARCON-ACM

initiative. The ANSR/SINCRO, BP/HORUS, and FORDESI/SITL-IoT-PT-2020

projects partially supported this research. Partial support also from the Center of

Technology and Systems – UNINOVA, and the Portuguese FCT Foundation (project

UIDB/00066/2020), and the European Commission (project DiGiFoF). We also

recognize the excellent contributions from Bruno Serras as a research fellow.

References

1. A. Balalaie, A. Heydarnoori, and P. Jamshidi. Microservices Architecture Enables

DevOps: Migration to a Cloud-Native Architecture. IEEE Software, 33(3):42–52, May

2016.

406 C. Gonçalves et al.

2. J. Han, S. Park, and J. Kim. Dynamic OverCloud: Realizing Microservices-Based IoT-

Cloud Service Composition over Multiple Clouds. 9, 2020.

3. P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-Free Coordination for

Internet-Scale Systems. In Proceedings of the 2010 USENIX Conference on USENIX

Annual Technical Conference. USENIX Association, 2010.

4. F. P. Junqueira and B. Reed. ZooKeeper: Distributed Process Coordination. O’Reilly

Media, Inc., 1st edition, 2013.

5. F. P. Junqueira, B. Reed, and M. Serafini. Zab: High-Performance Broadcast for Primary-

Backup Systems. In Proceedings of the 2011 IEEE/IFIP 41st International Conference on

Dependable Systems & Networks, pages 245–256. IEEE Computer Society, 2011.

6. L. Lamport. Paxos Made Simple. ACM SIGACT News (Distributed Computing Column)

32, pages 51–58, December 2001.

7. A. Luís Osório. Towards Vendor-Agnostic IT-System of IT-Systems with the CEDE

Platform. In: Collaboration in a Hyperconnected World. PRO-VE 2016. IFIP AICT, vol

480. Springer, Cham. https://doi.org/10.1007/978-3-319-45390-3_42

8. A. Luís Osório, Adam Belloum, Hamideh Afsarmanesh, and Luís M. Camarinha-Matos.

Agnostic Informatics System of Systems: The Open ISoS Services Framework. In:

Collaboration in a Data-Rich World, pages 407–420. PRO-VE 2017. IFIP AICT, vol 506.

Springer, Cham. https://doi.org/10.1007/978-3-319-65151-4_37

9. A. Luís Osório, Luís M. Camarinha-Matos, and Hamideh Afsarmanesh. ECoNet Platform

for Collaborative Logistics and Transport. In: Risks and Resilience of Collaborative

Networks. PRO-VE 2015. IFIP AICT, vol 463. Springer, Cham.

https://doi.org/10.1007/978-3-319-24141-8_24

10. A. Luís Osório, Luís M. Camarinha-Matos, Hamideh Afsarmanesh, and Adam Belloum.

On Reliable Collaborative Multimodal Services. In: Collaborative Networks of Cognitive

Systems. PRO-VE 2018. IFIP AICT, vol 534. Springer, Cham.

https://doi.org/10.1007/978-3-319-99127-6_26

11. A. Luís Osório, Luís M. Camarinha-Matos, Hamideh Afsarmanesh, and Adam Belloum.

Liability in Collaborative Maintenance of Critical System of Systems. In: Boosting

Collaborative Networks 4.0 . PRO-VE 2020, Valencia, Spain, November 23-25, 2020,

Proceedings, volume 598 of IFIP AICT, pages 191–202. Springer International

Publishing, 2020. https://doi.org/10.1007/978-3-030-62412-5_16

12. A. Luís Osório, Luís M. Camarinha-Matos, Tiago Dias, and José Tavares. Adaptive

Integration of IoT with Informatics Systems for Collaborative Industry: the SITL-IoT

Case. In: Collaborative Networks and Digital Transformation. PRO-VE 2019. IFIP AICT,

vol 568. Springer, Cham. https://doi.org/10.1007/978-3-030-28464-0_5

13. Bruno Serras, Carlos Gonçalves, Tiago Dias, and A. Luís Osório. Synoptics of Things

(SoT): An Open Framework for the Supervision of IoT Devices. In To appear in 5th

International Young Engineers Forum on Electrical and Computer Engineering. IEEE

Xplore digital library, 2021.

14. D. Taibi, V. Lenarduzzi, and C. Pahl. Continuous Architecting with Microservices and

DevOps: A Systematic Mapping Study. CoRR, abs/1908.10337, 2019.

https://doi.org/10.1007/978-3-319-45390-3_42
https://doi.org/10.1007/978-3-319-65151-4_37
https://doi.org/10.1007/978-3-319-24141-8_24
https://doi.org/10.1007/978-3-319-99127-6_26
https://doi.org/10.1007/978-3-030-62412-5_16
https://doi.org/10.1007/978-3-030-28464-0_5

