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Abstract

Most real optimization problems are defined over a mixed search space where the
variables are both discrete and continuous. In engineering applications, the objective
function is typically calculated with a numerically costly black-box simulation. General
mixed and costly optimization problems are therefore of a great practical interest, yet
their resolution remains in a large part an open scientific question. In this article, costly
mixed problems are approached through Gaussian processes where the discrete
variables are relaxed into continuous latent variables. The continuous space is more
easily harvested by classical Bayesian optimization techniques than a mixed space
would. Discrete variables are recovered either subsequently to the continuous
optimization, or simultaneously with an additional continuous-discrete compatibility
constraint that is handled with augmented Lagrangians. Several possible
implementations of such Bayesian mixed optimizers are compared. In particular, the
reformulation of the problem with continuous latent variables is put in competition
with searches working directly in the mixed space. Among the algorithms involving
latent variables and an augmented Lagrangian, a particular attention is devoted to the
Lagrange multipliers for which a local and a global estimation techniques are studied.
The comparisons are based on the repeated optimization of three analytical functions
and a beam design problem.

Introduction
A key task in engineering design is to find an optimal configuration from a very large set
of alternatives. When the performance of the candidate solutions is measured through
a realistic simulation, the numerical cost of the procedure becomes a bottleneck. The
optimization of computationally expensive simulators is a topic widely studied in the
literature Thi et al. [26].
In this work, we focus on Bayesian optimization (BO), which is particularly suitable for

solving such problems Frazier [9]. Bayesian optimization is a sequential design strategy
that requires a data-driven mathematical model or metamodel that provides predictions
along with their uncertainty Bartz-Beielstein et al. [2]. The metamodel replaces some of
the calls to the expensive simulation and is a key ingredient to the optimization of costly
functions. An acquisition criterionWilson et al. [29] aggregates the spatial predictions and
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uncertainties. The metamodel is trained from a reduced set of simulation data and the
acquisition criterion is maximized to propose new configurations to be simulated at the
next iteration. When the acquisition criterion is the expected improvement (EI), as first
introduced in Mockus et al. [18], the BO algorithm is often called EGO (Efficient Global
Optimization, Jones et al. [12]). EGO is currently a state-of-the-art approach to medium
size, continuous and costly optimization problems, both from an empirical Le Riche and
Picheny [14] and a theoretical point of view Vazquez and Bect [27].
However, in realistic settings, some of decision variables are categorical. In structural

design for example, the type of material, the number of components, the choice between
alternative technologies lead to discrete variables with no obvious distance between them.
The combination of continuous and categorical variables is called a mixed optimization
problem.
In non-costly cases, mixed optimization problems can be approached byMixed-Integer

NonLinear Programming Belotti et al. [4] (when the discrete variables are integers), by
sampling based techniques such as evolutionary optimization Cao et al. [6], Emmerich
et al. [8], Ocenasek and Schwarz [20] or by alternating mixed programming Audet and
Dennis Jr [1].
When the objective function is costly, mixed optimization problems remain challenging

and a topic for research. It is customary to replace some of the calls to the original objective
function by calls to a (meta)model of it. Bartz-Beielstein and Zaefferer [3] provide an
overview of metamodels that have or can be used in optimization when the variables are
continuous or discrete. Bayesian optimizationmethods, which rely onmetamodels to save
computations, have already been extended to mixed problems. It was made possible by
the realization that GP kernels (covariance functions) in mixed variables can be created
by composing continuous and discrete kernels. The acquisition function is defined over
the same space as the objective function. Therefore maximizing the acquisition function
is also a mixed variables problem.
To the best of our knowledge, the first EGO-like algorithm for mixed variables has been

proposed in Hutter et al. [11]. In this article, the mixed kernel is a product of continuous
and discrete Gaussian kernels, and random forests constitute an alternative choice of
mixedmetamodel.More precisely, the discrete kernel is a Gaussian of integer or hamming
(also known as Gower) distance for ordinal or nominal variables, respectively. In Hutter
et al. [11], the expected improvement is first optimized with a multi-start local search
for both the continuous and discrete variables (thus a neighborhood for the discrete
variables is defined) which is then complemented by a random search. This work was
continuedwith theREMBOmethod inWang et al. [28], where a random linear embedding
is introduced to tackle high-dimensional problems. Discrete variables were relaxed into
continuous variables thanks to a mapping function. The optimization of the acquisition
function was made with a combination of the DIRECT and CMA-ES continuous global
optimizers. BothHutter et al. [11] andWang et al. [28] have beenmotivatedby applications
to the automatic configuration of algorithms. The goal of reaching very high dimensions
(millions) probably forced the authors to use isotropic kernels as a way to keep the number
of hyper-parameters low (only one length-scale for all dimensions).
A Bayesian mixed optimizer is presented in Pelamatti et al. [21]. The GP kernels are

products of continuous and discrete kernels. Different discrete kernels are compared,
namely the homo- and hetero-scedastic hypersphere decomposition and the compound
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symmetric kernels. The optimization of the acquisition function is performed with a
genetic algorithm in mixed variables. A similar BO with mixed kernel is described in
Zuniga and Sinoquet [33], but the expected improvement is optimized with the mixed
version of the MADS algorithm Audet and Dennis Jr [1] and the neighborhood of the
categorical variables is defined through a probabilistic model.
Random forests can replace the kriging model in BO with mixed inputs as they natively

have a measure of prediction uncertainty. Such an implementation, first done in Hutter et
al. [11], is part of themlrMBOR package Bischl et al. [5], in conjunctionwith several acqui-
sition criteria that can be optimized with a “focus-search” algorithm. The focus-search
algorithm hierarchically samples the search space of the chosen acquisition criterion.
Recent developments in metamodels involving mixed variables show that it is possi-

ble to map the categorical variables into quantitative non-observed latent variables that
are then considered as continuous Zhang et al. [31]. Whenever it is possible to write a
model of the studied system, quantitative latent variables exist that describe the effects
of the categorical variables. Typically, there are more latent variables than categorical
variables. The existence of continuous latent variables can sometimes be established from
the physics of the considered phenomena, e.g. in material science Zhang et al. [32]. In
structural mechanics for example, if the categorical variable describes the shape and the
material of an element load in flexion, its bending moment of inertia is a candidate latent
variable. Latent variables can emulate the properties of the original categorical variables,
in particular within themetamodel, and open the way to reasonings with continous quan-
tities: the kernels of the Gaussian processes can be taken as continuous, gradients and
neighborhoods are naturally defined during the optimization. On the contrary, categori-
cal variables and their inherent lack of distance definition is the cause of complications in
the kernel definition and in the optimization.
This article presents a new Bayesian optimization algorithm for mixed variables called

LV-EGO (for Latent Variable EGO). Our contribution with respect to Zhang et al. [32] is
that the continuity of the latent variables is also taken advantage of during the optimization
of the acquisition criterion. This implies that categorical variables must be recovered
from the continuous latent variables proposed by the optimizer, which creates a new
“pre-image” problem.
“Problem statement and background” introduces the problem and the principles of

Bayesian optimization. In “EGO with latent variables”, several variants of LV-EGO are
described. They differ in the handling of the relationship between the categorical and
the latent variables: the “vanilla” LV-EGO just recovers categorical variables after the
optimization while augmented Lagrangian versions account for the link during the opti-
mization through constraints. “Description of the numerical experiments” presents a set
of benchmarks comparing our method to other state-of-the-art techniques. One of the
benchmarks is a beam design problem and gives the opportunity to discuss the interpre-
tation of the latent variables. Finally, “Conclusions and perspectives” offers conclusions
and perspectives to this work.

Problem statement and background
We consider the problem of minimizing a function y(x, u) depending on a vector of
continuous variables x = (x1, . . . , xnc ) and a vector of discrete variables u = (u1, . . . , und ),
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where each ui hasmi levels encoded 1, . . . , mi. We denote X the domain of definition for
the continuous inputs, typically, after rescaling, the hypercubic domain [0, 1]nc . Similarly,
we denote U = ∏nd

j=1{1, . . . , mj} the domain of definition for the discrete inputs.X ×U is
the set of the mixed optimization variables.
We focus on costly functions, meaning that each evaluation of y is time-consuming, and
we aim at minimizing y with a tiny budget of evaluations. In this context, minimizing
directly y is hardly possible. An alternative is to use Bayesian optimization (BO). In BO
approaches, there are twomain ingredients: aGaussianprocess (GP) serving as a fast proxy,
often calledmetamodel, built from the current learning set, and a sampling criterion, often
called acquisition criterion, used toupdate the learning setwith anewdatapoint computed
with y. A famous acquisition criterion is the expected improvement (EI). In that case, the
BO approach is often called Efficient Global Optimization (EGO) algorithm.
To be more precise, let (X,U ) = {(x, u)(1), . . . , (x, u)(t)} ∈ (X × U )t be a design of

experiments (DoE), and yi = y(x(i), u(i)) be the corresponding function evaluations (i =
1, . . . , t). Let ymin = min(y1, . . . , yt ) be the current minimum. Let us now assume that y
is a particular realization of the GP Y defined on X × U . In that case, the EI criterion is
defined by

EI(x, u) = E
[
max(ymin − Y t (w), 0)

]
, (x, u) ∈ (X × U ),

where Y t is the conditional GP knowing the observations:

Y t :=Y | {Y ((x, u)(1)) = y1, . . . , Y ((x, u)(t)) = yt}.

Notice that EI(x, u) is large when exploiting interesting area, that is to say when there is a
good chance that Y t (x, u) is smaller than ymin. This may occur when E[Y t (x, u)] is close to
ymin, orwhen exploring unvisited areas, i.e. when the variance ofY t (x, u) is large compared
to (E[Y t (x, u)]− ymin)2. The idea of EGO is to evaluate y at a new point maximizing the EI
criterion until a stopping criterion is reached. See Algorithm 1 for a synthetic description
of the EGO algorithm when the stopping criterion is a maximum number of evaluations
of y, noted budget. A maximum budget is the logical stopping criterion in our context of
costly optimization. Other stopping conditions are possible in the form of lower bounds
on the acquisition criteria (expected improvement, knowledge gradient Frazier [9],…) i.e.,
minimal measures of progress below which the search should stop. In line 9, the solution
returned by the algorithm is the best point of the last DoE, (X,U ).

Algorithm 1 EGO algorithm on a mixed space
1: Generate the initial DoE of size NDoE, (X,U ), and calculate Y = (y1, . . . , yNDoE ), t ← NDoE.
2: while t ≤ budget do
3: Estimate the GP Y t from the learning set formed by (X,U ) and Y .
4: Look for the current minimum ymin and maximize (x, u) �→ EI(x, u) on X × U :

(xt+1, ut+1) ∈ argmax(x,u)∈X×UEI(x, u).
5: Evaluate y at (xt+1, ut+1), yt+1 = y(xt+1, ut+1).
6: Update the learning set: (X,U ) ← (X,U ) ∪ (xt+1, ut+1), Y ← Y ∪ {yt+1}.
7: t ← t + 1
8: end while
9: (x�, u�) = arg min(x,u)∈(X,U ) y(x, u), y� = y(x�, u�)

10: return (x�, u�, y�)
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This EGO algorithm has been intensively studied to minimize nonlinear functions that
are expensive to be evaluated in the caseU = ∅, i.e. when all input variables are continuous
(see Le Riche and Picheny [14] for numerical illustrations of its efficiency). The application
of this algorithm in the presence of categorical variables is much less documented (see
e.g. Pelamatti et al. [21], Zuniga and Sinoquet [33]), which can be explained by two main
difficulties.Thefirst one is related to thedifficult estimationof covariancekernels onmixed
spaces. Indeed, multi-dimensional covariance functions are often built by combination of
one-dimensional ones. Therefore, covariance functions on mixed spaces can be obtained
by combining covariance functions on X and U :

Cov(Y (x, u), Y (x′, u′)) = kx1 (x1, x
′
1) ∗ · · · ∗ kxnc (xnc , x

′
nc ) ∗ ku1 (u1, u

′
1) ∗ · · · ∗ kund (und , u

′
nd ),
(1.1)

where kx1 , . . . , kxnc , k
u
1 , . . . , kund are covariance functions and ∗ is an operation that pre-

serves positive definiteness, such as sum or product. If we focus on the single categorical
variable uj with levels 1, . . . , mj , we can identify the covariance function kuj to a (mj ×mj)-
dimensional positive semidefinite matrix T, such that for all 1 ≤ k, � ≤ mj ,

(T)k� = kuj (k, �). (1.2)

This means that
∑nd

j=1mj(mj + 1)/2 coefficients need to be estimated to determine a
covariance on U in the general case. That number can be large when m is large, which
very often makes this estimation very difficult in practice. Furthermore, the optimization
problem is often harder than the box-constrained one met with continuous variables.
Indeed it is either constrained by the positive definiteness of T, which is non-linear, or
defined on amanifold ifT is parameterized in spherical coordinates.We refer to Roustant
et al. [25] formore details and other parsimonious representations of kuj , which can reduce
but not totally fix these issues. The second reason that can explain the fewnumber of direct
applications of EGO algorithm on mixed space is related to the difficult maximization of
the expected improvement, i.e. the searchof thenew inputpointswhere to call the function
y, which are solutions of:

max
x,u∈X×U

EI(x, u) . (1.3)

Indeed, classical optimization algorithms on continuous spaces usually try to exploit
information related to the gradient of the function to be maximized, as well as notions of
proximity in the space of the inputs. However, these two notions are difficult to exploit
when dealing with categorical inputs, i.e. without any a priori ordering between the input
instances. To circumvent this difficulty, a naive approach of resolution would consist in
no longer considering a single maximization problem on X × U , but the resolution in
parallel of

∏nd
j=1mj maximization problems on X , i.e. one problem per combination of

instances of the categorical inputsu. Such an approach is not tractablewhen the number of
optimization problems to be solved becomes large, which has motivated the definition of
heuristics, such as evolutionary algorithms Li et al. [15], Cao et al. [6], Lin et al. [16], which
seek to concentrate the searches only on the interesting instances of u. These approaches
still rely on a large number of calls to the function to be optimized, and their convergence
is not always easy to quantify.
Because mixed optimization problems are difficult, an alternative approach is proposed

in the rest of this paper. It is based on the possibility to relax the discrete variables into con-
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tinuous latent variables, therefore benefiting from the more efficient search mechanisms
that exist in continuous spaces (e.g. gradients).

EGOwith latent variables
Latent variables

For an easier handling of categorical inputs, it was proposed in Zhang et al. [31] to replace
each categorical input uj by a vector of qj ≥ 1 continuous inputs with values inR

qj , noted
�j . To give an intuition of the underlying idea in the automotive domain, a category of
lubricantmay be determined by physical continuous features such as boiling temperature,
viscosity, etc that act as latent variables. In structural mechanics, the shape of a load
carrying structure,which is categorical, has underlying continuous flexural andmembrane
moments that drive its behavior. This amounts to associating to the Gaussian process
(GP) Y a new GP Ỹ , such that for each instance u of the categorical inputs there exists a
particular value of �:=(�1, . . . , �nd ) ∈ L ⊂ R

q1 ×· · ·×R
qnd , which is called latent variable,

allowing us to write:

Y (x, u) in law= Ỹ (x, �), x ∈ X . (2.1)

An important point is that the values of � are unobserved and therefore Ỹ is unknown.
Nevertheless, in order to replace the EI maximization problem on X × U by a new opti-
mization problem onX ×L, a precise knowledge of Ỹ is not necessary. Indeed, assuming
that kernels for mixed inputs are built by combining 1-dimensional ones as in (1.1), it is
sufficient to identify the mappings φj from {1, . . . , mj} to R

qj to each variable uj such that

kuj (uj, u
′
j) ≈ kj(φj(uj),φj(u′

j)), (2.2)

where kj is a continuous kernel on R
qj × R

qj . Thus, it is not so much the values of
φj(uj) that are important, but their relative positions in R

qj in order to allow a reasonable
reconstruction of the dependency structure between Y (x, u) and Y (x′, u′).
According to theworks achieved inZhang et al. [31], it appears that interestingmappings

can be obtained by likelihood maximization and that relatively small values of qj can give
a satisfying reconstruction. Following their recommendations, qj can be chosen equal to
1 if mj ≤ 3 and to 2 otherwise, which will be the values chosen in the rest of this paper.
We denote by n� = ∑nd

j=1 qj the total number of latent variables. Following Roustant et
al. [25], the continuous kernel kj associated to the latent variables was chosen as the dot
product kernel kj(t, t ′) = 〈t, t ′〉. The corresponding covariance matrix is then low-rank,
and provided better performances than the Gaussian kernel in the examples considered
in the latter reference.
This new parametrization leads us to the following adaptation of the EI maximization

problem defined by Eq. (1.3), which we name acquisition problem as it allows to acquire
a new point to evaluate:

max
x,�∈X×L⊂R

nc+n�

EI(t)(x, �)

such that ∃u ∈ U with � = φ(t)(u).
(2.3)

Here, EI(t)(x, �) is the expected improvement associated with GP Ỹ at iteration t, φ(t) =
(φ(t)

1 , . . . ,φ(t)
nd ) is the vector-valued mapping from

∏nd
j=1{1, . . . , mj} to R

q1 × · · · × R
qnd at

iteration t, and the constraint on the values of � is driven by the fact that the values of
the latent variables at the new point have to remain compatible with the current mapping
functions.
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We follow two paths to solve this acquisition problem. In the vanilla LV-EGO approach,
which will be described soon, the EI maximization and the latent-discrete compati-
bility constraint are addressed one after each other. Alternatively, with the augmented
Lagrangian approaches, which will be described in “LV-EGO algorithms with Augmented
Lagrangian”, the full constrained optimization problem is treated.

The vanilla LV-EGO algorithm

At each iteration, the vanilla LV-EGO algorithm first maximizes EI in a relaxed, fully
continuous, formulation where the discrete variables are replaced by relaxed continuous
latent variables. Then, a pre-image problem is solved where EI is maximized over the
discrete variables only, the continuous variables being fixed at their value of the relaxed
problem. The LV-EGO methodology is summarized in Algorithm 2.

Algorithm 2 Vanilla LV-EGO with mixed inputs
1: Generate the initial DoE of size NDoE: X , U
2: Costly function evaluations y(xi, ui) , i = 1, . . . , NDoE, t ← NDoE
3: while t ≤ budget do
4: Estimate the latent variable mappings φ(t) and the parameters of the continuous GP Ỹ .
5: Perform one EGO iteration in the relaxed continuous space :

(xt+1, �t+1) = arg maxx,�∈X×L⊂R
nc+n� EI(t)(x, �).

6: Recover the discrete pre-image component ut+1 as: ut+1 =
arg maxu∈U EI(t)(xt+1,φ(t)(u)).

7: Update the DoE with (xt+1, ut+1) with output value y(xt+1, ut+1).
8: t ← t + 1
9: end while

10: Return (x�, u�) = arg minxt ,ut∈(X,U ) y(xt , ut )

Themain differencewith the generic Bayesian algorithm 1 is the new discrete pre-image
problem in line 6. Notice that the pre-image is formulated in terms of the EI objective, as
opposed to a more arbitrary distance like ‖�t+1 −φ(t)(u)‖. Solving the pre-image in terms
of the iterative figure of merit, the expected improvement, is meant to provide a gain in
efficiency with respect to a pre-image minimizing an Euclidean distance between the map
of a discrete level and the latent variables. In the particular situation where the latent
variable coincides with the image of a discrete level, �t+1 = φ(t)(ut+1), both approaches
yield the same result since �t+1 is a maximizer of EI (see line 5 of Algorithm 2). In terms
of implementation, the EI maximization (line 5) is done with the COBYLA algorithm,
a gradient free non-linear optimization technique Powell [23]. Since COBYLA is a local
optimizer and the EI is a multimodal function, the maximization is repeated (10 times,
which is more than the maximum dimension of the test cases studied in this article and
more than the default—3—of the kergp package) from randomly chosen initial points
and the best result is kept. An exhaustive search is carried out for the EI maximization of
the pre-image problem (line 6).
A comparison of the numerical complexities of the vanilla LV-EGO (Algorithm 2) and

the generic EGO (Algorithm 1) shows that the cost of the latent variables is limited. Let us
consider that thediscrete space canbe searched essentially by enumeration inO(cardU ) =
O(

∏nd
i=1mi) operations (where mi is the number of levels per discrete variable) while a
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continuous space can be searched more efficiently in linear time. At each iteration, the
Bayesian algorithms of this paper have three steps: first aGP is learned, then an acquisition
criterion (EI for now and an augmented Lagrangian later) is maximized and finally a pre-
image problem is solved. In the vanilla LV-EGO algorithm, these steps take place at lines
4, 5 and 6 of Algorithm 2, respectively. Table 1 summarizes the number of operations per
step. The number of operations for learning the GPs is proportional to the cube of the
number of points evaluated (t) because of the inversions of the covariance matrices, times
the number of (continuous) parameters of the GP for the likelihood maximization.
The two other steps, the acquisition and the pre-image, imply predictions by the GP

in t2 operations times a number of operations that depends on the specific algorithm.
Comparing in Table 1 the column of the generic EGO with that of the vanilla LV-EGO,
and assuming that for all i mi = m to keep the discussion simple, it can be seen that the
latent variables induce a slight extra cost to be learnt. When q = 2, which is our default
here, this extra cost is nd ×mi× t3 operations. Setting q = 1 would not add any cost to the
learning.An advantage,which comes from the sequential resolution of themixedproblem,
occurs in themaximization of the acquisition criterion when nc +q×nd ×m < mnd ×nc,
at the cost of an additional pre-image problem to solve. Thus, LV-EGOwill be faster than
amixed EGO once the latent variables are estimated ifmnd +nc +q×m×nd < mnd ×nc,
which happens frequently (take for example nc = 4, nd = 2, m = 10, q = 2).

LV-EGO algorithms with Augmented Lagrangian

A possible pitfall of the vanilla LV-EGO detailed in Algorithm is that the link between the
discrete variables u and their relaxed continuous counterparts � is lost when maximizing
EI(t)(x, �) in line 5. Recovering it during the discrete pre-image problem where x is fixed
to a value optimal in the relaxed formulation but possibly non-optimal with respect to the
mixed problem (1.3) may yield a sub-optimal solution. For this reason, we now propose
LV-EGO algorithms that account for the discreteness constraint during the optimization
using augmented Lagrangians.
In that prospect, notice that problem (2.3) can be approximated as an optimization

problem with an inequality constraint:

min
x,�∈X×L⊂R

nc+n�

f (t)(x, �):= − log(1 + EI(t)(x, �))

such that g (t)(�):=min
u∈U ‖� − φ(t)(u)‖ − ε ≤ 0

(2.4)

where ε is a small positive relaxation constant and ‖·‖ the Euclidean norm. In this refor-
mulation, called relaxed acquisition problem, notice the log scaling of the EI which does
not change the solution but improves the conditioning of the problem. Two values of ε

will be discussed in the sequel, ε = 0 in which case the constraint becomes an equality
constraint, minu∈U‖� − φ(t)(u)‖ = 0, and ε > 0 but small which corresponds to a relax-
ation of the equality. In the sequel, ε is normalized with respect to the size of the vector
of latent variables and set to ε = 0.01.
The constrained optimization problem (2.4) is solved through an augmented Lagrangian

approach Minoux, [17], Nocedal and Wright [19]. The augmented Lagrangian is that of
Rockafellar [24] which, specified for Problem (2.4), is,

L(t)A (x, �; λ, ρ) =
⎧
⎨

⎩

f (t)(x, �) − λ2

2ρ , if g (t)(�) ≤ −λ
ρ

,

f (t)(x, �) + λg (t)(�) + ρ
2 g

(t)(�)2, otherwise.
(2.5)
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When ε = 0, the constraint g (t)(�) ≤ 0 becomes an equality constraint, g (t)(�) = 0. In
this case, the augmented Lagrangian connected to that of Rockaffelar is that of Hestenes
[10] and takes the form

L(t)A (x, �; λ, ρ) = f (t)(x, �) + λg (t)(�) + ρ

2
g (t)(�)2 (2.6)

Complementary explanations about the augmented Lagrangians are given in Appendix .
Augmented Lagrangians require to specify the values of the Lagrange multiplier, λ,

and of the penalty parameter, ρ. The general principle to fix them is to calculate the
generalized Lagrange multiplier with a dual formulation Minoux [17]: the dual function
D(t) is maximized with respect to the multiplier λ while the penalty parameter ρ should
take the smallest value that allows one to find feasible solutions,

ρt = arg min
ρ≥0

ρ such that g(�t ) ≤ 0

where λt = arg max
λ≥0

D(t)(λ, ρ) ,

D(t)(λ, ρ) = min
x,�∈X×L⊂R

nc+n�

L(t)A (x, �; λ, ρ) ,

and (xt , �t ) ∈ arg min
x,�∈X×L⊂R

nc+n�

L(t)A (x, �; λ, ρ) .

(2.7)

There are two logics to solve Problem (2.7), both of which have been investigated in this
study. Following an idea presented in Le Riche and Guyon [13] for classical Lagrangians,
we first propose to approximate the dual functionD() as the lower front of the augmented
Lagrangians of a finite set of calculated points. The approximated dual is

D̂(λ, ρ) = min
(x,�)∈(X ′ ,L′)

L(t)A (x, �; λ, ρ) (2.8)

where (X ′, L′) is a DoE that should not be mistaken for (X,U ), the DoE of the original
expensive problem. (λt , ρt , xt , �t ) comes from solving Problem (2.7) with minimizations
over the finite set (X ′, L′) instead of the initial X × L. The functions in Problem (2.4)
are not costly, (X ′, L′) can be quite large. This approach is called global dual as a global
approximation to the dual function is built and maximized. It applies to very general
functions, e.g., non differentiable functions. Another advantage of this approach is to allow
large changes in the dual space. Figure 10 provides an illustration of the approximated
dual function and the effect of ρ on the dual problem. The sketch is done for an inequality
constraint, yet it also stands with marginal changes for an equality (cf. Appendix and
the caption to the Figure). Under the non-restrictive hypothesis that there is a ρ beyond
which the solution to the primal problem (2.4) maximizes the dual function, maximizing
the dual function preserves the global aspect of the search. However, the accuracy of
the obtained (λt , ρt )’s will depend on the DoE. Because there is only one constraint in
the current problem and evaluating it does not require calling the costly function, the
maximization on λ and ρ is done by enumeration on a 100 × 20 grid and (X ′, L′) is a 100
LHS sample.
The other path to updating the multiplier is to progressively change them based on the

minimizers of the augmented Lagrangian at the current step. This updating can be seen
as a step in the dual space which makes it general, although it is usually proved by analogy
with the Karush Kuhn and Tucker optimality conditions Nocedal andWright [19] which
add unnecessary conditions (like differentiability), cf. Appendix . Let (xt , �t ) be a solution
to

min
x,�∈X×L⊂R

nc+n�

L(t)A (x, �; λt , ρt ) (2.9)
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The update formula reads

λt+1 = λt + ρt

(

g (t)(�t ) + max(0,
−λt
ρt

− g (t)(�t ))
)

(2.10)

As in Picheny et al. [22], the penalty parameter ρ is simply increased if the constraint is
not satisfied,

ρt+1 =
⎧
⎨

⎩

ρt if g (t)(�t ) ≤ 0

2ρt otherwise
(2.11)

The update scheme based on Eqs. (2.10) and (2.11) is called local dual as a local step in
the dual (λ, ρ) space is taken.

Algorithm 3 Augmented Lagrangian Latent Variables EGO with global or local dual
scheme (ALV-EGO-g or ALV-EGO-l)
1: generate the initial DoE of size NDoE for (X,U )
2: costly function evaluations y(xi, ui) , i = 1, . . . , NDoE, t ← NDoE
3: initialize budget, ε
4: while t ≤ budget do
5: estimate the latent variables φ(t) and the GP parameters from current DoE.
6: {approximately solve the relaxed acquisition problem (2.4)with f (t)(·) = − log(1+EI(t)(·))}

(xt+1, �t+1) = arg minx,� f (t)(x, �) s.t. g (t)(�t+1) = minu∈U‖� − φ(t)(u)‖ − ε ≤ 0,
ALV-EGO-g variant: with the global dual scheme, cf. Algorithm 4
ALV-EGO-l variant: with the local dual scheme, cf. Algorithm 5

7: recover the discrete pre-image component ut+1 as: ut+1 = arg maxu∈U EI(t)(xt+1,φ(t)(u))

8: update DoE: add (xt+1, ut+1) and its costly evaluation y(xt+1, ut+1) to the DoE (X,U ).
9: t ← t + 1

10: end while
11: return (x�, u�) = arg min(X,U ) y(x, u)

Algorithm 3 gathers all these changes and is called ALV-EGO. The essential difference
between this ALV-EGO algorithm and the vanilla counterpart (Algorithm 2) is that the
EI maximization step is constrained so that the link between the discrete variables and
the relaxed latent variables (hence the continuous x) is not lost and left to the pre-image
step. The coupling between the continuous and the discrete variables is better accounted
for. However, a pre-image step (line 7) is still necessary to fully recover a discrete solution
in cases when the constraint is relaxed (ε > 0). In ALV-EGO like in the vanilla LV-EGO,
there are q = 2 continuous latent variable per discrete variable.
The global and local dual schemes are further detailed in Algorithms 4 and 5. The con-
tinuous minimizations of the Augmented Lagrangians once the Lagrange multipliers are
set are always done with 10 random restarts of the COBYLA algorithm Powell [23]. They
occur in Algorithm 4, line 4 andAlgorithm 5 line 5. To allow comparisons, this implemen-
tation is identical to the EI maximization of the vanilla LV-EGO (step 5 of Algorithm 2).



Cuesta-Ramirez et al. Adv. Model. and Simul. in Eng. Sci.            (2022) 9:6 Page 12 of 29

Algorithm 4 Global dual scheme (makes ALV-EGO-g when used in Algorithm 3)
Ensure: An estimation of the solution to the relaxed acquisition problem (2.4)
Require: f (t)(), an objective function, g (t)(), a constraint

N ′
DoE, Nλ, Nρ > 0

1: Calculate a DoE (X ′, L′) ∈ (X ,L)N ′
DoE .

Half of the points are feasible by i) sampling a u ∈ U and ii) setting �′ = φ(t)(u)
2: Create a grid of Lagrange multipliers and penalty parameters, (λ, ρ) = {λ1, . . . , λNλ} ×

{ρ1, . . . , ρNρ }, with λi ≥ 0 and ρj ≥ 0 for all i, j
3: Approximately solve the dual problem by enumeration:

ρt smallest ρ ∈ ρ that yields a feasible solution, g(�t ) ≤ 0 where
(λt , x′, �′) = arg maxλ∈λ min(x,�)∈(X ′ ,L′) L

(t)
A (x, �; λ, ρ)

4: Fine tune the next candidate: (xt+1, �t+1) = arg min(x,�)∈(X ,L) L
(t)
A (x, �; λt , ρt )

5: return xt+1, �t+1

Algorithm 5 Local dual scheme (makes in ALV-EGO-l when used in Algorithm 3)
Ensure: An estimation of the solution to the relaxed acquisition problem (2.4)
Require: f (t)(), an objective function, g (t)(), a constraint

initial values of the Lagrange multiplier and penalty, λNDoE = 0 and ρNDoE = 1, t
1: if t > NDoE then
2: {when t = NDoE the initial λNDoE , ρNDoE are used}

Update λ according to Eq. (2.10)
λt = λt−1 + ρt−1

(
g (t−1)(�t ) + max(0, −λt−1

ρt−1
− g (t−1)(�t ))

)

3: Update ρ according to Eq. (2.11)
ρt = ρt−1 if g (t−1)(�t ) ≤ 0, 2ρt−1 otherwise

4: end if
5: (xt+1, �t+1) = arg min(x,�)∈(X ,L) L

(t)
A (x, �; λt , ρt )

6: return xt+1, �t+1

While the local update of λ and ρ might seem less robust, it is the most common
implementation and it might be sufficient for the constrained EI maximization. Indeed,
between two iterations, the EI changes only locally around the current iterate. Providing
the latent mapping functions do not change too much, a local update of λ and ρ seems
appropriate. The numerical complexity of the ALV-EGO-g and -l algorithms is essentially
the same as that of the vanilla LV-EGO, cf. Table 1. The global dual scheme has a slight
extra-cost because of the search for the Lagrange multiplier and penalty parameter that
require N ′

DoE extra GP predictions.
Eventually, four variants of ALV-EGO are considered, ALV-EGO-ge or -gi or -le or -li

where g stands for global, l for local, e for equality (ε = 0) and i for inequality (ε > 0).

Description of the numerical experiments
Algorithms tested

The various algorithms tested are summarized in the Table 2 which provides their names,
the type of formulation for the mixed variables, the type of metamodel, the acquisition
criterion and the technique to optimize the acquisition criterion. The two possible for-
mulations for the mixed variables are either by searching in a mixed space (MS) or by a
formulation in latent variables (LV).AllGaussianprocesses (GPs) are builtwith thekerpg
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Table 2 Summary of the 9 algorithms tested: name, space over which it is defined (mixed versus
continuous with latent variables), metamodel used, acquisition criterion, optimizer of the acquisition
criterion

Name Formulation Metamodel Acq. crit. Optimizer of the acq. crit.

LV-EGO LV GP EI Restarted COBYLA

LV-RFO LV randomForest toolbox EI Focus-search (from mlrMBO)

ALV-EGO-ge or -gi LV GP EI DoE (for λt and ρt ) and

restarted COBYLA

ALV-EGO-le or -li LV GP EI Restarted COBYLA

MS-RFO MS randomForest toolbox EI Focus-search (from mlrMBO)

MS-ES MS none −y(x, u) Evolution strategy (from Li et

al. [15] in CEGO implementa-

tion Zaefferer [30])

MS-MKES MS GP (sym. compound disc.

kernel)

EI Evolution strategy (from Li et

al. [15] in CEGO implementa-

tion Zaefferer [30])

Fig. 1 Two of the test functions with 1 discrete variable. Each curve is a 1-dimensional cross-section of the
initial 2-dimension function, where the second variable is fixed at a given discrete value u

packageDeville et al. [7]. Themeaning of the acronyms is: LV-EGO,LatentVariables EGO;
LV-RFO, Latent Variables Random Forest Optimization ; ALV-EGO-ge/-gi/-le/-li, Aug-
mented Lagrangian Latent Variables global/local dual scheme with equality/inequality
pre-image constraints; MS-RFO, Mixed Space search with Random Forest Optimization;
MS-ES,Mixed Space searchwith Evolution Strategy;MS-MKES,Mixed Space searchwith
Mixed Kriging metamodel and Evolution Strategy.
The different algorithms will be tested on the suite of test problems described hereafter.

Test cases

There are 3 analytical test cases and abeambendingproblem.The analytical test cases have
all been designed by discretizing some of the variables of classical multimodal continuous
test functions. The following notation is introduced to describe the discretization: if the
continuous variable xi is discretized with uj that takes values in {1, . . . , mj}, then uj(k) = β

means xi = β when uj = k , β a scalar, 1 ≤ k ≤ mj .
Test case 1: discretized Branin function. We modified the 2 dimensional Branin-Hoo
function whose expression is

y(x1, x2) = (x′
2 − bx′2

1 + cx′
1 − r)2 + s(1 − t) cos (x′

1) + s,

x′ = x′min + (x′max − x′min) × x
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where b = 5/(4π2), c = 5/π , r = 6, s = 10, t = 1/(8π ), x′min = [−5; 0], x′max = [10; 15]
by keeping x1 continuous in [0; 1] and making x2 discrete with 4 levels {u(1) = 0;u(2) =
0.333;u(3) = 0.666;u(4) = 1}. The discretized Branin, which was already used in Zhang
et al. [32], has several local minima as shown in Figure 1a.
The global optimum is located at (x�

1, u�) = (0.182;u(3)) with y(x�
1, u�) = 2.791.

Test case 2: discretized Goldstein function.As a second test case, the continuous Gold-
stein function

y(x1, x2) = [1 + (x′
1 + x′

2 + 1)2(19 − 14x′
1 + 3x′2

1 − 14x′
2 + 6x′

1x′
2 + 3x′2

2)]

× [30 + (2x′
1 − 3x′

2)2(18 − 32x′
1 + 12x′2

1 + 48x′
2 − 36x′

1x′
2 + 27x′2

2)] ,

x′ = x′min + (x′max − x′min) × x , x′min = [−2,−2] , x′max = [2, 2]

is partly discretized by replacing x2 by u with 5 levels {u(1) = 0;u(2) = 1/2;u(3) =
1/2;u(4) = 3/4;u(5) = 1}. The discretized Goldstein, which has also been studied in
Zhang et al. [32], is drawn in Figure 1b. It has several local optima. The global optimum is
located at (x�

1, u�) = (0.5;u(2)) with y(x�
1, u�) = 3.

Test case 3: discretizedHartman function.Two variables are discretized in the 6 dimen-
sional Hartman function,

y(x) = −
4∑

i=1
αi exp

⎛

⎝−
d∑

j=1
Aij(xj − Pij)

⎞

⎠ ,

where x ∈ [0, 1]d , d = 6, α = [1, 1.2, 3, 3.2]� and

A =

⎛

⎜
⎜
⎜
⎝

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

⎞

⎟
⎟
⎟
⎠
, P = 10−4

⎛

⎜
⎜
⎜
⎝

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

⎞

⎟
⎟
⎟
⎠

.

The variables x5 and x6 are discretized with 5 and 4 levels respectively such that
{u1(1) = 0.350;u1(2) = 0.257;u1(3) = 0.477;u1(4) = 0.312;u1(5) = 0.657} and
{u2(1) = 0.150;u2(2) = 0.657;u2(3) = 0.512;u2(4) = 0.741}. Again, there are multi-
ple local minima and the global optimum is located at (x�, u�) = (0.202; 0.150; 0.477;
0.275;u1(4), u2(2)) with y(x�, u�) = −3.322.
Euler-Bernoulli beam bending problem. This test case corresponds to an horizontal
beam that is clamped at one end and subject to a vertical force at the other end. If the
length of the beam is sufficiently long compared to the dimensions of its cross section, and
if it is operatingwithin its linear elastic range, the final beamdeflection y (to beminimized)
is expressed as

D(L, S, Ĩ) = PL3

3E S2 Ĩ
(3.1)

where P = 600N is the vertical load, E = 600GPa is the Young’s modulus, L ∈ [10, 20]
is the horizontal length of the beam, S ∈ [1, 2] is the cross-section area and Ĩ = I/S2,∈
{Ĩ(1), Ĩ(2), . . . , Ĩ(12)} is the normalizedmoment of inertia that can explicitly be derived for
a given catalog of beam profiles. The 12 levels of the normalized moment of inertia are

Ĩ = {0.083; 0.139; 0.380; 0.080; 0.133; 0.363; 0.086; 0.136; 0.360; 0.092; 0.138; 0.369} .
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Table 3 Dimensions and DoE size of the test cases

nc nd mi NDoE

Branin-Hoo 1 1 4 16

Goldstein 2 1 5 40

Hartmann 4 2 {5,4} 160

Beam Bending 2 1 12 96

(3.2)

We are interested in finding the best compromise between a minimization of the vertical
deflection and the total weight, as expressed in the objective

y(x1, x2, u1) = D(L, S, Ĩ) + αL S , (3.3)

where L = 10 + 10 × x1 , S = 1 + x2 , u1 = Ĩ , (3.4)

and (x1, x2) ∈ [0, 1]2 . (3.5)

Here α is the weight balancing the two effects in the objective function. It is chosen as
α = 60 so that y has several local minima and only one global minimum. This global
solution is (x�

1, x
�
2, u

�
1) = (0; 0.43; Ĩ(3)) with output y� = 1.287385 × 103.

Experiments setup andmetrics

The optimization of each pair of algorithm and test case are repeated 50 times from
different initial DoEs. The DoEs are generated by minimax Latin Hypercube Sampling.
The size of the DoEs is NDoE = 4 × nc × nd × max(mi) and a budget of NDoE + 50
evaluations of the true objective function. Remember that the true objective function is
supposed to be computationally intensive although it is not in these experiments so that
runs can be repeated. The evolution strategies are stopped after NDoE + 50 evaluations of
the true function, like the other algorithms.
The internal local optimizer, COBYLA, is restarted 5 times during the likelihood max-

imization and 10 times during the maximization of the acquisition criterion. The focus-
search algorithm has a sample size of 1000 with 5 boundary reduction iterations and 3
multi-starts, for a total of 3000 calls to the acquisition criterion.
A summary of the dimensions involved in the different examples is given in Table 3.

Results and discussion
The results are provided with 4 main metrics. The performance of an algorithm is classi-
cally described by the median objective function over the 50 repeated runs, calculated at
each iteration. The associated measure of dispersion of the performance is the interquar-
tile over the repetitions as a function of the iteration. To discriminate between methods
that are rapid but provide rough solutions from the ones that take more time but yield
better solutions, the two other metrics are based on the definition of targets. For each test
case, a target is a given quantile of all the objectives functions found by all the algorithms
throughout all the repetitions. A 10% target is difficult, while a 50% target is the median
performance. The third metric is the iteration number at which the median objective
function of a given algorithm reaches a given target. The fourth metric is the success rate
(given a target), which is the percentage of the runs that do better than the target. The
metrics associated to the quantile targets have the advantage that they are normalizedwith
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respect to the test cases: thanks to the quantiles, the definitions of an easy, a median or a
hard target stands accross the different functions to optimize. The target-based metrics
will later be averaged over the different test cases.
Let us now review the performances of the algorithms on each test case.

Analytical test functions

Branin function Figure 2 presents the results for the Branin function with the four
metrics. On the top left plot, showing the median value for the objective function, it is
clear that the two methods that rely on the random forest metamodel (MS-RFO and
LV-RFO) are overtaken by all other methods. This indicates that, whether in the mixed
or in the latent-augmented space, random forests do not represent sufficiently well the
Branin function in comparison to Gaussian processes. Looking at Fig. 2b, it is observed
that the fast methods typically have the lowest spread in performance and vice versa. This
is expected as non converging runs may yield a wide range of performances. All methods
involving the discrete constraint (i.e., the augmented Lagrangians) managed to improve
over the LV-EGO performance; and including a mixed metamodel increased significantly
the success rate and the median solution for the evolutionary strategy.
Regarding the success rate on Fig. 2d, the methods MS-MKES, LV-EGO, ALV-EGO-li,

-le, -ge and -gi were the most prominent, the latter being capable to reach success rates
of about 20% for a 10% target. Notice that all these methods contain Gaussian processes.
Indeed, the Branin function is easy to represent by a GP whether continuous or mixed. In
the same vein, MS-MKES which differs from MS-ES by the use of a GP, clearly benefits
from that metamodel.
All ALV- methods, which account for the discrete constraint, obtained the best median
performances. ALV-EGO-ge in particular found all targets, in the median sense, earlier
than the other algorithms as can be seen from Fig. 2c.
A last comment is necessary regarding the bottom of Fig. 2: the plot on the left describes

the median performance (in terms of targets reached) while the right plot counts the
success rate at reaching a target over all runs. Therefore, some targets are reached on the
right by some of the runs of a given algorithm, while they are never atteined on the left by
the median of the same algorithm. This comment stands accross all test cases.
Goldstein function The experiments done with the Goldstein test function are summed
up in Fig. 3. Like with the Branin function, algorithms relying on random forests (LV-
RFO and MS-RFO) showed both poor performance (top left plot). The associated high
constant interquartile (top right) is that of the best points in the initial designs, which
remains unchanged since no better point is found by these algorithms.
Considering the success rates for all targets (bottom plots), it is seen that accounting for

the discreteness through a constraint (which is the distinctive feature of ALV- methods)
is useful with the Goldstein function: like with Branin, ALV-EGO-gi is the best performer,
but the other ALV- follow and outperform LV-EGO. All ALV- strategies almost reach
the absolute target of percentile 25% with a rate of 25% or higher. The comparison of the
plots Fig. 3c, d also shows that, behind the ALV- methods, LV-EGO has a good median
performance (cf. Fig. 3c) but more of the MS-MKES searches manage to find difficult
targets (the 25% and 10% quantiles).
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Fig. 2 Comparison of all 9 algorithms on the Branin function. y� = 2.79118

Fig. 3 Comparison of the 9 algorithms on the Golstein function. y� = 3

Hartmann function Results on the Hartmann function which has 4 continuous and 2
discrete variables, with a total of 9 discrete levels, will be impacted by the sensitivity of the
algorithms to an increase in dimension. These results are reported in Fig. 4.
LV-EGO stands out as the best method with respect to all criteria for Hartmann. The

next two best methods are LV-RFO and ALV-EGO-gi, followed by MS-RFO and ALV-
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Fig. 4 Comparison of the 9 algorithms on the Hartmann function (for which y� = −3.32237)

EGO-ge. This time, LV-RFO and MS-RFO, which both rely on random forests, belong
to the efficient methods: random forests gain in relative performance with respect to the
GPs when the dimension and the size of the initial DoE increase. For Hartmann, LV-
EGO consistently outperforms the ALV- implementations. The importance of keeping
the coupling between discrete and latent variables during the optimization seems less
crucial, and even somewhat detrimental, in the Hartmann case. We think that this is due
to the very tight budget (50 iterations after the initial DoE) which does not allow the
convergence of the optimizers, as can be seen in the Plot 4a where the global optimum
is not reached. Because the optimum is not really found, constraints on discreteness are
superfluous and their handling through the pre-image problem is sufficient. As in the
other test cases, MS-ES was slower than the other methods.

Beam bending application

Optimization results Figure 5 summarizes the 4 comparison metrics of all 9 algorithms
in the bended beam test case. The ranking of the algorithms is similar to that obtainedwith
the Branin and Goldstein functions. LV-EGO has the best convergence both in terms of
median speed (cf. plots of the left column) and accuracy (bottom right plot). ALV-EGO-gi
is the secondmost efficient method followed by ALV-EGO-ge. Again, the algorithms that
resort to random forests, LV-RFO and MS-RFO, are the slowest and most inaccurate.
They share this counter-performance with MS-ES.
Latent variables in thebeamapplicationThebeamsubject to a bending load is a test case
that allows to interprete the latent variables. Indeed, the normalized moment of inertia, Ĩ ,
is a candidate latent variable once it is allowed to take continuous values as it determines,
with the continuous cross-section S and the length L, the output (the penalized beam
deflection) y in Eq. (3.5). The levels of Ĩ (given in Eq. (3.2)) correspond to 3 increasingly
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Fig. 5 Comparison of all 9 algorithms on the beam design test case (y� = 1.28738)

hollow profiles of 4 shapes, as illustrated in Fig. 6. Because a relaxed Ĩ is a possible latent
variable, it is expected that the latent variables φ(t) learned from the data will be grouped
in the same way as Ĩ . Looking at Ĩ values and at Fig. 6, we thus expect, in the image space
defined by latent variables, three groups of levels: those corresponding to solid forms
(levels {1, 4, 7, 10}), medium-hollow forms (levels {2, 5, 8, 11}) and hollow forms (levels
{3, 6, 9, 12}).
For the sake of interpretation, we select 1 run that found the global optimum with the

Vanilla LV-EGOalgorithm. InFig. 7,we represent in a color scale the estimated correlation
matrix corresponding to the categorical kernel of Eq. (2.2), at iterations [1; 26; 49; 50]. At
the beginning of the optimization, at iteration 1, we can see a block-structure which cor-
responds quite well to the three groups of forms described above. This structure becomes
less clear for the next iterations of the LV-EGO algorithm. This may be explained by the
fact that the algorithm creates an unbalanced design, with more points in the promising
areas according to the optimizers, so that all levels are no longer properly represented.

Summary and discussion

The results of all the previous test cases which are measured through targets can be
averaged. For example, the success rate of an algorithm at 25% difficulty is the average of
the rates for the 25% quantiles of all test cases. The average results are presented in Fig. 8.
The three leading algorithms out of the 9 tested are ALV-EGO-gi, -ge and LV-EGO.

Among them, LV-EGO is slightly better at locating difficult targets (10% quantile) while
ALV-EGO-gi (closely followed by ALV-EGO-ge) is more robust at locating 50% targets as
can be seen from the median success plot in Fig. 8a. All three algorithms have in common
to use latent variables. In particular, these algorithms outperformed MS-MKES which
benefits from a Gaussian process but works only in the mixed space, i.e., MS-MKES does
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Fig. 7 Representation of the correlation between the latent variables at various iterations t . The size and the
color of the circles correspond to the absolute and signed magnitudes of the correlations. The correlations
are those of the categorical kernel of Eq. (2.2). The levels were grouped according to Ĩ: {1, 4, 7, 10}, {2, 5, 8, 11},
{3, 6, 9, 12}

not imply latent variables. This shows that latent variables are useful to speedup aBayesian
search for mixed problems.
No clear advantage, on the average, was found for accounting for the discrete nature of

the variables through constraints: LV-EGO, which ignores the link between latent vari-
ables and the discrete variables until the pre-image problem, is competitive with the best
of the augmented Lagrangian ALV-EGO algorithms. We hypothesize that the constraint
on latent variables, by creating disconnected feasibility islands around φ(t)(u), u ∈ U ,
makes the optimization of the acquisition criterion almost as difficult to solve as it orig-
inally was in the mixed space, therefore not allowing to fully benefit from the continuity
of the X × L space.
In our tests, the global updating of the Lagrange multipliers was always preferable to

the local counterparts, ALV-EGO-gi and -ge eclipsing ALV-EGO-li and -le.
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Fig. 8 Comparison of the 9 algorithms tested with results averaged over all test cases

The ALV-EGO-gi approach, where the discrete constraint is relaxed and turned into an
inequality (Eq. (2.4)), works better on the average than ALV-EGO-ge where the constraint
is an equality. This illustrates the positive effect of the relaxation ε, that softens the phe-
nomenon we mentionned above where the feasible domain is broken into disconnected
regions.
MS-ES is consistently less efficient than the other algorithms. It was expected, because

there is no metamodel to save calls to the function. Furthermore, the sampling is done in
the mixed space. The optimizers based on random forests have also rather poor average
performances, to the exception of the 6 dimensional Hartmann function. We believe
the random forests need a sufficiently large initial DoE (which happened with a higher
dimension) to fruitfully guide the search.
As a final comment, we discuss the necessity of re-estimating the latent variables at each

iteration. The estimation of the latent variables has an important numerical cost of about
qt3

∑nd
i=1mi operations at each iteration t (cf. Table 1). It was repeated at each iteration

in the algorithms with latent variables considered so far. In the experiment reported in
Figure 9, a version of the LV-EGO algorithm is considered where the latent variables are
estimated once only, with the initial DoE, yielding the NR-LV-EGO algorithm (for Non
Repeated estimation of φ()).
As can be seen in Fig. 9 when comparing LV-EGOwith NR-LV-EGO, the re-estimation

of the latent variables at each iteration, as implemented in the LV-EGO algorithm and
its ALV-EGO variants, considerably improves its performance. An accompanying result
is the visualization of the correlation matrix of the discrete variable provided in Fig. 7,
where one notices that the correlation (hence the latent variables) evolves in time. Our
experiments indicate that this evolution is beneficial to the optimization efficiency.

Conclusions and perspectives
This work has investigated five Bayesian optimization approaches to small and medium
size mixed problems that hinged on latent variables. They differed in the way the cou-
pling between the discrete variables and their relaxed pendants, the latent variables, is
implemented.
Algorithms involving latent variables were compared to other algorithms directly work-

ing in the mixed space and were found to consistently outperform them. LV-EGO and
ALV-EGO-gi were more efficient (in terms of calls to the true objective function) than
MS-MKES which also benefits from the Gaussian process. These first results show that
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Fig. 9 Comparison of LV-EGO with and without (NR-LV-EGO) a repeated estimation of the latent variables.
Results for the beam design application

latent variables provide a flexible way to handle mixed problems where the total number
of levels and of variables is less or equal to about 10 variables and 10 levels in total.
Accounting for the discrete nature of some variables through a constraint during

the relaxed optimization with augmented Lagrangians was not clearly found to further
increase the performance of the search as LV-EGO competed equally and even sometimes
outperformed the ALV versions of the algorithms. It was also observed that expressing
the discreteness as an inequality constraint by adding a tolerance was a better option
than expressing it as an equality. The global updating strategy of the Lagrange multipli-
ers, which to the best of our knowledge is original, improved over the more common
local updating schemes. Finally, the random forests metamodels did not do as well as
the Gaussian processes, whether in their continuous or mixed forms, within the Bayesian
optimization algorithm.
Our study needs to be completed in three ways. To fully leverage on the continuous

latent space, the gradient of the acquisition function should be analytically calculated and
used to guide its maximization. The implementation we proposed creates more latent
variables than there are discrete levels, which limits its application to about 10 levels. This
limitation can be overcome with under-parameterized kernels based on groups Roustant
et al. [25] or warping techniques Deville et al. ?[7]. Mixed Bayesian optimization through
latent variables would also gain in credibility if the convergence results of EGO were
generalized to it.
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Complements on the augmented Lagrangians
Case of an equality constraint

Let us first consider an optimization problem with an equality constraint,
{
minx∈X f (x)
such that h(x) = 0

(A.1)

At this point, f () and h() are very general functions on a d-dimensional general setX . We
only require thatX is not empty, that f () and h() are bounded, and that there is at least one
solution to (A.1), x� ∈ X , which can be attained. f () and h() are not necessarily continuous,
a fortiori not necessarily differentiable. With respect to the main body of the article, the
notations are simplified in this Section: X stands for the cartesian product of X and L,
f (x) generalizes − log(1 + EI(t)(x, �)) and h(x) corresponds to g (t)(�) when ε = 0. Note
that g (t)(), being made of the minimum distance to a discrete set of points (cf. Eq. (2.4)), is
not differentiable. g (t)() is the only constraint in the article. This appendix considers one
constraint too, but all the results given readily generalize tomany constraints by replacing
the products by vector scalar products.
Problem (A.1) can be equivalently reformulated as

{
minx∈X f (x) + 1

2ρh
2(x)

such that h(x) = 0
(A.2)

where ρ ≥ 0 is a penalty parameter. The two above formulations have the same solution x�

and the same value of optimal objective function since x� is feasible, h(x�) = 0, therefore
f (x�) = f (x�) + 1

2ρh
2(x�). However, as proved in Minoux [17] and sketched in Fig. 10,

there is always a positive lower bound on the penalty parameters, ρ ≥ ρ� ≥ 0, such that
Problem (A.2) can be equivalently solved through the dual formulation,

max
λ∈R D(λ, ρ)

where D(λ, ρ) = min
x∈X LA(x; λ, ρ)

and LA(x; λ, ρ) = f (x) + λh(x) + 1
2
ρh2(x)

(A.3)

In this way, the augmented Lagrangian of Hestenes [10] is the classical Lagrangian of the
penalized problem (A.2). We write λ�, ρ� a solution to (A.3). D(λ, ρ) is the lower front of
all augmented Lagrangians for varying x at a given λ, ρ. The “global dual” update of (λ, ρ)
comes from the resolution of (A.3) where the set X is approximated by the finite subset
of samples X .
Let us denote

x(λ, ρ) = arg min
x∈X LA(x; λ, ρ) (A.4)

a solution at given multiplier and penalty parameter. The function D(λ, ρ) is concave in λ

and ρ and h(x(λ, ρ)) is a subgradient with respect to λ Minoux [17]. This is at the root of
updating strategies that we called “local dual” earlier and which consist in a gradient step
in the dual space,

λt+1 = λt + α∂λD(λt , ρt ) = λt + αh(x(λt , ρt )) , (A.5)

where α > 0 is a step size factor.
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More specific update strategies such as those given in Nocedal andWright [19], Picheny
et al. [22] stem from theKarushKuhn andTucker (KKT) optimality conditions and require
the additional assumption that X ∈ R

d and f () and h() are differentiable. At x�, since
h(x�) = 0 and λKKT being the KKT multiplier1, one has

∇f (x�) + ρh(x�)∇h(x�) + λKKT∇h(x�) = 0

⇒ ∇f (x�) + λKKT∇h(x�) = 0 (A.6)

At iteration t, the necessary conditions for xt = x(λt , ρt ) to be theminimum of LA(; λt , ρt )
are

∇f (xt ) + ρth(xt )∇h(xt ) + λt∇h(xt ) = ∇f (xt ) + (ρth(xt ) + λt )∇h(xt ) = 0 (A.7)

Comparing Eqs. (A.6) and (A.7), xt can be driven to x� if

λt+1 = λt + ρth(xt ) (A.8)

The updates (A.5) and (A.8) have the same form, (A.8) is more restrictive since the KKT
conditions must apply but the step size is known.
The equality constraint of the article (Eq. (2.4) with ε = 0) is a minimum over distances.

It has the additional feature that it is always positive or null, ∀x ∈ X , h(x) ≥ 0. Because
of this, if h is locally differentiable around x�, ∇h(x�) = 0 since h has a minimum at
x�. The constraint qualification condition is not satisfied (∇h(x�) does not span a non-
empty set) and the KKT conditions do not apply. Another consequence is that the optimal
Lagrange multiplier must be positive and the search for λ can be written maxλ≥0 D(λ, ρ)
in Problem (A.3), as in Problem (2.7).

Proof Assume ρ is large enough for Problem (A.2) to have a saddle point at its optimum,
f (x�) ≤ f (x)+ρ/2h2(x)+λ�h(x) , ∀x where λ� is the optimum Lagrange multiplier. Since
the optimization problem has an active constraint, there is a point xI that is infeasible,
h(xI ) > 0, and has a better objective function than the feasible solution (otherwise the
constraint is useless), f (xI ) + ρ

2 h
2(xI ) ≤ f (x�). If the optimum Lagrange multiplier is

negative, λ� < 0, f (xI )+ ρ
2 h

2(xI )+ λ�h(xI ) < f (x�) which contradicts the fact that x� is a
solution to the dual problem. ��

Inequality constraint

When ε > 0, Problem (2.4) has an inequality constraint which we rewrite here more
simply,

{
minx∈X f (x)
such that g(x) ≤ 0

(A.9)

The considerations on augmented Lagragian done above for equality constraints readily
extend to inequality constraints by introducing a slack variable,

1 The Lagrange multiplier that maximizes the dual function is equal to the KKTmultiplier only when the functions are
differentiable, the constraints qualification conditions apply, and there is a saddle point i.e., minxmaxλLA(x; λ, ρ) =
maxλminxLA(x; λ, ρ).
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Fig. 10 Sketch of Rockafellar’s augmented Lagrangian for ρ ≈ 0 in blue and ρ > 0 in red. x1 is infeasible, x2

feasible (and g(x2) < −λ/ρ) and x� is an optimum with g(x�) = 0. The black highlighted curves are the
approximation to the dual function, D̂(λ) for X = {x1 , x2 , x�}, for ρ ≈ 0 and ρ > 0. There is no saddle point
and a duality gap with the blue set of curves in that x� /∈ argminx LA(x ; λ� , ρ ≈ 0) and
D̂(λ�) = minxLA(x ; λ� , ρ ≈ 0) < LA(x� ; λ� , ρ ≈ 0), i.e., minimizing the augmented Lagrangian does not lead to
the result of the problem. However, by increasing ρ , it is visible that the y-intercept of the infeasible points
increase so that one always reaches a state where x� = argminx LA(x ; λ� , ρ) as in the red set of curves. A
similar illustration can be done with the augmented Lagrangian with equality constraint: f (x) + ρ/2h2(x) is
the y-intercept and h(x) is the slope of the augmented Lagrangian associated to x . The main difference is that
all points contribute linearly in terms of λ to LA(x ; λ, ρ)

{
minx,s∈X×R f (x)
such that g(x) + s2 = 0

(A.10)

and the expression for the augmented Lagrangian (A.3) becomes

LA(x, s; λ, ρ = f (x) + λ(g(x) + s2) + 1
2
ρ(g(x) + s2)2 (A.11)

The minimization of LA() on the slack variable s can be done analytically:
∂LA(x, s; λ, ρ)

∂s
= 0 ⇐⇒ s2 = −λ

ρ
− g(x)

Since s2 needs to be positive, all cases are summed up in

s2 = max
(

0,−λ

ρ
− g(x)

)

(A.12)

Reinjecting the expression of s2 into the augmented Lagrangian yields

LA(x; λ, ρ) = f (x) + 1
2ρ

[
(max(0, λ + ρg(x)))2 − λ2

]
(A.13)

which is equivalent to the expression of Rockafellar with the 2 cases given in Eq. (2.5)
(recall − log(1 + EI) is f (x)).
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The update equations for λ are the same as those for the equality case where the slack
variable s2 takes its optimal value.On the one hand, it is possible to solve the approximated
dual problem as in (2.8). On the other hand, a step along a subgradient in the dual space
can be taken,

λt+1 = λt + α(g(xt ) + s2t )

⇒ λt+1 = λt + α

(

g(xt ) + max(0,−λ

ρ
− g(xt ))

)

(A.14)

where α is again a positive step factor. It has the same form as Eq. (2.10). The update (2.10)
is fully recovered from the KKT conditions as above for equalities, (A.8),

λt+1 = λt + ρ(g(xt ) + s2t )

⇒ λt+1 = λt + ρ

(

g(xt ) + max(0,−λ

ρ
− g(xt ))

)

(A.15)

Equations (A.14) and (A.15) are the same but in the latest the step factor α is known and
equal to ρ, which comes at the additional expense of the KKT validity conditions.
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