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Application of scattering theories to the characterization of precipitation processes

Introduction

The solid-liquid suspensions are frequently used in industrial processes. These suspensions usually contain aggregates made up of solid primary particles. Many characterization tools of these suspensions are based on light scattering (Mie theory). However, the Mie theory (1908) is not always applicable to the practical problems since the scatterer must be a homogeneous sphere. The ordinary particle sizers that use this theory do not make it possible to measure the non-spherical particle geometrical characteristics. Extensions of the Mie theory for arbitrary shaped particles or particle aggregates are available nowadays (T-Matrix method, Generalized Multiparticle Mie (GMM)-solution, etc.). But the computing times of the optical properties via these exact theories do not allow for a real-time analysis. This chapter is thus dedicated towards the search of approximate methods for the estimate of aggregate optical properties, particularly their scattering cross section. This chapter is split into five parts. The first one (section 2) concerns the aggregation process and, more generally, the precipitation process, to provide a better understanding of the framework of this study. Precipitation is the formation of a solid in a solution during a chemical reaction. Morphology of particles currently observed during precipitation or particle synthesis will be described. Relationship between optics and particle technology will be recalled. The third section outlines briefly the different approximate methods used for the case of spherical and non-spherical particles. The fourth section presents selected approximations for light scattering cross sections in the case of aggregates. The quality of each approximation will be discussed by comparison with the exact theory. Practical cases will be presented. The fifth section is an extension of the previous section to the light pressure cross section. The last section is an attempt to relate the scattering properties of aggregates to their geometrical characteristics.

In the next section we describe the context of the need of approximate methods for scattering cross section of aggregates.

Aggregate formation

Materials are often made from inorganic particles. These are formed by reactions in gas phase or more commonly in liquid phases. The main process is named precipitation.

Precipitation and particles synthesis

The classical situation is the following: a solution consisting of a solute A and a solvent is mixed with another one consisting of a solute B and the same solvent. The two solutes react to form a solid product denoted AB.

A + B ↔ AB

A and B are often ions.

If the equilibrium between the solid phase and the solutes is reached, thermodynamics tells us that this equilibrium (saturated solution) is characterized by the solubility of the solid phase.

However, when the concentrations of A and B are high enough to produce solid particles, the initial solution is supersaturated. So, the ratio of the actual concentration and the equilibrium concentration (solubility), called supersaturation, is the key parameter of the dynamics of precipitation. Higher is the supersaturation, higher is the precipitation rate. Particle formation can be distinguished into three stages: nucleation, growth and agglomeration.

Nucleation is the birth of particles that are large enough to grow (nuclei). Too small particles are unstable and dissolve in the solution. Nucleation rate JN is defined as the number of created nuclei per unit volume and per unit time. The formed nuclei are characterized by a socalled critical size. Typical critical size values are within the range [1 nm -50 nm]. The nucleation rate is a non linear increasing function of supersaturation. Nucleation stage in a precipitation process is often difficult to observe. If light is used as a probe to study precipitation, nuclei can be treated as Rayleigh scatterers. Considering the nuclei concentration, interaction between light and suspension is usually below the detector threshold. Other methods (for instance, Small-Angle X ray Scattering) are preferred, but are more difficult to be applied. Details about the nuclei are not known. Hence, nuclei leading to inorganic particles are often considered as amorphous and spherical.

The following stage is the growth of the nuclei. Additionally, they may convert to crystals.

Crystals present facets, the occurrence of which can be explained from crystallography and thermodynamics. However, depending on the precipitation reaction, only amorphous particles (i.e., hydroxylated compounds) can be found. Usually, the growth rate is defined as the derivative of crystal characteristic length (e.g, the diameter) with time. The growth rate increases with the supersaturation. The most often, the relation between growth rate and supersaturation is linear.

For different reasons (one is the decrease of supersaturation during precipitation, due to the mass transfer from solution to crystals), an upper size limit for the growing crystals is observed. At the end of the second stage, crystal or particle size ranges between 0.1 m and 10 m. During this period, particles become large enough to scatter light effectively. Thus, light scattering methods are suitable for studying the growth of crystals or primary particles in suspension.

Before or after reaching the end of growth, crystals or amorphous particles can form clusters or agglomerates. Agglomeration requires the collision of particles and their subsequent adhesion due to attractive forces (for instance, Van der Waals forces). Consolidation between primary particles or crystals can take place by crystalline growth from the contact point.

In quiescent liquids, the particle collisions are due to their Brownian motion. For flowing suspensions, collisions are due to Brownian motion for small particles or crystals (smaller than about 0.2 m) and due to local shear for larger particles.

When the agglomerate increases in size, it becomes fragile. Then, break up takes place and a limit size is reached (with values in the range [5 m -100 m]). The stress acting on the agglomerate results from the shear, but also the transition between viscous and inertial turbulent regimes. This leads to agglomerates containing often a few primary particles (less than one hundred primary particles).

Summarizing: inorganic solutes can lead to solid particles in a batch precipitation vessel, provided that the solution is initially supersaturated. Nucleation, i.e. the birth of nuclei with a critical size, takes place, while supersaturation decreases as a consequence. Finally, supersaturation becomes too small, to produce new nuclei. Thus, there is a mass transfer from solution to the nuclei surface leading to the growth of nuclei. In this way, crystals or amorphous particles are formed. As supersaturation tends to one, growth stops. Depending on the surface charge of particle, their agglomeration may occur for the growth period.

Particles shapes during precipitation

Images from electron microscopy often show the complexity of the particles structure.

Particles formed by growth from solution can be crystals with well defined crystalline faces, but may be agglomerates of smaller (nanometric) particles. In this case, agglomeration can be due to Brownian motion and the subsequent collision of particles, but also the contact of specific crystalline faces belonging to two particles. The first situation leads to random agglomerate with spherical symmetry. The second phenomenon, also called orientated agglomeration, leads to regularly shaped particles (i.e., cylinder as disks stacking). It must be underlined that the mechanism of orientated agglomeration is still being studied. Whatever the structure of particles: crystals, random or ordered agglomerate of nanoparticles, their geometric characteristics are easily determined by image analysis of electron micrographs.

However, these particles are rarely apart. They form agglomerates after collision due to Brownian motion and / or shear flow. The structure of agglomerates is disordered and is often considered as fractal-like. However, the reader must keep in mind that these agglomerates consist of only a few particles.

Figure 1 presents agglomerates of SrMoO4 strontium molybdate crystals [START_REF] Cameirao | Effect of precipitation conditions on the morphology of strontium molybdate agglomerates[END_REF]. They are obtained by precipitation: 

Dynamics of precipitation: modelling

In order to manage the complexity of precipitation dynamics, each particle in the precipitation reactor is characterized by space coordinates (x, y, z) and internal coordinates pi (i.e. radius, characteristic lengths of crystal, volume, porosity, gyration radius, fractal dimension, …) with

1 iP .
The largest being is the number P, more comprehensive is the description of particles. So, the This population density obeys the population balance equation (PBE), that can be formally written as:
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where v is the particle velocity, t is the time, Gi is the growth rate for the pi parameter More often, the following assumptions are used:

-homogeneous suspension -only one internal parameter (particle radius)

-agglomeration taken into account only at the end of nucleation and growth -fractal-like agglomerates with constant fractal dimension.

For fractal-like agglomerates, the relation between the number j of primary particles inside the agglomerate and its outer radius Rj is:
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a is the radius of the primary particle. DF and Sr are respectively the fractal dimension and the structure factor, which is a function of DF.

Attempts to consider two internal parameters (radius and length for particles as a needle, solid volume and surface area for porous particles) have also been made [START_REF] Tandon | Monte Carlo Simulation of Particle Aggregation and Simultaneous Restructuring[END_REF][START_REF] Kostoglou | Bivariate population dynamics simulation of fractal aerosol aggregate coagulation and restructuring[END_REF].

Summing up, precipitated particles have a multi-scale structure. etc). The largest scale corresponds to disordered or random agglomerates. The reader interested in details of precipitation and population balance may refer to [START_REF] Sugimoto | Fine particles: synthesis, characterization, and mechanisms of growth[END_REF] and [START_REF] Randolph | Theory of Particulate Processes[END_REF].

Particle sizing during precipitation

Considerable efforts are made to understand the precipitation mechanisms and to predict the change of the particle morphology with time. On the other hand, industrialists need to monitor and control the precipitation process. Off line size measurements (i.e. using filtration, powder drying and Scanning Electron Microscope (SEM) observations or suspension sampling and sizing with granulometers) are now avoided because these operations modify the particle morphology. On-line measurements (i.e., using a recirculation loop with a measurement cell in a granulometer) are possible, but representative sampling is difficult to carry out. In line measurements are preferred. They are often based on light extinction and are obtained from turbidimetric sensor. So, turbidimetry will be at the centre of this chapter.

Typically, the optical sensor for particle sizing is not the only one in the precipitating suspension. The temperature probe and concentration sensors are always introduced within.

Thus, supersaturation and solid fraction (via mass balancing from solute concentration) are deduced and, as a consequence, are known.

A turbidimetric sensor records the transmitted light intensity It. One defines the extinction coefficient or turbidity 1 as (see, for instance, [START_REF] Elimelech | Particle deposition and aggregation, measurement, modelling and simulation[END_REF]:

0 1 t I ln LI   (3)
Io and L are the incident light intensity and the geometrical thickness of the medium, respectively. For a monodisperse diluted suspension, the turbidity obeys the equation: The functions N and Cext are the particle number concentration and the extinction cross section of the particles. (xs ,ys ,zs) are the coordinates of the sensor in the reactor.
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For a complex diluted suspension, turbidity contains the contribution of each kind of particles: 
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Thus, the turbidity monitoring gives information on the population density change with time during the precipitation process.

Two strategies can be considered for the analysis of turbidity signals:

-inversion of the integral equation (Eq.5) in order to get the population density. Then, comparison to PBE (Eq.1) solution and identification of unknown physico-chemical and morphological parameters (i.e., fractal dimension …)

-PBE (Eq.1) solving; calculation of     (Eq.5); comparison with experimental turbidity for deducing the unknown physico-chemical and morphological parameters.

For numerical reasons, the last one is preferred. However, whatever the strategy, the knowledge of Cext (, p1 … pP) is needed.

The extinction cross section is dependent on the relative refractive index m, which is the ratio between refractive indices of material and suspending medium. Three typical cases can be envisaged: low optical contrast m -1 value (0 < m-1 < 0.1), moderate contrast m -1 value (0.1 < m -1 < 0.5) and high optical constrast m -1 value (m -1 > 0.5). Corresponding materials (suspended in water) could be, respectively, silica SiO2 ( m = 1.08), alumina (m = 1.20) and titania TiO2 ( m = 2).

We will focus our work on non-absorbing (in the visible range) materials that are most commonly found in the precipitation process. Thus, scattering Csca and extinction Cext cross sections are equal.

It is obvious that PBE solving, cross sections calculation and optimization procedure require great computational efforts and make it difficult to get results in a short time. Therefore, any rapid calculation of the optical cross sections would be a progress. The accuracy of approximations has to fit the measurement accuracy. In the case of turbidity, measurements within 3 % error can be considered as satisfactory.

The need for approximations is particularly important for agglomerates 2 . Fast calculations have to be based on known approximations coming from the light scattering theory. Next chapter shortly recalls them.

Approximations for non-spherical particles

The scattering cross section is a function of the dimensionless particle size parameter x (= ka for a sphere), the particle and the medium optical refractive indices respectively denoted np and nm, the wavelength  (and the wave number

2/ k  
) of the incident light in the medium and the orientation of the incident light in the relation of the particle position. The 2 The name aggregation corresponds to the formation of a cluster, the primary particles of which only interact by physical forces as Van der Waals forces. On the other hand, agglomeration is aggregation followed by strengthening at the contact point in a supersaturated solution. Aggregate and agglomerate optical properties will be treated in the same way.

relative refractive index m, which is used in the following equations, is the ratio between the material refractive index np and the medium refractive index nm.

The exact theory was developed for a sphere in 1908 by G. Mie (cf. (Hulst 1981)) and for spheroids by several authors [START_REF] Asano | Light scattering by spheroidal particle[END_REF][START_REF] Asano | Light scattering properties of spheroidal particles[END_REF][START_REF] Asano | Light scattering by randomly oriented spheroidal particles[END_REF][START_REF] Voshchinnikov | Optical properties of spheroidal particles[END_REF][START_REF] Farafonov | A new solution of the light scattering problem for axisymmetric particles[END_REF].

In this section, three classical approximations are recalled: the Rayleigh approximation, the Rayleigh-Gans-Debye approximation and the Anomalous Diffraction approximation.

Principles are presented and application is given for a sphere. The reader interested in by details on scattering theories may refer to [START_REF] Van De Hulst | Light scattering by small particles[END_REF] and Kokhanovsky (2004).

Rayleigh approximation

The Rayleigh approximation that considers the scatterer as an oscillating dipole has a validity range of 1 x  , 1 mx .

So, the scattering efficiency factor for a sphere is: A comparison between this approximation and the Mie exact theory shows that the validity range, in terms of maximum size, varies according to the relative refractive index and the scattering angle [START_REF] Mishchenko | Scattering, Absorption, and Emission of Light by Small Particles[END_REF][START_REF] Mishchenko | T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database[END_REF].

Rayleigh-Gans-Debye approximation

The validity range of the Rayleigh-Gans-Debye approximation (RGD) is:

2 | 1| 1 xm  and | 1| 1 m   .
Figure 4 represents a particle with an unspecified shape lit by a plane wave being propagated along the axis z'. It is supposed that each volume element is a Rayleigh scatterer and behaves independently of the other particle volume elements. The scattering waves of all these volume elements interfere. The phases of all these scattering waves are ascribed in a common coordinates reference in order to handle their amplitude.

Fig. 4. RGD approximation

The expression of the contribution, of the volume element V  located out of O, to the scattering field by the particle is:
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The contribution of a volume element located in O' will be:
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R OO  . S1 and S2 are the amplitude functions per volume unity:

3 1 ( 1) 2 ik Sm     and 3 2 ( 1) cos 2 ik Sm      .
 is the scattering angle.

Integration is done with respect to particle volume V to obtain the total field in the direction r e . So, the amplitude functions for the particle are:

3 1 ( 1) 2 ik S m Vf     and 3 2 ( 1) cos 2 ik S m Vf     
The form factor f obeys:
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that becomes for a sphere:
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It follows for a spherical particle (Van de Hulst, 1981):

    2 0 / sca Q F d a       (8a)
where,
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Anomalous Diffraction approximation

This approximation, due to Van de Hulst, bears the name of anomalous diffraction (AD) because for low optical contrast, the light passing through the particle (transmitted without deflection) interferes with that diffracted, then producing a diffraction known as anomalous.

Let us consider particles such as: [START_REF] Videen | Anomalous diffraction approximation limits[END_REF] and [START_REF] Liu | Validity of anomalous diffraction approximation in m-X domain[END_REF] ).

1 x  and | 1| 1 r m   (see the discussion of
The second condition implies that the rays are not deviated when they cross the interface particle-medium and that the reflection is negligible with the same interface. Extinction is thus due to:

-absorption of the light passing through the particles -interferences between the light passing through the particle and that passing around. 
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Integration is performed over the particle projected area Sp on a plane perpendicular to propagation direction. l is the computed path of light through the particle, which is a function of the projection coordinates x and y.

The integrand represents the subtraction with "the part of shade" (value 1) of the rays passing through the particle (  

1 ik m l e  ). If m is real,   [] 2 1 cos ( 1) p sca p S C kl m dS       . ( 9 
)
Thus, it follows for a sphere

2 44 2 sin (1 cos ) sca ext QQ        (10) where 2 ( 1) xm   .
The anomalous diffraction was applied to a sphere and an infinitely long circular cylinder [START_REF] Van De Hulst | Light scattering by small particles[END_REF], a prism column [START_REF] Chylek | Absoption and scattering of electromagetic radiation by prismatic columns: anomalous diffraction approximation[END_REF], a hexagonal crystal of ice [START_REF] Sun | Anomalous diffraction theory for arbitrarily oriented hexagonal crystals[END_REF], ellipsoids [START_REF] Lopatin | Introduction to optics of cell suspensions[END_REF][START_REF] Streekstra | Anomalous diffraction by arbitrarily oriented ellipsoids: applications in ektacytometry[END_REF], a short cylinder [START_REF] Liu | Anomalous diffraction theory for arbitrarily oriented finite circular cylinders and comparison with exact T-matrix results[END_REF]) and other various forms (Sun andFu, 2001, Yang et al., 2004).

A comparison between AD and the exact theory [START_REF] Liu | Anomalous diffraction theory for arbitrarily oriented finite circular cylinders and comparison with exact T-matrix results[END_REF] suggests that AD estimates the extinction more precisely in the case of a random orientation of nonspherical particles than for spheres.

The next section treats approximations for the case of the clusters of spheres. The derived approximations are directly related to the previous ones.

Approximations for aggregate scattering cross section

This part begins with a short summary on the exact methods. It is followed by the study of the relation between aggregate scattering cross section and their physical characteristics. Finally, four approximations are described and an illustration in the field of precipitation is presented.

Exact theory for non spherical particles and aggregates

The presented summary (see Table 1) of the different exact methods is not exhaustive. But we try to show several methods used to calculate the optical properties of an aggregate. We invite the reader to consult the article of [START_REF] Kahnert | Numerical methods in electromagnetic scattering theory[END_REF] to have a more complete range of these methods and the papers series of [START_REF] Mishchenko | Comprehensive T-matrix reference database: A 2004-06 update[END_REF][START_REF] Mishchenko | Comprehensive T-matrix reference database: A 2006-07 update[END_REF]. It is rather difficult to classify them precisely and especially to enumerate all of them.

Nevertheless one can classify them in three main categories:

1. Methods based on the partial derivative equations which calculate the scattering field by solving the Maxwell equations or the Helmholtz equation. They are subjected to the boundary conditions suitable in the time or the frequency domain.

2. Methods based on integration over volume or surface of equations derived from the Maxwell equations. Thus, the boundary conditions are automatically included in the solution.

3. The other methods are known as hybrids since they derive from the various approaches.

Name Principle Applications

Strong and weak points Methods based on partial derivative equations S.V.M.

Separation of Variable Method

Method applied in the case of the Mie theory; it can be applied when the boundary of the considered particle coincides with the reference frame.

In any reference frame, where the variables separation can be applied. Asano and Yamamoto (1979) [START_REF] Yang | Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles[END_REF].

All particle shapes.

-the operation for each orientation must be repeated -NO(x 4 ) F.E.M.

Finite Element Method

This method consists in discretizing the Helmholtz equation in space and solving numerically using the boundary conditions. [START_REF] Coccioli | Finite elements methods in microwaves: a selected bibliography[END_REF].

All particle shapes.

-the operation for each orientation must be repeated -the precision depends on the grid which must be selected according to the particle shapes -NO(x 7 ) P.M.M.

Point-Matching Method

In this method, the internal and external fields are expressed as a spherical harmonic vector. The tangential field at the boundary of a particle must be continuous for a fixed number of points belonging to the particle surface. Normally all particle shapes, but problems are known for the elongated geometries.

-This method is limited to the quasi spherical particles, it has a dubious convergence, and thus, requires a long CPU time [START_REF] Wriedt | A review of elastic light scattering theories[END_REF].

Volume or surface integration V.I.E.M. Volume Integral Equation MethodThe field inside and outside the volume is expressed in terms of incident and internal fields for the selected volume.

-the internal field is evaluated by considering, for each volume element, as being constant: M.O.M (Method of Moments) [START_REF] Harrington | Field computation by moment methods[END_REF].

Alternatively, -each element is regarded as a dipole: D.D.A (Discrete Dipole Approximation) [START_REF] Draine | Discrete-dipole approximation for scattering calculations[END_REF] -Inhomogenous, anisotropic particles -MoM et DDA have a long CPU time -the operation for each orientation must be repeated -NO(x 9 ) Table 1 : Methods allowing to treat the light scattering by a non spherical particle or an aggregate (N: Number of operations in algorithm [START_REF] Kahnert | Numerical methods in electromagnetic scattering theory[END_REF]).

It is important to specify the meaning of the "T-matrix method" expression which is found in a lot of publications.

In the T-matrix method, the incident and scattering fields are expressed in the form of a series of spherical vector wave functions. This approach is named the T-matrix method, when the expansion coefficients of the incident wave and the scattering wave are connected by a linear transformation (T: Transition). This matrix T contains all the information on the particle's optical properties for a given wavelength. It is a function of the size parameter, the shape, the optical refractive index of the considered particles, but it does not depend on the incident field. Thus this matrix is not to be computed at each particle orientation change or change of the incident wave direction.

To classify the publications set relying on this method, a database was carried out by [START_REF] Mishchenko | T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database[END_REF][START_REF] Mishchenko | Comprehensive T-matrix reference database: A 2004-06 update[END_REF][START_REF] Mishchenko | Comprehensive T-matrix reference database: A 2006-07 update[END_REF]. This method is, in fact, a technique of calculation, which is found associated with various methods (eg.: SVM). Thus, any method making it possible to formulate the problem in the way of a matrix T is called the T-Matrix method.

The solving by separation of variables (SVM) for only one sphere can be enlarged to an aggregate of spheres by using the translation theorem for the spherical wave vector functions which expresses them in various bases of coordinates, and, by applying a superposition principle. The total scattering field for an aggregate is then represented by the superposition of the individual scattering fields resulting from each particle knowing that these fields are interdependent. Moreover, one can formulate the problem in the way of a T-matrix. This method is very precise but its computation time depends on the number and the size parameter of primary particles.

We will use in the continuation of this text a method which is in fact a particular case of the T-matrix method [START_REF] Mishchenko | T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database[END_REF] bearing the name of GMM (Generalized Multiparticle Mie-solution) .

We did not find a comparison of the various methods, except an article of [START_REF] Hovenier | Computations of scattering matrices of four types of non-sphericles using diverse methods[END_REF] which compared the T-matrix (method by surface integration), SVM and DDA. This article shows that the latter is not completely in agreement with the two other methods. As no study was undertaken in this direction, the work presented in this article is achieved with a method which seems, closest to the one used for a simple sphere and validated by the experiment [START_REF] Xu | A generalized multiparticle Mie-solution: further experimental verification[END_REF]: GMM. The details of GMM are given by [START_REF] Xu | Electromagnetic scattering by an aggregate of spheres[END_REF][START_REF] Xu | Calculation of the addition coefficients in electromagnetic multispherescattering theory[END_REF]Xu ( , 1997aXu ( ,b, 1998a)).

Main features of scattering properties of aggregates

We present a summary of the main features of scattering properties of aggregates. Results are coming from the calculated optical properties of aggregates such as:

-aggregates of spherical primary particles -number of primary particles in the aggregate [1,100] N  -primary particle size parameter (x) in the range : [0.013, 9.25].

-three different materials (SiO2, Al2O3, TiO2); non absorbing materials Optical properties are calculated by using GMM theory.

First of all it is interesting to study the effect of the inter-particle distance on the scattering cross section.

Case of a two-sphere set

The evolution of the scattering cross section of a two-sphere set according to the type of material, their size parameter and the center to center distance has already been studied by [START_REF] Mishchenko | Scattering of light by bispheres with touching and separated components[END_REF] and [START_REF] Quirantes | Multiple light scattering by spherical particle systems and its dependence on concentration; a T-matrix study[END_REF] .

The KXu parameter for different materials was used. KXu is defined as the ratio between the scattering cross section of an aggregate and the sum of scattering cross section of N primary particles which form this aggregate (so, the denominator assuming non-interacting and noninterfering spheres).

, ,1
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The two spheres, denoted i and j, were gradually separated (centre to centre) by a factor ij F proportional to their diameter, until they do not interact any more (KXu is equal to 1). As the separation distance is denoted ij d , the factor obeys the relation:

  /2 ij ij F d a 
a is the radius of the primary particle. According to Fig. 6, for size parameter smaller than 0.5, smaller is the primary particle, the distance factor must be greater so that there is no interaction. We thus join the conclusion of [START_REF] Kolokolova | Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories[END_REF]: a suspension consisting of Rayleigh scatterers as primary particles has to have a very weak volume fraction to avoid multiple scattering, whatever the relative refractive index.

Interaction between particles cannot be ignored even if 4 ij F  (for the whole range of the size parameter).

For spheres in contact, KXu (Fig. 6) increases with decreasing size parameter up to a value close to 2. When the two spheres are large enough, the deviation from the non interacting limit is negligible (e.g. KXu<1.1 for x>5).

It thus appears useful to evaluate the critical inter-particle distance for which interaction is

negligible. An approximate method for aggregate optics calculation could take it into account.

Case of aggregate (N>2)

Auger et al. (2003) studied the relation between extinction cross section of an aggregate, its shape (linear or compact configuration) and the number of primary particles (2,4,8,13) in the case of titania TiO2 (the optical refractive index being equal to 2.8). In this article, the average extinction cross section (average on the polarization and the incident wave direction) divided by the aggregate volume (made up of monosized spheres) is calculated, according to their particle radius (between 0.04µm and 0.132 µm). It is found that there exist two size ranges (for =0.546µm). For a primary particle radius smaller than 0.08µm-0.09µm, an isolated primary particle scatters less than if it were contained in an aggregate. Primary particles belonging to the second range behave in an opposite way. They show that there exists two size ranges concerning the effect of aggregate shape: in the first range, a compact configuration scatters more than linear configuration and conversely for the second range.

Lastly, a comparison with the equivalent sphere approximation shows that the latter is not suitable. [START_REF] Auger | Scattering efficiency of aggregated clusters of spheres: dependence on configuration and composition[END_REF] and Jacquier and Gruy (2007a) perform similar studies in the way that they compare the scattering cross section for various configurations. [START_REF] Auger | Scattering efficiency of aggregated clusters of spheres: dependence on configuration and composition[END_REF] study is based on distribution of randomly generated aggregates by classical mechanisms of aggregation.

Jacquier ( 2006) and Jacquier and Gruy (2007a) enlarged the study using different optical refractive indices, a greater range of primary particle size parameter, and different configurations. They noted the effect of the primary particle number and the aggregate morphology. The results are summarized in the two next paragraphs.

 Effect of the number of primary particles on the scattering cross section

In the paper of Jacquier and Gruy (2007a), two extreme configurations were compared (linear and compact configuration). For each configuration, Jacquier and Gruy noticed that there exist two ranges. The first one is for KXu larger than 2, and the other one for KXu ranging between 0 and 2. The value of the size parameter of the primary particles corresponding to the range boundary is a weak function of the optical refractive index, the primary particle number and the configuration. However, the authors suggest the first range for   0, 2 x  (Fig. 7a) and the other one for   2,10 x  (Fig. 7b) (the limit of their study is for a size parameter smaller than 10). They conclude (as shown in Fig. 7):

-for

  0, 2 x 
, larger is the number of primary particles, larger is the scattering cross section whatever the configuration. Indeed, in the case of very small size parameter, the aggregate scattering cross section is proportional to the particle number square and to the primary particle scattering cross section (

1 , 2 , Mie N Xu C N C 
). This relation is checked on a lesser scale by aggregates with high refractive index (e.g., TiO2). In addition the decrease of  

Xu

Kx seems to depend on the configuration.

-for

  2,10 x  ,   Xu Kx
is not yet equal to 1 (Fig. 7b), i.e. the aggregate scattering cross section is not the sum of scattering cross sections of each primary particle.

 Effect of the aggregate morphology on scattering cross section

As illustrated in Fig. 8, it is possible to establish a classification of the configurations according to their scattering cross section. In the x-domain, where KXu>1, the scattering cross section of the compact configuration is higher than that of the plane configuration, itself higher than that of p1 and p2 configurations (which are very close, Fig. 9). The linear configuration is the weakest. The order is reversed for the other x-domain (KXu<1). Thus, there are two extreme configurations: linear and compact between which other configurations are. The primary particles arrangement, i.e. the aggregate configuration, is not without effect on the scattering cross section, nevertheless, the number of primary particles in it is the prevailing parameter in the range [0;2] x  . In the second range ( [2;10] x 

), the configuration is more important than the number of primary particles.

Conclusion on aggregate scattering cross section

The study of scattering (Csca) cross sections of aggregates obtained with the exact method revealed that:

-the distance between particles is a relevant parameter for Csca -different aggregate configurations, following its shape or the number of primary particles which it contains, are perfectly distinguishable, -the number of primary particles is the relevant parameter in the case of small size parameter

x ( 2 , ,1 0, Xu N Mie x C N C  )
-there exists, for an aggregate with a given number of primary particles, two extreme configurations (linear and compact) between which the cross sections of the others are located.

Approximate methods (CS, BPK, AD, ERI) for aggregates

In this sub-section, we describe different approximate methods: Compact Sphere method (CS), Berry-Percival-Khlebtsov method (BPK), Anomalous Diffraction method (AD),

Effective Refractive Index method (ERI). A first comparison between these four methods was published by [START_REF] Gruy | Formation of small silica aggregates by turbulent aggregation[END_REF] in connexion with aggregation of SiO2 micro-particles in water.

The study of the parameters influencing the optical properties of aggregate began with Fuller and Kattawar (1988, a and b). [START_REF] Rouleau | Electromagnetic scattering by compact clusters of spheres[END_REF] compared several approximate methods for optical properties based on:

-RGD approximation -Non interacting spheres -Equivalent volume sphere -Equivalent projected area sphere

This study was carried out only for compact aggregates with 30 primary particles whose size parameter was smaller than 0.6 and the refractive index was kept constant (m=1.7+0.1i). He concluded that the above-mentioned methods are not efficient except the one using the projected area.

The differences between the methods quoted in the next paragraphs are evaluated in Table 2.

We chose to differentiate porosity and arrangement. The validity range of all these methods is normally the whole size parameter range except for AD, which, as already mentioned in subsection 3.3, is to be used only in the case of large particles. 

Method

C

) will be compared. Then, the ratio Km is defined as:

, , method N m Xu N C K C  (12)

Compact Sphere (CS)

This method has to be mentioned because it is used as the first coarse approximation by investigators and by particle sizer manufacturers. One finds it under the name of equivalent sphere (in volume), and it will be compared with the other methods. As shown in the Fig. 11, compact sphere method overestimates the scattering cross section for x<7, whatever the configuration. As we will see in paragraph 4.3.3, an aggregate can be considered as a (porous) sphere with an effective refractive index. Whatever the chosen equivalent sphere, the value of the scattering cross section calculated by Mie theory is always smaller than the one obtained from CS method. Moreover, this method does not take into account the interactions (interference and interaction).

Berry-Percival-Khlebtsov (BPK)

This method originates from the work of [START_REF] Berry | Optics of fractal clusters such as smoke[END_REF] and [START_REF] Khlebtsov | Spectroturbidimetry of fractal clusters: test of density correlation function cut-off[END_REF].

The three following points constitute the stages of BPK method:

Step 1: Evaluation of the angular contribution of each primary particle to the scattering cross section:

    ,1 1 ,1 Mie RGD C FF C   (13) 
where   F  is coming from the RGD approximation for a sphere (see Eq. 8b).  

1 F  is the corrected function for   F  in order to verify:   1 ,1 0 Mie F d C    
Step 2 : Calculation of the interferences of scattering waves for each pair of primary particles leading to a structure factor S which does not depend on polarization. The structure factor is related to the aggregate morphology through the inter-particle distances.

2 1, ( ) ( ) / N ij i j i j S N R N          (14a)
where

sin 2 sin 2 () 2 sin 2 ij ij ij kd R kd              (14b)
and ij d is the distance between i and j particles.

Step 3 : Use of a corrective coefficient d taking into account the multiple scattering [START_REF] Berry | Optics of fractal clusters such as smoke[END_REF])

    22 1 1 1 1 1 33 1 22 i r r i r r i i d a p a p a p a p NN                    (15)
with ar1 et ai1 are the real and imaginary parts of the first Mie coefficient a1 Figure 12 shows that BPK method is a satisfactory approximation of the exact method for the small size parameter (x<2). The BPK method leads to an error smaller than 10% for a size parameter ranging between 0 and 2 in the case of SiO2 and of Al2O3. For higher refractive index (i.e TiO2), the error increases until it reaches 30% (for more restricted size parameter range [0; 1]). BPK method shows that the pair interactions must be taken into account only for small size parameters; their contribution in scattering cross section calculation is less in the case of large aggregated primary particles.
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Effective refractive index

We have shown in paragraph 4.2.2, that the location of the primary particles inside an aggregate and its shape had an effect on the scattering cross section. The effective refractive index (ERI) method considers the shape. Knowing that the projected area of the scattering body (on the plane ( , EH) of the incident wave) is a relevant parameter in optics, we consider an equivalent sphere starting from the aggregate projected area (Fig. 13). This method is more efficient than the other equivalent sphere methods, because the solid volume fraction in this sphere is always high (0.1< a  <1).

ERI method behaves differently according to the configuration for small size parameter (Fig. 14). Indeed, Csca value calculated with this method is higher than the scattering cross section calculated with the exact method for a linear configuration (Fig. 14a). This deviation can be taken in consideration and calculation has to be corrected in order to reduce the deviation between ERI and exact methods. 

C

. This is written as:

  , , 1 / , / corr ERI N ERI N C C F x d a  ( 17 
)
Where d1 is a morphological parameter defined as:

1 , 1 ( 1) ij ij dd NN    (18)

Anomalous Diffraction (AD)

In paragraph 4.2.2 it has been already mentioned that morphology becomes more important for large size parameters. The anomalous diffraction approximation, clarified in sub-section 3.3 (Van de Hulst, 1981), accounts for the aggregate morphology by means of the intercept (chord) of a light ray and the aggregate (Fig. 15).

Fig.15. definition of a chord

The various possible chords 1 l , 2 l … were evaluated and introduced as

i i ll   into Eq.19.   , [ ] [ ] 2 2 (1 cos ( 1)) 2 (1 cos / ( 1)) pp AD N SS C l m dydz x l a m dydz           (19)
[Sp] is the projection plane. Details or examples on expressions relating l/a and (y,z) can be found in [START_REF] Yang | A new look at anomalous diffraction theory (ADT): Algorithm in cumulative projected-area distribution domain and modified ADT[END_REF] and [START_REF] Gruy | The chord length distribution of a two-sphere aggregate[END_REF].

This calculation is repeated whilst rotating the aggregate or changing the projection plane. So, a mean value of scattering cross section is deduced. As expected, the AD method is not suitable for small size parameters but proves to be a good approximation for a size parameter higher than 2. It is important to recall that AD is strongly related to the configuration (morphology) since it includes in its formulation the chord length distribution of the aggregate.

Summary

Approximate methods facilitate the estimation of the aggregate scattering cross section in a short computation time. Jacquier and Gruy (2007a) evaluated the performance of these four approximate methods with respect to the exact method:

-Methods replacing an aggregate by a compact sphere (CS) are inappropriate.

-BPK (Berry-Percival-Khlebtsov) method is valid for 0<x<2 with an error which increases with the material refractive index.

-The corrected ERI (Effective Refractive Index) method is the approximate method being able to be efficient on the whole size parameters. The error for a scattering cross section is always smaller than 5%.

-the AD (Anomalous Diffraction) method works fairly well for 2<x<10 and is less sensitive to the refractive index variation.

Application: turbidity versus time during agglomeration process

As mentioned in section 2, nucleation and growth lead to (primary) particles with a size between 0.1 m and 10 m. Then, these particles collide and agglomerate by Brownian motion and/or local shear. So, let us consider agglomeration of small monosized primary particles in a homogeneous suspension. Agglomeration proceeds as a bimolecular reaction, the kinetic constant of which can be expressed in terms of known quantities. Generally, the kinetic constant is a function of sizes of the two colliding particles. However, in the case of Brownian agglomeration or shear agglomeration (but not for shear aggregation, i.e without consolidation of the particle cluster), the kinetic constant Kag weakly depends on the particle size, so that we may consider it as not dependent on particle size. Following [START_REF] Kruyt | Colloid science[END_REF], modelling of agglomeration with constant Kag leads to simple expressions for number concentrations in agglomerate:

    11 0 / 1 / jj j c c N N t t t t     (20a)
Nj is the number concentration in agglomerate consisting of j primary particles. N0 is the number concentration in primary particles at time t=0. There is no agglomerate at t=0. tc is the characteristic time of agglomeration. It obeys:

  0 2/ c ag t K N  (20b)
For instance,

  0 3 / 4 c t kTN  
for Brownian agglomeration. T, k and µ are the temperature, the Boltzmann constant and the dynamic viscosity, respectively.  is a non dimensional parameter representing the agglomeration efficiency (0<<1). For sake of simplicity, we consider this parameter as a constant throughout the agglomeration process.

It will be pointed out that tc and then Nj do not depend on the agglomerate morphology. The previous expressions are approximate, but are considered as a first and realistic approach of agglomeration dynamics.

At a given time, the turbidity of the suspension contains the contribution of each jagglomerate:

      11 0 ,
... , , , ...

j j j j j P ext P j t N p p t C m p p        (21) 
Following ERI method, the internal coordinates relevant for scattering cross section are a (the primary particle radius), j, p O S . Even if the characteristic time does not depend on the morphology, it appears that large agglomerates have a fractal-like structure. Depending on the agglomeration mechanism, simulations give values of fractal dimension between 1.8 and 2.6.

Due to restructuring of agglomerates, the fractal dimension is larger than 2. As the fractal dimension is larger than 2, outer radius of agglomerate is equal to the radius aS,j of the "projected area" equivalent sphere. Small agglomerates do not have the fractal-like structure.

However, we have shown [START_REF] Gruy | Formation of small silica aggregates by turbulent aggregation[END_REF]) that they can be described by means of a power law relating aS,j and j:

1/ 2 1/ , 2 F D p Sj O r S a j a a S          (22)
Later on, we will consider the equation 22 suitable for a wide range of primary particle numbers.

Then, with time (normalized by c t ) for agglomeration of silica (m=1.08). Figures 17 and18 show the effect of two fractal dimensions (DF=2.1; DF=2.5) and two primary particle radii (a=0.1µm; a=1µm) respectively at =0.4µm and =0.8µm. 

      0 , / , , , , j c ext F j t N t t C m j a D        (23) 

Approximation for radiation pressure cross section

Introduction

Often, precipitation leads to concentrated suspensions. On one hand, transmitted light intensity becomes very weak making backscattering sensors more suitable than turbidimetric ones. On the other hand, multiple scattering takes place. Whatever the considered signal (backscattered, side scattered or transmitted light), the interpretation has to account for multiple scattering. The most popular theory which considers this phenomenon is the radiative transfer theory, particularly its diffusion approximation [START_REF] Ishimaru | Wave Propagation and scattering in random media[END_REF]. The relevant phenomena associated with backscattering measurement, are either coherent or incoherent ones. The first one results from interference caused by the double passage of the wave through the same particle (Tsang andIshimaru, 1984, 1985;[START_REF] Wolf | Optical coherent backscattering by random media: an experimental study[END_REF]Akkermans et al., 1988;[START_REF] De Wolf | Backscatter enhancement: random continuum and particles[END_REF][START_REF] Helfenstein | The lunar opposition effect, a test of alternative models[END_REF]. The angular width of the measured intensity peak is proportional to the transport mean free path

  1 tr pr L NC  
, where N is the particle number concentration and pr C is the radiation pressure cross section. The second one only considers the multiple scattering: scattered light intensity is also a function of the transport mean free path. Theoretical calculations were compared to on-(off-) line experimental data for transmittance [START_REF] Ishimaru | Scattering and diffusion of a beam wave in randomly distributed scatterers[END_REF] and retroreflectance [START_REF] Kuga | Retroreflectance from a dense distribution of spherical particles[END_REF][START_REF] Nichols | Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems[END_REF] experiments with suspension of spherical beads, and a fairly good agreement between both was found.

The radiation pressure cross section is expressed as a function of the extinction and scattering cross sections, and also the asymmetry parameter ( cos g  

):

pr ext sca C C C g   
In the case of non absorbing material:

(1 )

pr sca C C g 
The asymmetry parameter for spheres has been calculated and analytical or empirical expressions have been derived in the framework of different approximations, e.g. geometrical optics and RGD approximations. Empirical expressions for large randomly oriented nonspherical particles were also proposed (see [START_REF] Kokhanovsky | Light scattering media optics: problems and solutions[END_REF]. Rigorous calculations were achieved by different authors (see, for instance, Xu, 1998b).

Up to now, calculations of radiation pressure cross section for aggregates were mainly motivated by calculation of forces acting on interstellar dust illuminated by stars [START_REF] Kimura | Radiation pressure cross section for fluffy aggregates[END_REF][START_REF] Kimura | Radiation pressure and the Pointing-Robertson effect for fluffy dust particles[END_REF][START_REF] Iati | Optical properties of interstellar gain aggregates[END_REF]. Radiation pressure plays a key role in the dynamical behaviour of submicrometer-size grains in the stellar radiation and gravitational fields. [START_REF] Kimura | Radiation pressure cross section for fluffy aggregates[END_REF] studied aggregates composed of 256 primary particles, the radius of which is 0.01µm and that are illuminated by visible light and infrared. The considered materials are silicate and amorphous carbon as representatives of weakly and strongly absorbing materials, respectively. Calculations for randomly oriented fractal-like aggregates (with DF = 2 and DF = 3) were performed by means of DDA method. Authors showed that the asymmetry parameter smoothly increases with increasing size parameter x (decreasing wavelength) of the primary particle and increases as the fractal dimension decreases if x<0.16 (for x>0.16, 0.7 g

). Asymmetry parameter for aggregates is higher than for volume-equivalent spheres, irrespective of the constituent material. The authors point out that aggregates with small fractal dimension present a large fluctuation in g for different aggregate orientations. [START_REF] Kimura | Radiation pressure and the Pointing-Robertson effect for fluffy dust particles[END_REF] extended the previous study to larger aggregates (N<2048). They compare radiation pressure cross sections calculated from DDA method, Mie theory applied to volume-equivalent sphere (CS method) and Mie theory combined with Bruggeman mixing rule. CS is a rough approximation for the two materials and two fractal dimensions. Mie/Bruggeman approximation is a good approximation for compact aggregates, but performs weakly for loose aggregates especially with non absorbing primary particles.

The authors showed that Cpr is less dependent on the porosity of aggregates while the values strongly vary with the material composition. [START_REF] Iati | Optical properties of interstellar gain aggregates[END_REF] computed, through T-matrix method, optical properties of cosmic dust grains. Grains are aggregates consisting of 31 nonidentical spheres. Materials are also silicate and amorphous carbon. Primary particle size distribution is assumed to be Gaussian-like. The radius of the volume-equivalent sphere is equal to 0.14µm. For both materials, aggregation leads to a sharp increase in the extinction and radiation pressure cross sections. The sub-sections 5.2 and 5.3 are respectively devoted to the main features of Cpr for aggregates and approximate methods for estimating Cpr.

Main features of radiation pressure cross section

Single sphere

The variation of the asymmetry parameter is presented for spherical particles of various chemical compositions in Fig. 19. The asymmetry parameter is close to zero for very small size parameters whatever the refractive index. Then, it increases to a plateau close to 1 in the case of SiO2 and Al2O3, i.e. the light is scattered predominantly in the forward direction. A spherical particle of TiO2 has a mean scattering angle which varies less monotonously according to the size parameter.

Indeed, for a size parameter equal to 4, the asymmetry parameter is close to zero, the scattering can be then described as dipole-like, while for a size parameter of about 6 the scattering seems to happen in a privileged direction. In the size parameter range [0; 10], the radiation pressure cross section increases as the optical refractive index increases.

Aggregate of spheres

The variations of pr C for an aggregate have been examined according to: the number of primary particles, their size parameter, the relative optical refractive index and the aggregate shape. Simulations were performed by means of GMM method (Xu, 1998b).

The simulation results are presented as previously: effect of the number of primary particles within the aggregate and effect of the aggregate shape on the function   as a function of the size parameter for a chain-aggregate of SiO2 primary particles. The variation of pr C with primary particle size parameter is similar to the one corresponding to the scattering cross section. Two size parameter ranges can be defined.

In the x-range [0; 2], constructive interferences and multiple scattering (or interaction between primary particles) are important. In the x-range [2; 10], the radiation pressure cross section is close to the pr C of a set of spheres without interaction. However, multiple scattering yet occurs at some extend.   0,10 x  .

However, the radiation pressure cross section of an aggregate made up of primary particles whose size parameter is higher than 1.5 seems to be proportional (by a factor   , p N x N ) to the primary particle radiation pressure cross section.   , p N x N is a weak function of x for SiO2 (more dependent on x for TiO2). As expected,   

Effect of the aggregate morphology on radiation pressure cross section

ERI method

In the same way that we showed the effectiveness of the ERI approximate method, for calculation of Csca, we evaluated (Jacquier and Gruy, 2007b) its performances for the calculation of Cpr. The ratio of the radiation pressure cross sections obtained on the one hand with the exact (GMM) method and on the other hand with the ERI method is denoted Lm: The deviation of Lm from 1 (Fig. 23) leads to the search of a corrective factor in order to reduce it. Jacquier and Gruy (2007b) proposed a corrective factor as a multi-parameter function   1 , , / G x N d a for the radiation pressure cross section ,, pr ERI N

C

. Thus, the corrected radiation pressure cross section obeys the expression:

  , , , , 1 / , , / corr pr ERI N pr ERI N C C G x N d a  (24) 
Later on, this method is called ERI/G.

Other methods

We noticed in paragraph 5.2.2 that PXu of any configuration of soft particles does not vary with x for x higher than 1.5. The value of   1.5 Xu x P  depends on the aggregate morphology that can be characterized through N and d1/a. However,   1.5 Xu x P  may be a weak function of x for hard material (Fig. 24). We can observe that variations of   1.5 Xu x P  are similar to the ones for a two-sphere aggregate. The proportionality factors, denoted respectively p1 and p2, can be expressed as a function of a single parameter: 1 / N da   . Corresponding expressions can be found in (Jacquier and Gruy, 2007b). Table 3 presents the performances of ERI/G, Pp1 and Pp2. It appears that the ERI/G method is not as efficient as Pp1 and Pp2 but ERI/G presents the biggest advantage to be used over all the size range.

1,5<x<10

Linear

configuration Compact configuration material SiO2 Al2O3 TiO2 SiO2 Al2O3 TiO2 method m σ m σ m σ m σ m σ m σ
Pp1 1,01 0,05 1,05 0,11 1,06 0,17 1,01 0,04 1,00 0,11 1,08 0,17 Pp2 0,98 0,04 0,96 0,08 0,94 0,12 0,97 0,04 0,93 0,10 0,93 0,11 ERI/G 0,93 0,17 0,90 0,15 1,07 0,23 0,92 0,13 0,90 0,11 1,06 0,30 . m and  are respectively the mean value and the standard deviation for the corresponding dataset.

Conclusion

We presented different ways to calculate approximately the radiation pressure cross section of aggregates. The corresponding expressions can be used to study dense suspensions. For instance, [START_REF] Tontrup | Turbulent aggregation of titania in water[END_REF] performed an experimental work about aggregation of TiO2 micro-particles in water by using a backscattering sensor. They deduced the change of the transport mean free path with time. SEM observations showed that the aggregates contain few primary particles. Approximations could be used to determine some characteristics of the aggregates.

Scattering properties versus geometrical parameters of aggregates

The main question that appears when studying the formation of particles or aggregates is:

which is the relevant morphological parameter related to the measurement? The answer mainly depends on the particle size and is partially included in theories and modelling leading to scattering cross section calculations.

So, when we consider the Mie theory for homogeneous spheres, the solving method and the results are only depending on the relative refractive index and the boundary conditions for the Helmholtz equation. From a geometrical point of view, the mathematical function describing the particle surface is the relevant parameter. The case of non-spherical convex bodies is similar. As the physics is always based on Maxwell and Helmholtz equations, the corresponding solution for a natural incident light only depends on the body surface that is characterized by the equation  

, , 0 f x y z  .

If we are interested in the orientation average of the scattering cross section, a function describing the body and being invariant to rotation will be preferred. So, the pair distance distribution density (PDDD) could be an interesting approach to describe the shape. It is a well known function in physics and can be defined for liquids as: In the first case (RGD), we consider any pair of volume elements in the scattering body. The pair distance distribution density is a continuous function of the distance between volume elements. In our context, we chose the notation   P Dr . Then, the orientation averaged scattering cross section can be written as [START_REF] Gruy | Light scattering cross section as a function of pair distribution density[END_REF]: According to paragraph 4.3.2, the BPK approximation gives good results when the size parameter of the primary particle is smaller than 2. Thus, the PDDD is the relevant morphological parameter.

     
It has been shown by [START_REF] Gruy | Light scattering cross section as a function of pair distribution density[END_REF] that this function associated with BP approximation [START_REF] Berry | Optics of fractal clusters such as smoke[END_REF] for aggregates of Rayleigh scatterers allows for an estimation of the scattering cross section of convex bodies. This method is proved efficient for spheres and spheroids as the scattering efficiency is smaller than 1 and as the material is optically either soft or hard.

Non corrected ERI method is only based on the average projected area pO S  of the body.

However, it is not suitable for elongated aggregates with small size parameter. It would be possible to choose other moments of the distribution for describing geometrical and optical properties of aggregates. For instance, the second order moment is directly related to the gyration radius, that is a well known parameter used to define a fractal-like aggregate.

However, there was no noticeable change and thus no improvement was found when choosing another mean distance definition for the aggregate. Thus, we chose the lowest order distribution moment. Corrected ERI method also uses d1 distance parameter.

For large size parameter (x>2), AD approximation becomes efficient. In this case, the relevant line is the chord. Expression of the average scattering cross section can be re-written by introducing the chord length distribution 
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 1 Fig. 1. Agglomerate of SrMoO4 crystals

Figure 2 Fig. 2 .

 22 Figure 2 presents agglomerates of zinc sulphide particles (Mekki-Berrada et al, 2005). They are obtained by homogeneous precipitation:

Figure 3 Fig. 3 .

 33 Figure3shows ordered agglomerates resulting from stacking of Ni(OH)2 nanosized disks[START_REF] Coudun | Nanostructured particles by controlled precipitation techniques; example of nickel and cobalt hydroxides[END_REF]. They are obtained by precipitation from nickel di-dodecylsulfate and ammonia:

  population density function n(x, y, z, p1 … pP) is such as dN = n dx dy dz dp1 … dpP represents the number of particles with x in the range [x; x + dx], pi in the range [pi pi + dpi].



  is the Dirac function, pic is the internal parameter corresponding to the critical nucleus, JN(S) is the nucleation rate as a function of the supersaturation S, Vag is the agglomeration rate.

Fig. 5 .

 5 Fig. 5. Anomalous Diffraction approximation; ray passing through a sphere

Fig. 6 .

 6 Fig. 6. Evolution of KXu according to the size parameter and the distance factor ranging between [1; 100] for the three materials (SiO2, Al2O3, TiO2)

  Fig.7: KXu as a function of the size parameter for the linear configuration with N primary particles(2, 4, 8, 16) and for SiO2(Jacquier and Gruy, 2007a): (a) for the range

Fig. 9 :

 9 Fig.8: KXu as a function of the size parameter for aggregates with four primary particles (linear, compact, plan, p1, p2) for Al2O3

Fig. 10 :

 10 Fig.10: Compact Sphere method

  Fig.12: BPK approximation: Km as function of the size parameter for SiO2 (a) linear configuration, (b) compact configuration

Fig. 13 .

 13 Fig.13. Projected area representation

  Fig.14: ERI approximation: Km as function of the size parameter for SiO2 (a) linear configuration, (b) compact configuration

  Fig.16: AD approximation: Km as function of the size parameter for SiO2 (a) linear configuration, (b) compact configuration

Figures

  Figures 17 and 18 represent the change of turbidity (normalized by     00

Fig. 17 :Fig. 18 :

 1718 Fig. 17: Normalized turbidity versus time; agglomeration of silica in water; =0.4µm

Fig. 19 :

 19 Fig.19: Asymmetry parameter for three materials as function of the size parameter.

Fig. 20 Fig. 20 :

 2020 Fig. 20 represents pr C as a function of the size parameter for a sphere and the three different materials.

Fig. 21 :

 21 Fig.21: PXu as a function of the size parameter for the linear configuration with N primary particles (2, 4, 8, 16) and for SiO2: (a) for the range

  x- range [0; 1] because the asymmetry factor of the primary particle is smaller than 0.25. At the contrary, x-range [1; 10].

Figure 22 represents Xu PFig. 22 :

 Xu22 Figure 22 represents

  Fig. 23: Lm function with 0;10 x    for linear aggregate (SiO2)

  number of molecules distant from a given (tagged) molecule with the distance in the range[r,r+dr]. In the case of liquid, the distribution is nearly isotropic. This function clearly appears in RGD approximation for convex bodies (distribution density is connected to 2 f ) and BPK approximation for multi-sphere aggregate (in Eq.14a,b).

Fig. 25 :

 25 Figure 25 presents the function

  function of the number of primary particles and of the mean inter-particle distance(Jacquier and Gruy, 2008a,b): space dimension. d1 is the relevant morphological parameter. It is directly related to the first moment of the distribution

  chord length distribution (CLD) is defined as follows: () l D l dl represents the number fraction of the chord length in the range[ , ] l l dl  . Thus, () l Dl obeys the normalization equation:

  

  

Table 2 :

 2 Comparison of approximate methodsIn the next paragraphs, scattering cross section values from approximate method (

		Does it take into account ?	Does it use:
		*the arrangement *the interactions	
				Maxwell-Garnett equation?
				(porosity)
	CS	no	no	no
	ERI	yes	no	yes
	PBK	yes	yes	no
	AD	yes	yes	no

Effect of the number of primary particles on radiation pressure cross section

  

	between pr C value of an aggregate ( ,, pr Xu N C	) and the one of its N primary particles considered
	as independent	NC	, pr Mie	,1	:
	P		C	,, pr Xu N
	Xu				
			NC	, pr Mie	,1
	5.2.2.1 Fig. 21 represents
						Xu P is the ratio

Xu

Px .

Xu P

  PXu as a function of the size parameter for the compact configuration with N primary

		1,2 2,0 1,8 1,6 1,4			TiO 2		2 spheres 4 spheres 8 spheres 16 spheres
	PXu	1,0				
		0,8				
		0,6				
		0,4				
		0,2				
		0,0				
		0	2		4	6	8	10
					x	
	Fig. 24: particles (2, 4, 8, 16) and for TiO2:	x 	  0,10	.	
							Xu,2

These comments suggest the two approximate methods:

 Method Pp1: CprXu,N proportional to Cpr of a primary particle: Cpr Mie, 1  Method Pp2: Cpr Xu, N proportional to Cpr of a doublet: CPr

Table 3 :

 3 Approximate method performance for the calculation of Cpr for different material

	with	[1.5;10] x

The distribution densities ,1 () l Dl and ,2 () l Dl are given by analytical expressions (Jacquier and Gruy, 2008).

 

, lG

Dl is an empirical function, the same for all the aggregates. Only weighting coefficients depend on the aggregate morphology. Results shown in Fig. 26 for a particular aggregate are representative for aggregates with primary particle number up to one hundred. (Jacquier and Gruy, 2008).

The calculation of the scattering cross section using Eqs.32-34a,b is much faster than that based on Eq.19.

Certain presented approximations are characterized by a decoupling or separation between optics and geometry. This separation allows for a faster calculation of the optical properties.

At our knowledge, the relationship between chord length distribution (as defined by figure 15)

and pair distance distribution is not trivial, particularly for aggregates, and requires complementary works in the field of integral geometry. Moreover, the transition between the different geometrical characteristics, i.e PDD and CLD, is not yet quantitatively understood as the primary particle size increases.

Conclusion

The analysis of turbidimetric data during precipitation process is a challenge for researchers working in the field of light scattering by particles. The variety of sizes, shapes and optical contrast requires several approaches for calculation of their optical properties. Performance criteria are the calculation speed and the accuracy fitted with the measurement one. Accurate calculations performed with numerical sophisticated methods will be always needed and used for the purpose of validation. Difficulties remain for certain particles with a complex morphology. For instance, one observes precipitated zinc sulphide particles in the size range [0.5µm; 5µm] exhibiting sand rose (i.e., gypsum flower) morphology. The typical multi-scale morphology of many precipitated particles firstly needs tools coming from the integral geometry in order to be described with a minimum number of parameters. Knowing this parameter set, optical properties will be calculated with exact theories. The parameter number coming from geometrical analysis can be reduced when the optical properties of the particles are appropriately considered for the formulation of approximate theories to the calculation of scattering properties. An example for such an approach has been presented, but further advances are needed.
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