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1. Introduction 

 

The solid-liquid suspensions are frequently used in industrial processes. These suspensions 

usually contain aggregates made up of solid primary particles. Many characterization tools of 

these suspensions are based on light scattering (Mie theory). However, the Mie theory (1908) 

is not always applicable to the practical problems since the scatterer must be a homogeneous 

sphere. The ordinary particle sizers that use this theory do not make it possible to measure the 

non-spherical particle geometrical characteristics. Extensions of the Mie theory for arbitrary 

shaped particles or particle aggregates are available nowadays (T-Matrix method, Generalized 

Multiparticle Mie (GMM)-solution, etc.). But the computing times of the optical properties 

via these exact theories do not allow for a real-time analysis. This chapter is thus dedicated 

towards the search of approximate methods for the estimate of aggregate optical properties, 

particularly their scattering cross section.  

This chapter is split into five parts. The first one (section 2) concerns the aggregation process 

and, more generally, the precipitation process, to provide a better understanding of the 

framework of this study. Precipitation is the formation of a solid in a solution during a 

chemical reaction. Morphology of particles currently observed during precipitation or particle 
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synthesis will be described. Relationship between optics and particle technology will be 

recalled. The third section outlines briefly the different approximate methods used for the case 

of spherical and non-spherical particles. The fourth section presents selected approximations 

for light scattering cross sections in the case of aggregates. The quality of each approximation 

will be discussed by comparison with the exact theory. Practical cases will be presented. The 

fifth section is an extension of the previous section to the light pressure cross section. The last 

section is an attempt to relate the scattering properties of aggregates to their geometrical 

characteristics.  

In the next section we describe the context of the need of approximate methods for scattering 

cross section of aggregates. 

 

2. Aggregate formation 

 

Materials are often made from inorganic particles. These are formed by reactions in gas phase 

or more commonly in liquid phases. The main process is named precipitation. 

2.1. Precipitation and particles synthesis 

The classical situation is the following: a solution consisting of a solute A and a solvent is 

mixed with another one consisting of a solute B and the same solvent. The two solutes react to 

form a solid product denoted AB. 

A + B ↔ AB 

A and B are often ions. 

If the equilibrium between the solid phase and the solutes is reached, thermodynamics tells us 

that this equilibrium (saturated solution) is characterized by the solubility of the solid phase. 

However, when the concentrations of A and B are high enough to produce solid particles, the 

initial solution is supersaturated. So, the ratio of the actual concentration and the equilibrium 

concentration (solubility), called supersaturation, is the key parameter of the dynamics of 

precipitation. Higher is the supersaturation, higher is the precipitation rate. Particle formation 

can be distinguished into three stages: nucleation, growth and agglomeration. 
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Nucleation is the birth of particles that are large enough to grow (nuclei). Too small particles 

are unstable and dissolve in the solution. Nucleation rate JN is defined as the number of 

created nuclei per unit volume and per unit time. The formed nuclei are characterized by a so-

called critical size. Typical critical size values are within the range [1 nm – 50 nm]. The 

nucleation rate is a non linear increasing function of supersaturation. Nucleation stage in a 

precipitation process is often difficult to observe. If light is used as a probe to study 

precipitation, nuclei can be treated as Rayleigh scatterers. Considering the nuclei 

concentration, interaction between light and suspension is usually below the detector 

threshold. Other methods (for instance, Small-Angle X ray Scattering) are preferred, but are 

more difficult to be applied. Details about the nuclei are not known. Hence, nuclei leading to 

inorganic particles are often considered as amorphous and spherical. 

 

The following stage is the growth of the nuclei. Additionally, they may convert to crystals. 

Crystals present facets, the occurrence of which can be explained from crystallography and 

thermodynamics. However, depending on the precipitation reaction, only amorphous particles 

(i.e., hydroxylated compounds) can be found. Usually, the growth rate is defined as the 

derivative of crystal characteristic length (e.g, the diameter) with time. The growth rate 

increases with the supersaturation. The most often, the relation between growth rate and 

supersaturation is linear. 

For different reasons (one is the decrease of supersaturation during precipitation, due to the 

mass transfer from solution to crystals), an upper size limit for the growing crystals is 

observed. At the end of the second stage, crystal or particle size ranges between 0.1 m and 

10 m. During this period, particles become large enough to scatter light effectively. Thus, 

light scattering methods are suitable for studying the growth of crystals or primary particles in 

suspension. 

 

Before or after reaching the end of growth, crystals or amorphous particles can form clusters 

or agglomerates. Agglomeration requires the collision of particles and their subsequent 
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adhesion due to attractive forces (for instance, Van der Waals forces). Consolidation between 

primary particles or crystals can take place by crystalline growth from the contact point. 

In quiescent liquids, the particle collisions are due to their Brownian motion. For flowing 

suspensions, collisions are due to Brownian motion for small particles or crystals (smaller 

than about 0.2 m) and due to local shear for larger particles. 

When the agglomerate increases in size, it becomes fragile. Then, break up takes place and a 

limit size is reached (with values in the range [5 m – 100 m]). The stress acting on the 

agglomerate results from the shear, but also the transition between viscous and inertial 

turbulent regimes. This leads to agglomerates containing often a few primary particles (less 

than one hundred primary particles). 

 

Summarizing: inorganic solutes can lead to solid particles in a batch precipitation vessel, 

provided that the solution is initially supersaturated. Nucleation, i.e. the birth of nuclei with a 

critical size, takes place, while supersaturation decreases as a consequence. Finally, 

supersaturation becomes too small, to produce new nuclei. Thus, there is a mass transfer from 

solution to the nuclei surface leading to the growth of nuclei. In this way, crystals or 

amorphous particles are formed. As supersaturation tends to one, growth stops. Depending on 

the surface charge of particle, their agglomeration may occur for the growth period. 

2.2. Particles shapes during precipitation 

 

Images from electron microscopy often show the complexity of the particles structure. 

Particles formed by growth from solution can be crystals with well defined crystalline faces, 

but may be agglomerates of smaller (nanometric) particles. In this case, agglomeration can be 

due to Brownian motion and the subsequent collision of particles, but also the contact of 

specific crystalline faces belonging to two particles. The first situation leads to random 

agglomerate with spherical symmetry. The second phenomenon, also called orientated 

agglomeration, leads to regularly shaped particles (i.e., cylinder as disks stacking). It must be 

underlined that the mechanism of orientated agglomeration is still being studied. Whatever the 

structure of particles: crystals, random or ordered agglomerate of nanoparticles, their 

geometric characteristics are easily determined by image analysis of electron micrographs. 
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However, these particles are rarely apart. They form agglomerates after collision due to 

Brownian motion and / or shear flow. The structure of agglomerates is disordered and is often 

considered as fractal-like. However, the reader must keep in mind that these agglomerates 

consist of only a few particles. 

Figure 1 presents agglomerates of SrMoO4 strontium molybdate crystals (Cameirao et al, 

2008). They are obtained by precipitation: 

2 2 4 4 2SrCl Na MoO SrMoO NaCl    

 

Fig. 1. Agglomerate of SrMoO4 crystals 

Bipyramidal crystals in the size range [3 – 10 m] are formed. Agglomerates size is in the 

range [20 – 80 m]. 

Figure 2 presents agglomerates of zinc sulphide particles (Mekki-Berrada et al, 2005). They 

are obtained by homogeneous precipitation: 

4 3 2 2 3 2 4 480
2 H

C
ZnSO CH CSNH H O ZnS CH CO H NH HSO

  


      
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Fig. 2. Multi-scale ZnS agglomerate 

ZnS particles are sphere-like with a mean size equal to 3 m. They consist of nanoparticles, 

30 nm sized (one may observe an intermediate structure in the range 100..300nm). Micro-

particles seem relatively dense. However, porosity and inner structure depend on the acidity 

and temperature. Micro-particles collide to form agglomerates in the range [20 – 60 m]. 

Figure 3 shows ordered agglomerates resulting from stacking of Ni(OH)2 nanosized disks 

(Coudun et al., 2007). They are obtained by precipitation from nickel di-dodecylsulfate and 

ammonia:  

   3

602 2
2 2

NH

C
Ni DS OH Ni OH DS 


    

 

Fig. 3. Ni(OH)2 nanosized agglomerates 
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2.3. Dynamics of precipitation: modelling 

 

In order to manage the complexity of precipitation dynamics, each particle in the precipitation 

reactor is characterized by space coordinates (x, y, z) and internal coordinates pi (i.e. radius, 

characteristic lengths of crystal, volume, porosity, gyration radius, fractal dimension, …) with 

1 i P  . 

The largest being is the number P,  more comprehensive is the description of particles. So, the 

population density function n(x, y, z, p1 … pP) is such as dN = n dx dy dz dp1 … dpP 

represents the number of particles with x in the range [x; x + dx], pi in the range [pi pi + dpi]. 

This population density obeys the population balance equation (PBE), that can be formally 

written as: 

 

          1 1
1

. ...
P

i N c P Pc ag
i

i

n
vn G S n J S p p p p V

t p
 



 
       

 
        (1) 

where 

v  is the particle velocity, 

t is the time, 

Gi is the growth rate for the pi parameter i
i

dp
G

dt

 
 

 
, 

 is the Dirac function, pic is the internal parameter corresponding to the critical nucleus, 

JN(S) is the nucleation rate as a function of the supersaturation S, 

Vag is the agglomeration rate. 

More often, the following assumptions are used: 

- homogeneous suspension 

- only one internal parameter (particle radius) 
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- agglomeration taken into account only at the end of nucleation and growth  

- fractal-like agglomerates with constant fractal dimension. 

 

For fractal-like agglomerates, the relation between the number j of primary particles inside the 

agglomerate and its outer radius Rj is: 

 

1
FD

j

r

j
R a

S

 
  

 
          (2) 

 

a is the radius of the primary particle. DF and Sr are respectively the fractal dimension and the 

structure factor, which is a function of DF. 

Attempts to consider two internal parameters (radius and length for particles as a needle, solid 

volume and surface area for porous particles) have also been made (Tandon and Rosner, 

1999; Kostoglou et al., 2006). 

 

Summing up, precipitated particles have a multi-scale structure. One commonly observes 

three characteristic length values: 20nm, 2m, 20m. Sometimes, only two (2 m, 20 m) are 

observed. The smallest particles are most often dense and spherical. The intermediate 

particles are relatively dense and have a well-defined shape (i.e. sphere, cylinder, ellipsoid, 

etc). The largest scale corresponds to disordered or random agglomerates. The reader 

interested in details of precipitation and population balance may refer to Sugimoto (2000) and 

Randolph and Larson (1988). 
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2.4. Particle sizing during precipitation 

 

Considerable efforts are made to understand the precipitation mechanisms and to predict the 

change of the particle morphology with time. On the other hand, industrialists need to monitor 

and control the precipitation process. Off line size measurements (i.e. using filtration, powder 

drying and Scanning Electron Microscope (SEM) observations or suspension sampling and 

sizing with granulometers) are now avoided because these operations modify the particle 

morphology. On-line measurements (i.e., using a recirculation loop with a measurement cell 

in a granulometer) are possible, but representative sampling is difficult to carry out. In line 

measurements are preferred. They are often based on light extinction and are obtained from 

turbidimetric sensor. So, turbidimetry will be at the centre of this chapter. 

Typically, the optical sensor for particle sizing is not the only one in the precipitating 

suspension. The temperature probe and concentration sensors are always introduced within. 

Thus, supersaturation and solid fraction (via mass balancing from solute concentration) are 

deduced and, as a consequence, are known. 

A turbidimetric sensor records the transmitted light intensity It. One defines the extinction 

coefficient or turbidity1 as (see, for instance, Elimelech et al., 1995): 

 

0

1 tI
ln

L I
             (3) 

 

Io and L are the incident light intensity and the geometrical thickness of the medium, 

respectively. For a monodisperse diluted suspension, the turbidity obeys the equation: 

 

     1 1, , , ... , ...s s s P ext PN x y z p p C p p         (4) 

                                                 
1  Definitions and notations in Eqs. 3-5 are used by researchers in the field of particle sizing concerning 

suspensions. Other researchers prefer these ones:  *

0/tln I I    and    * /ext L     where 

and ext  are the optical thickness and the extinction coefficient, respectively. 
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The functions N and Cext are the particle number concentration and the extinction cross section 

of the particles. (xs ,ys ,zs) are the coordinates of the sensor in the reactor. 

For a complex diluted suspension, turbidity contains the contribution of each kind of particles: 

 

   
 

 
1

1 1 1

...

, , , ... ... ...

P

s s s P ext i P P

p p

n x y z p p C p p dp dp        (5) 

 

Thus, the turbidity monitoring gives information on the population density change with time 

during the precipitation process. 

 

Two strategies can be considered for the analysis of turbidity signals: 

 

- inversion of the integral equation (Eq.5) in order to get the population density. Then, 

comparison to PBE (Eq.1) solution and identification of unknown physico-chemical 

and morphological parameters (i.e., fractal dimension …) 

- PBE (Eq.1) solving; calculation of    (Eq.5); comparison with experimental 

turbidity for deducing the unknown physico-chemical and morphological parameters. 

 

For numerical reasons, the last one is preferred. However, whatever the strategy, the 

knowledge of Cext (, p1 … pP) is needed. 

 

The extinction cross section is dependent on the relative refractive index m, which is the ratio 

between refractive indices of material and suspending medium. Three typical cases can be 

envisaged: low optical contrast m – 1 value (0 < m-1 < 0.1), moderate contrast m – 1 value 



 11 

(0.1 < m – 1 < 0.5) and high optical constrast m – 1 value (m – 1 > 0.5). Corresponding 

materials (suspended in water) could be, respectively, silica SiO2 ( m = 1.08), alumina (m = 

1.20) and titania TiO2 ( m = 2). 

We will focus our work on non-absorbing (in the visible range) materials that are most 

commonly found in the precipitation process. Thus, scattering Csca and extinction Cext cross 

sections are equal. 

 

It is obvious that PBE solving, cross sections calculation and optimization procedure require 

great computational efforts and make it difficult to get results in a short time. Therefore, any 

rapid calculation of the optical cross sections would be a progress. The accuracy of 

approximations has to fit the measurement accuracy. In the case of turbidity, measurements 

within 3 % error can be considered as satisfactory. 

The need for approximations is particularly important for agglomerates2. Fast calculations 

have to be based on known approximations coming from the light scattering theory. Next 

chapter shortly recalls them. 

 

3. Approximations for non-spherical particles 

 

The scattering cross section is a function of the dimensionless particle size parameter x (= ka 

for a sphere), the particle and the medium optical refractive indices respectively denoted np 

and nm, the wavelength  (and the wave number 2 /k   ) of the incident light in the 

medium and the orientation of the incident light in the relation of the particle position. The 

                                                 
2 The name aggregation corresponds to the formation of a cluster, the primary particles of 

which only interact by physical forces as Van der Waals forces. On the other hand, 

agglomeration is aggregation followed by strengthening at the contact point in a 

supersaturated solution.  Aggregate and agglomerate optical properties will be treated in the 

same way. 
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relative refractive index m, which is used in the following equations, is the ratio between the 

material refractive index np and the medium refractive index nm. 

The exact theory was developed for a sphere in 1908 by G. Mie (cf. (Hulst 1981)) and for 

spheroids by several authors (Asano and Yamamoto, 1975, Asano, 1979, Asano and Sato, 

1980, Voshchinnikov and Farafonov, 1992, Farafonov et al., 1999). 

In this section, three classical approximations are recalled: the Rayleigh approximation, the 

Rayleigh-Gans-Debye approximation and the Anomalous Diffraction approximation. 

Principles are presented and application is given for a sphere. The reader interested in by 

details on scattering theories may refer to Van de Hulst (1981) and Kokhanovsky (2004). 

3.1. Rayleigh approximation 

 

The Rayleigh approximation that considers the scatterer as an oscillating dipole has a validity 

range of 1x  , 1mx .  

So, the scattering efficiency factor for a sphere is: 

2
2

4

2

18

3 2
sca

m
Q x

m





               (6) 

and the scattering cross section is sca scaC Q G  (G represents the particle projected  area, for a 

sphere 2G a ). 

A comparison between this approximation and the Mie exact theory shows that the validity 

range, in terms of maximum size, varies according to the relative refractive index and the 

scattering angle (Mishchenko et al., 2002, 2004). 

3.2. Rayleigh-Gans-Debye approximation 

 

The validity range of the Rayleigh-Gans-Debye approximation (RGD) is:  2 | 1| 1x m    and 

| 1| 1m   . 

Figure 4 represents a particle with an unspecified shape lit by a plane wave being propagated 

along the axis z'. It is supposed that each volume element is a Rayleigh scatterer and behaves 

independently of the other particle volume elements. The scattering waves of all these volume 
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elements interfere. The phases of all these scattering waves are ascribed in a common 

coordinates reference in order to handle their amplitude. 

 

Fig. 4. RGD  approximation 

The expression of the contribution, of the volume element V  located out of O, to the 

scattering field by the particle is: 

 
i i ,2

, ,1

0

-i0

k r k zsca inc

sca inc

E ES e
V

k rE ES

    

 

    
      

          

II, II

                     

The contribution of a volume element located in O' will be: 

 

i ( ) ,2

, ,1

0

-i0

k r zsca inc
i

sca inc

E ES e
V e

k rE ES


 

 

    
      

          

II, II

                

 with  z rkR e e    and  'R OO . S1 and S2 are the amplitude functions per volume 

unity:  

3

1 ( 1)
2

ik
S m


    and 

3

2 ( 1)cos
2

ik
S m 


   .  

 is the scattering angle.            

Integration is done with respect to particle volume V to obtain the total field in the direction 

re . So, the amplitude functions for the particle are: 
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3

1 ( 1)
2

ik
S m Vf


    and 

3

2 ( 1) cos
2

ik
S m Vf 


    

 

The form factor f obeys: 

1 i

V

f e dV
V

             (7) 

that becomes for a sphere: 

3

3
( ) (sin cos ) , 2 sin

2
f u u u u u x

u


   . 

It follows for a spherical particle (Van de Hulst, 1981):  

   2

0
/scaQ F d a



             (8a) 

where, 

 
22 4 2 24

1 2 sin (1 cos )sin
9 2

F a m x f x


   
 

   
 

.     (8b) 

3.3. Anomalous Diffraction approximation 

 

This approximation, due to Van de Hulst, bears the name of anomalous diffraction (AD) 

because for low optical contrast, the light passing through the particle (transmitted without 

deflection) interferes with that diffracted, then producing a diffraction known as anomalous. 

Let us consider particles such as: 1x   and | 1| 1rm    (see the discussion of  Videen and 

Chylek (1998) and  Liu (1998) ). 

The second condition implies that the rays are not deviated when they cross the interface 

particle-medium and that the reflection is negligible with the same interface. Extinction is 

thus due to:  

- absorption of the light passing through the particles 

- interferences between the light passing through the particle and that passing around.  
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Fig. 5. Anomalous Diffraction approximation; ray passing through a sphere  

 

Following Van de Hulst (1981), one derives: 

 2

4
(0)extC e S

k


   with  

 
2

1

[ ]

(0) (1 )
2

p

ik m l

S

k
S e dy dz



 
     

Integration is performed over the particle projected area Sp on a plane perpendicular to 

propagation direction. l is the computed path of light through the particle, which is a function 

of the projection coordinates x and y.  

The integrand represents the subtraction with “the part of shade” (value 1) of the rays passing 

through the particle (
 1ik m l

e
 

). 

If m  is real, 

 
[ ]

2 1 cos ( 1)

p

sca p

S

C kl m dS     .        (9)

     

Thus, it follows for a sphere 

2

4 4
2 sin (1 cos )sca extQ Q  

 
            (10)

  

where  2 ( 1)x m   . 

The anomalous diffraction was applied to a sphere and an infinitely long circular cylinder 

(Van de Hulst, 1981), a prism column (Chylek and Klett, 1991), a hexagonal crystal of ice 
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(Sun and Fu, 1999), ellipsoids (Lopatin and Sid'ko, 1988; Streekstra et al., 1994), a short 

cylinder (Liu et al,. 1998) and other various forms (Sun and Fu, 2001, Yang et al., 2004).  

A comparison between AD and the exact theory (Liu et al., 1998) suggests that AD estimates 

the extinction more precisely in the case of a random orientation of nonspherical particles 

than for spheres.  

The next section treats approximations for the case of the clusters of spheres. The derived 

approximations are directly related to the previous ones. 

 

4. Approximations for aggregate scattering cross section 

 

This part begins with a short summary on the exact methods. It is followed by the study of the 

relation between aggregate scattering cross section and their physical characteristics. Finally, 

four approximations are described and an illustration in the field of precipitation is presented. 

 

4.1. Exact theory for non spherical particles and aggregates 

 

The presented summary (see Table 1) of the different exact methods is not exhaustive. But we 

try to show several methods used to calculate the optical properties of an aggregate. We invite 

the reader to consult the article of  Kahnert (2003) to have a more complete range of these 

methods and the papers series of Mishchenko et al. (2007, 2008). It is rather difficult to 

classify them precisely and especially to enumerate all of them. 

Nevertheless one can classify them in three main categories:  

1. Methods based on the partial derivative equations which calculate the scattering field by 

solving the Maxwell equations or the Helmholtz equation. They are subjected to the boundary 

conditions suitable in the time or the frequency domain.  

2. Methods based on integration over volume or surface of equations derived from the 

Maxwell equations. Thus, the boundary conditions are automatically included in the solution.  

3. The other methods are known as hybrids since they derive from the various approaches. 
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Name Principle Applications Strong and weak points 

Methods based on partial derivative equations 

S.V.M. 

 

Separation 

of Variable 

Method  

Method applied in the case of 

the Mie theory; it can be 

applied when the boundary of 

the considered particle 

coincides with the reference 

frame.  

In any reference frame, where 

the variables separation can be 

applied. Asano and Yamamoto 

(1979) used this technique to 

determine the optical properties 

of a spheroid. 

- The solution obtained is 

known as exact but 

calculations are long.  

- the operation for each 

orientation must be 

repeated 

- NO(x3) 

F.D.T.D. 

Finite 

Differences 

Time 

Domain 

This method consists of 

discretizing the Maxwell 

equations, in space and time. 

Then to solve them it is 

necessary to start from the 

initial values  (Yang and Liou, 

2000). 

All particle shapes. 

 

- the operation for each 

orientation must be 

repeated 

- NO(x4) 

F.E.M. 

Finite 

Element 

Method 

This method consists in 

discretizing the Helmholtz 

equation in space and solving 

numerically using the boundary 

conditions.  

 (Coccioli et al., 1996). 

All particle shapes. 

 

- the operation for each 

orientation must be 

repeated 

- the precision  depends 

on the grid which must 

be selected according to 

the particle shapes  

- NO(x7) 

P.M.M. 

Point-

Matching 

Method 

In this method, the internal and 

external fields are expressed as 

a spherical harmonic vector. 

The tangential field at the 

boundary of a particle must be 

continuous for a fixed number 

of points belonging to the 

particle surface. 

Normally all particle shapes, 

but problems are known for the 

elongated geometries. 

 

- This method is limited 

to the quasi spherical 

particles, it has a dubious 

convergence, and thus, 

requires a long CPU time 

(Wriedt, 1998). 

Volume or surface integration 

V.I.E.M. 

Volume 

Integral 

Equation 

Method 

The field inside and outside the 

volume is expressed  in terms 

of incident and internal fields 

for the selected volume.  

- the internal field is evaluated  

by considering, for each volume 

element, as being constant: 

M.O.M (Method of Moments) 

(Harrington, 1968). 

Alternatively,  

- each element is regarded as a 

dipole: D.D.A (Discrete Dipole 

Approximation) 

(Draine and Flatau, 1994) 

-Inhomogenous, anisotropic 

particles  

-MoM et DDA have a 

long CPU time  

- the operation for each 

orientation must be 

repeated  

- NO(x9) 

Table 1 : Methods allowing to treat the light scattering by a non spherical particle or an 

aggregate (N: Number of operations in algorithm (Kahnert, 2003)). 
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It is important to specify the meaning of the “T-matrix method” expression which is found in 

a lot of  publications. 

In the T-matrix method, the incident and scattering fields are expressed in the form of a series 

of spherical vector wave functions. This approach is named the T-matrix method, when the 

expansion coefficients of the incident wave and the scattering wave are connected by a linear 

transformation (T: Transition). This matrix T contains all the information on the particle’s 

optical properties for a given wavelength. It is a function of the size parameter, the shape, the 

optical refractive index of the considered particles, but it does not depend on the incident 

field. Thus this matrix is not to be computed at each particle orientation change or change of 

the incident wave direction. 

To classify the publications set relying on this method, a database was carried out by 

Mishchenko et al. (2004, 2007, 2008). This method is, in fact, a technique of calculation, 

which is found associated with various methods (eg.: SVM). Thus, any method making it 

possible to formulate the problem in the way of a matrix T is called the T-Matrix method.  

The solving by separation of variables (SVM) for only one sphere can be enlarged to an 

aggregate of spheres by using the translation theorem for the spherical wave vector functions 

which expresses them in various bases of coordinates, and, by applying a superposition 

principle. The total scattering field for an aggregate is then represented by the superposition of 

the individual scattering fields resulting from each particle knowing that these fields are 

interdependent. Moreover, one can formulate the problem in the way of a T-matrix.  

This method is very precise but its computation time depends on the number and the size 

parameter of primary particles.  

 

We will use in the continuation of this text a method which is in fact a particular case of the 

T-matrix method (Mishchenko et al., 2004) bearing the name of GMM  (Generalized Multi-

particle Mie-solution) . 

We did not find a comparison of the various methods, except an article of Hovenier et al. 

(1996) which compared the T-matrix (method by surface integration), SVM and DDA. This 

article shows that the latter is not completely in agreement with the two other methods. As no 

study was undertaken in this direction, the work presented in this article is achieved with a 

method which seems, closest to the one used for a simple sphere and validated by the 

experiment (Xu and Gustafson, 2001): GMM. The details of GMM are given by Xu (1995, 

1996, 1997a,b, 1998a). 
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4.2. Main features of scattering properties of aggregates 

 

We present a summary of the main features of scattering properties of aggregates. Results are 

coming from the calculated optical properties of aggregates such as: 

- aggregates of spherical primary particles 

- number of primary particles in the aggregate [1,100]N   

- primary particle size parameter (x) in the range : [0.013, 9.25]. 

- three different materials (SiO2, Al2O3, TiO2); non absorbing materials 

Optical properties are calculated by using GMM theory. 

First of all it is interesting to study the effect of the inter-particle distance on the scattering 

cross section. 

 

4.2.1. Case of a two-sphere set 

 

The evolution of the scattering cross section of a two-sphere set according to the type of 

material, their size parameter and the center to center distance has already been studied by  

Mishchenko et al. (1995) and  Quirantes et al. (2001) .  

The KXu parameter for different materials was used. KXu is defined as the ratio between the 

scattering cross section of an aggregate and the sum of scattering cross section of N primary 

particles which form this aggregate (so, the denominator assuming non-interacting and non-

interfering spheres). 

 

,

,1

Xu N

Xu

Mie

C
K

NC
            (11) 

 

The two spheres, denoted i and j, were gradually separated (centre to centre) by a factor ijF  

proportional to their diameter, until they do not interact any more (KXu is equal to 1). As the 

separation distance is denoted ijd , the factor obeys the relation: 

 / 2ij ijF d a  

a is the radius of the primary particle. 

 



 20 

 

 



 21 

 

 

Fig. 6. Evolution of KXu according to the size parameter and the distance factor ranging 

between [1; 100] for the three materials (SiO2, Al2O3, TiO2) 

According to Fig. 6, for size parameter smaller than 0.5, smaller is the primary particle, the 

distance factor must be greater so that there is no interaction. We thus join the conclusion of 

Kolokolova and Gustafson (2001): a suspension consisting of Rayleigh scatterers as primary 

particles has to have a very weak volume fraction to avoid multiple scattering, whatever the 

relative refractive index.  

Interaction between particles cannot be ignored even if 4ijF   (for the whole range of the size 

parameter). 

For spheres in contact, KXu (Fig. 6) increases with decreasing size parameter up to a value 

close to 2. When the two spheres are large enough, the deviation from the non interacting 

limit is negligible (e.g. KXu<1.1 for x>5).  

It thus appears useful to evaluate the critical inter-particle distance for which interaction is 

negligible. An approximate method for aggregate optics calculation could take it into account.  

 

4.2.2. Case of aggregate (N>2) 

 

Auger et al. (2003) studied the relation between  extinction cross section of an aggregate, its 

shape (linear or compact configuration) and the number of primary particles (2,4,8,13) in the 

case of titania TiO2 (the optical refractive index being equal to 2.8). In this article, the average 
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extinction cross section (average on the polarization and the incident wave direction) divided 

by the aggregate volume (made up of monosized spheres) is calculated, according to their 

particle radius (between 0.04µm and 0.132 µm). It is found that there exist two size ranges 

(for =0.546µm). For a primary particle radius smaller than 0.08µm-0.09µm, an isolated 

primary particle scatters less than if it were contained in an aggregate. Primary particles 

belonging to the second range behave in an opposite way. They show that there exists two 

size ranges concerning the effect of aggregate shape: in the first range, a compact 

configuration scatters more than linear configuration and conversely for the second range. 

Lastly, a comparison with the equivalent sphere approximation shows that the latter is not 

suitable. Auger et al (2005) and Jacquier and Gruy (2007a) perform similar studies in the way 

that they compare the scattering cross section for various configurations. Auger et al. (2005) 

study is based on distribution of randomly generated aggregates by classical mechanisms of 

aggregation. 

 

 Jacquier (2006) and Jacquier and Gruy (2007a) enlarged the study using different optical 

refractive indices, a greater range of primary particle size parameter, and different 

configurations. They noted the effect of the primary particle number and the aggregate 

morphology. The results are summarized in the two next paragraphs. 

 

 Effect of the number of primary particles on the scattering cross section 

In the paper of Jacquier and Gruy (2007a), two extreme configurations were compared (linear 

and compact configuration). For each configuration, Jacquier and Gruy noticed that there 

exist two ranges. The first one is for KXu larger than 2, and the other one for KXu ranging 

between 0 and 2. The value of the size parameter of the primary particles corresponding to the 

range boundary is a weak function of the optical refractive index, the primary particle number 

and the configuration. However, the authors suggest the first range for  0,2x  (Fig.7a) and 

the other one for  2,10x  (Fig.7b) (the limit of their study is for a size parameter smaller 

than 10).  
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Fig.7: KXu as a function of the size parameter for the linear configuration with N primary 

particles (2, 4, 8, 16) and for SiO2 (Jacquier and Gruy, 2007a): (a) for the range  0,2x  and 

(b)   2,10x . 

They conclude (as shown in Fig.7): 

- for  0,2x , larger is the number of primary particles, larger is the scattering cross 

section whatever the configuration. Indeed, in the case of very small size parameter, 

the aggregate scattering cross section is proportional to the particle number square and 

to the primary particle scattering cross section ( 1,

2

, MieNXu CNC  ). This relation is 

checked on a lesser scale by aggregates with high refractive index (e.g., TiO2). In 

addition the decrease of  XuK x  seems to depend on the configuration.  

 

- for  2,10x ,  XuK x  is not yet equal to 1 (Fig. 7b), i.e. the aggregate scattering 

cross section is not the sum of  scattering cross sections of each primary particle. 

 

 Effect of the aggregate morphology on scattering cross section 

As illustrated in Fig.8, it is possible to establish a classification of the configurations 

according to their scattering cross section. In the x-domain, where KXu>1, the scattering cross 

section of the compact configuration is higher than that of the plane configuration, itself 

higher than that of p1 and p2 configurations (which are very close, Fig.9). The linear 

configuration is the weakest. The order is reversed for the other x-domain (KXu<1). Thus, 

there are two extreme configurations: linear and compact between which other configurations 

are. 
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Fig.8: KXu as a function of the size parameter for aggregates with four primary particles 

(linear, compact, plan, p1, p2) for Al2O3  

 

 

 

compact linear plan p1 p2 

Fig.9: Different aggregate configurations in the case of four primary particles. 

 

The primary particles arrangement, i.e. the aggregate configuration, is not without effect on 

the scattering cross section, nevertheless, the number of primary particles in it is the 

prevailing parameter in the range [0;2]x . In the second range ( [2;10]x ), the configuration 

is more important than the number of primary particles. 

4.2.3. Conclusion on aggregate scattering cross section 

 

The study of scattering (Csca) cross sections of aggregates obtained with the exact method 

revealed that:  

-  the distance between particles is a relevant parameter for Csca   

- different aggregate configurations, following its shape or the number of primary particles 

which it contains, are perfectly distinguishable,  

- the number of primary particles is the relevant parameter in the case of small size parameter 

x ( 2

, ,10, Xu N Miex C N C  ) 
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- there exists, for an aggregate with a given number of primary particles, two extreme 

configurations (linear and compact) between which the cross sections of the others are 

located.  

4.3. Approximate methods (CS, BPK, AD, ERI) for aggregates 

 

In this sub-section, we describe different approximate methods: Compact Sphere method 

(CS), Berry-Percival-Khlebtsov method (BPK), Anomalous Diffraction method (AD), 

Effective Refractive Index method (ERI). A first comparison between these four methods was 

published by Gruy (2001) in connexion with aggregation of SiO2 micro-particles in water.  

The study of the parameters influencing the optical properties of aggregate began with Fuller 

and Kattawar (1988, a and b). Rouleau (1996) compared several approximate methods for 

optical properties based on: 

- RGD approximation 

- Non interacting spheres 

- Equivalent volume sphere 

- Equivalent projected area sphere 

This study was carried out only for compact aggregates with 30 primary particles whose size 

parameter was smaller than 0.6 and the refractive index was kept constant (m=1.7+0.1i). He 

concluded that the above-mentioned methods are not efficient except the one using the 

projected area. 

The differences between the methods quoted in the next paragraphs are evaluated in Table 2. 

We chose to differentiate porosity and arrangement. The validity range of all these methods is 

normally the whole size parameter range except for AD, which, as already mentioned in sub-

section 3.3, is to be used only in the case of large particles.  

Method 

Does it take into account ? Does it use: 

Maxwell-Garnett equation?  

(porosity) 

*the arrangement *the interactions 

CS no no no 

ERI yes no yes 

PBK yes yes no 

AD yes yes no 

Table 2: Comparison of approximate methods 
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In the next paragraphs, scattering cross section values from approximate method ( ,method NC ) 

and exact method ( ,Xu NC ) will be compared. Then, the ratio Km is defined as:  

,

,

method N

m

Xu N

C
K

C
            (12) 

 

4.3.1. Compact Sphere (CS) 

This method has to be mentioned because it is used as the first coarse approximation by 

investigators and by particle sizer manufacturers. One finds it under the name of equivalent 

sphere (in volume), and it will be compared with the other methods. 

 

Fig.10: Compact Sphere method 

The aggregate is regarded as a full sphere, i.e. containing all the matter. This method can be 

valid for aggregates of high compactness. The scattering cross section ,CS NC  is then evaluated 

with the theory of Mie. 
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Fig.11: compact sphere approximation: Km as function of the size parameter for SiO2  (a) 

linear configuration, (b) compact configuration 

As shown in the Fig. 11, compact sphere method overestimates the scattering cross section for 

x<7, whatever the configuration. As we will see in paragraph 4.3.3, an aggregate can be 

considered as a (porous) sphere with an effective refractive index. Whatever the chosen 
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equivalent sphere, the value of the scattering cross section calculated by Mie theory is always 

smaller than the one obtained from CS method. Moreover, this method does not take into 

account the interactions (interference and interaction). 

 

4.3.2. Berry-Percival-Khlebtsov  (BPK) 

 

This method originates from the work of Berry and Percival (1986) and Khlebtsov (1996). 

The three following points constitute the stages of BPK method: 

 

Step 1: Evaluation of the angular contribution of each primary particle to the scattering cross 

section:  

   ,1

1

,1

Mie

RGD

C
F F

C
            (13) 

where  F   is coming from the RGD approximation for a sphere (see Eq. 8b).  1F   is the 

corrected function for  F   in order to verify:  1 ,1

0

MieF d C



    

 

Step 2 : Calculation of the interferences of scattering waves for each pair of primary particles 

leading to a structure factor S which does not depend on polarization. The structure factor is 

related to the aggregate morphology through the inter-particle distances. 

 

2

1,

( ) ( ) /
N

ij

i j i j

S N R N 
  

 
  
 

         (14a) 

where 

 

sin 2 sin
2

( )

2 sin
2

ij

ij

ij

kd

R

kd






  
  
  

 
 
 

          (14b) 

and ijd  is the distance between i and j particles. 

Step 3 : Use of a corrective coefficient d taking into account the multiple scattering (Berry 

and Percival, 1986)  
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     (15) 

with 

ar1 et ai1 are the real and imaginary parts of the first Mie coefficient a1 

1
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Conclusion of steps:  
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Fig.12: BPK approximation: Km as function of the size parameter for SiO2 (a) linear 

configuration, (b) compact configuration 

Figure 12 shows that BPK method is a satisfactory approximation of the exact method for the 

small size parameter (x<2). The BPK method leads to an error smaller than 10% for a size 

parameter ranging between 0 and 2 in the case of SiO2 and of Al2O3. For higher refractive 

index (i.e TiO2), the error increases until it reaches 30% (for more restricted size parameter 

range [0; 1]). BPK method shows that the pair interactions must be taken into account only for 

small size parameters; their contribution in scattering cross section calculation is less in the 

case of large aggregated primary particles. 

 

4.3.3. Effective refractive index 

 

We have shown in paragraph 4.2.2, that the location of the primary particles inside an 

aggregate and its shape had an effect on the scattering cross section. The effective refractive 

index (ERI) method considers the shape. Knowing that the projected area of the scattering 

body (on the plane ( ,E H ) of the incident wave) is a relevant parameter in optics, we consider 

an equivalent sphere starting from the aggregate projected area (Fig. 13). 

 

 

Fig.13. Projected area representation 

Projection is carried out according to several successive planes (plane perpendicular to the 

incident wave vector). This corresponds to random rotation that takes place in a real situation 

(for instance, aggregate in a turbulent flow). Then, an average projected area p OS   is 

calculated and an equivalent projected area sphere is defined. Successively, it can be deduced, 

the equivalent radius aN,e, the solid volume fraction inside the sphere  3 3

1 ,/a N eNa a  , the 

effective refractive index ma using the Maxwell-Garnett theory 
2 2

2 2

1 1

2 2

a
a

a

m m

m m


 


 
, and then 

the extinction cross section  ,ERI NC  by means of  Mie theory. 
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Fig.14: ERI approximation: Km as function of the size parameter for SiO2 (a) linear 

configuration, (b) compact configuration 

This method is more efficient than the other equivalent sphere methods, because the solid 

volume fraction in this sphere is always high (0.1< a <1). 

ERI method behaves differently according to the configuration for small size parameter (Fig. 

14). Indeed, Csca value calculated with this method is higher than the scattering cross section 

calculated with the exact method for a linear configuration (Fig. 14a). This deviation can be 

taken in consideration and calculation has to be corrected in order to reduce the deviation 

between ERI and exact methods.  

Jacquier and Gruy (2007a,b) proposed a corrective factor  1, /F x d a  for the scattering cross 

section ,ERI NC  . This is written as: 

 , , 1/ , /corr

ERI N ERI NC C F x d a          (17) 

Where d1 is a morphological parameter defined as: 

1

,

1

( 1)
ij

i j

d d
N N



           (18) 

4.3.4. Anomalous Diffraction (AD) 

 

In paragraph 4.2.2 it has been already mentioned that morphology becomes more important 

for large size parameters. The anomalous diffraction approximation, clarified in sub-section 

3.3 (Van de Hulst, 1981), accounts for the aggregate morphology by means of the intercept 

(chord) of a light ray and the aggregate (Fig. 15). 

 



 31 

 

Fig.15. definition of a chord 

The various possible chords 1l , 2l … were evaluated and introduced as 
i

i

l l  into Eq.19.  
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[ ] [ ]
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S S

C l m dydz x l a m dydz



          (19)

                

[Sp] is the projection plane. Details or examples on expressions relating l/a and (y,z) can be 

found in Yang et al. (2004) and Gruy and Jacquier (2008). 

This calculation is repeated whilst rotating the aggregate or changing the projection plane. So, 

a mean value of scattering cross section is deduced. 
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Fig.16: AD approximation: Km as function of the size parameter for SiO2 (a) linear 

configuration, (b) compact configuration 
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As expected, the AD method is not suitable for small size parameters but proves to be a good 

approximation for a size parameter higher than 2. It is important to recall that AD is strongly 

related to the configuration (morphology) since it includes in its formulation the chord length 

distribution of the aggregate.  

 

 4.3.5. Summary 

 

Approximate methods facilitate the estimation of the aggregate scattering cross section in a 

short computation time. Jacquier and Gruy (2007a) evaluated the performance of these four 

approximate methods with respect to the exact method: 

 

- Methods replacing an aggregate by a compact sphere (CS) are inappropriate. 

- BPK (Berry-Percival-Khlebtsov) method is valid for 0<x<2 with an error which 

increases with the material refractive index. 

- The corrected ERI (Effective Refractive Index) method is the approximate method 

being able to be efficient on the whole size parameters. The error for a scattering cross 

section is always smaller than 5%. 

- the AD (Anomalous Diffraction) method works fairly well for 2<x<10 and is less 

sensitive to the refractive index variation. 

 

4.4. Application: turbidity versus time during agglomeration process 

 

As mentioned in section 2, nucleation and growth lead to (primary) particles with a size 

between 0.1 m and 10 m. Then, these particles collide and agglomerate by Brownian 

motion and/or local shear. So, let us consider agglomeration of small monosized primary 

particles in a homogeneous suspension. Agglomeration proceeds as a bimolecular reaction, 

the kinetic constant of which can be expressed in terms of known quantities. Generally, the 

kinetic constant is a function of sizes of the two colliding particles. However, in the case of 

Brownian agglomeration or shear agglomeration (but not for shear aggregation, i.e without 

consolidation of the particle cluster), the kinetic constant Kag weakly depends on the particle 

size, so that we may consider it as not dependent on particle size.  Following Kruyt (1952), 

modelling of agglomeration with constant Kag leads to simple expressions for number 

concentrations in agglomerate: 
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   
1 1

0 / 1 /
j j

j c cN N t t t t
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          (20a) 

Nj is the number concentration in agglomerate consisting of j primary particles. N0 is the 

number concentration in primary particles at time t=0. There is no agglomerate at t=0. tc is the 

characteristic time of agglomeration. It obeys: 

 02 /c agt K N           (20b) 

For instance,  03 / 4ct kTN   for Brownian agglomeration. T, k and µ are the temperature, 

the Boltzmann constant and the dynamic viscosity, respectively.  is a non dimensional 

parameter representing the agglomeration efficiency (0<<1). For sake of simplicity, we 

consider this parameter as a constant throughout the agglomeration process. 

It will be pointed out that tc and then Nj do not depend on the agglomerate morphology. The 

previous expressions are approximate, but are considered as a first and realistic approach of 

agglomeration dynamics.   

At a given time, the turbidity of the suspension contains the contribution of each j-

agglomerate: 

     1 1

0

, ... , , , ...j j j j

j P ext P

j

t N p p t C m p p  




       (21) 

Following ERI method, the internal coordinates relevant for scattering cross section are a (the 

primary particle radius), j, p O
S .  Even if the characteristic time does not depend on the 

morphology, it appears that large agglomerates have a fractal-like structure. Depending on the 

agglomeration mechanism, simulations give values of fractal dimension between 1.8 and 2.6. 

Due to restructuring of agglomerates, the fractal dimension is larger than 2. As the fractal 

dimension is larger than 2, outer radius of agglomerate is equal to the radius aS,j of the 

“projected area” equivalent sphere. Small agglomerates do not have the fractal-like structure. 

However, we have shown (Gruy, 2001) that they can be described by means of a power law 

relating aS,j and j: 

1/ 2
1/

,

2

FD

pS j O

r

Sa j

a a S

   
    
    

         (22) 
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Later on, we will consider the equation 22 suitable for a wide range of primary particle 

numbers. 

Then, 

     
0

, / , , , ,j c ext F

j

t N t t C m j a D  




         (23) 

Figures 17 and 18 represent the change of turbidity (normalized by    0 0 , ,extN C m a   ) 

with time (normalized by ct ) for agglomeration of silica (m=1.08). Figures 17 and 18 show 

the effect of two fractal dimensions (DF=2.1; DF=2.5) and two primary particle radii 

(a=0.1µm;  a=1µm) respectively at =0.4µm and =0.8µm. 

 

0

0,5

1

1,5

2

2,5

0 2 4 6 8 10 12

D_F=2.5   a=0.1µm

D_F=2.1   a=0.1µm

D_F=2.1   a=1µm

D_F=2.5   a=1µm

t/tc
=0.4µm

/0

 

Fig. 17: Normalized turbidity versus time; agglomeration of silica in water; =0.4µm 
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Fig. 18: Normalized turbidity versus time; agglomeration of silica in water; =0.8µm 

 

5. Approximation for radiation pressure cross section  

 

5.1. Introduction 

Often, precipitation leads to concentrated suspensions. On one hand, transmitted light 

intensity becomes very weak making backscattering sensors more suitable than turbidimetric 

ones. On the other hand, multiple scattering takes place. Whatever the considered signal 

(backscattered, side scattered or transmitted light), the interpretation has to account for 

multiple scattering. The most popular theory which considers this phenomenon is the radiative 

transfer theory, particularly its diffusion approximation (Ishimaru, 1978). The relevant 

phenomena associated with backscattering measurement, are either coherent or incoherent 

ones. The first one results from interference caused by the double passage of the wave 

through the same particle (Tsang and Ishimaru, 1984, 1985; Wolf et al., 1988; Akkermans et 

al., 1988; de Wolf, 1991; Helfenstein et al., 1997). The angular width of the measured 

intensity peak is proportional to the transport mean free path  
1

tr prL NC


 , where N is the 

particle number concentration and prC  is the radiation pressure cross section. The second one 

only considers the multiple scattering: scattered light intensity is also a function of the 
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transport mean free path. Theoretical calculations were compared to on- (off-) line 

experimental data for transmittance (Ishimaru et al., 1983) and retroreflectance (Kuga, 1984; 

Nichols et al., 1997) experiments with suspension of spherical beads, and a fairly good 

agreement between both was found. 

The radiation pressure cross section is expressed as a function of the extinction and scattering 

cross sections, and also the asymmetry parameter ( cosg  ): 

pr ext scaC C C g    

In the case of non absorbing material: 

(1 )pr scaC C g    

The asymmetry parameter for spheres has been calculated and analytical or empirical 

expressions have been derived in the framework of different approximations, e.g. geometrical 

optics and RGD approximations. Empirical expressions for large randomly oriented 

nonspherical particles were also proposed (see Kokhanovsky, 2001). Rigorous calculations 

were achieved by different authors (see, for instance, Xu, 1998b). 

Up to now, calculations of radiation pressure cross section for aggregates were mainly 

motivated by calculation of forces acting on interstellar dust illuminated by stars (Kimura and 

Mann, 1998; Kimura et al., 2002; Iati et al., 2004). Radiation pressure plays a key role in the 

dynamical behaviour of submicrometer-size grains in the stellar radiation and gravitational 

fields. Kimura and Mann (1998) studied aggregates composed of 256 primary particles, the 

radius of which is 0.01µm and that are illuminated by visible light and infrared. The 

considered materials are silicate and amorphous carbon as representatives of weakly and 

strongly absorbing materials, respectively. Calculations for randomly oriented fractal-like 

aggregates (with DF = 2 and DF = 3) were performed by means of DDA method. Authors 

showed that the asymmetry parameter smoothly increases with increasing size parameter x 

(decreasing wavelength) of the primary particle and increases as the fractal dimension 

decreases if x<0.16 (for x>0.16, 0.7g ). Asymmetry parameter for aggregates is higher than 

for volume-equivalent spheres, irrespective of the constituent material. The authors point out 

that aggregates with small fractal dimension present a large fluctuation in g for different 

aggregate orientations. Kimura et al. (2002) extended the previous study to larger aggregates 

(N<2048). They compare radiation pressure cross sections calculated from DDA method, Mie 



 37 

theory applied to volume-equivalent sphere (CS method) and Mie theory combined with 

Bruggeman mixing rule. CS is a rough approximation for the two materials and two fractal 

dimensions. Mie/Bruggeman approximation is a good approximation for compact aggregates, 

but performs weakly for loose aggregates especially with non absorbing primary particles. 

The authors showed that Cpr is less dependent on the porosity of aggregates while the values 

strongly vary with the material composition. Iati et al. (2004) computed, through T-matrix 

method, optical properties of cosmic dust grains. Grains are aggregates consisting of 31 non-

identical spheres. Materials are also silicate and amorphous carbon. Primary particle size 

distribution is assumed to be Gaussian-like. The radius of the volume-equivalent sphere is 

equal to 0.14µm. For both materials, aggregation leads to a sharp increase in the extinction 

and radiation pressure cross sections.  The sub-sections 5.2 and 5.3 are respectively devoted to 

the main features of Cpr for aggregates and approximate methods for estimating Cpr.   

 

5.2. Main features of radiation pressure cross section 

5.2.1. Single sphere 

 

The variation of the asymmetry parameter is presented for spherical particles of various 

chemical compositions in Fig.19. 
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Fig.19: Asymmetry parameter for three materials as function of the size parameter. 
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The asymmetry parameter is close to zero for very small size parameters whatever the 

refractive index. Then, it increases to a plateau close to 1 in the case of SiO2 and Al2O3, i.e. 

the light is scattered predominantly in the forward direction. A spherical particle of TiO2 has a 

mean scattering angle which varies less monotonously according to the size parameter. 

Indeed, for a size parameter equal to 4, the asymmetry parameter is close to zero, the 

scattering can be then described as dipole-like, while for a size parameter of about 6 the 

scattering seems to happen in a privileged direction. 

Fig. 20 represents prC  as a function of the size parameter for a sphere and the three different 

materials. 
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Fig.20: Radiation pressure cross section for three materials as function of the size parameter. 

 

In the size parameter range [0; 10], the radiation pressure cross section increases as the optical 

refractive index increases.  

 

5.2.2 Aggregate of spheres 

The variations of prC  for an aggregate have been examined according to: the number of 

primary particles, their size parameter, the relative optical refractive index and the aggregate 

shape. Simulations were performed by means of GMM method (Xu, 1998b). 

The simulation results are presented as previously: effect of the number of primary particles 

within the aggregate and effect of the aggregate shape on the function  XuP x . XuP is the ratio 
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between prC value of an aggregate ( , ,pr Xu NC ) and the one of its N primary particles considered 

as independent , ,1pr MieNC : 

, ,

, ,1

pr Xu N

Xu

pr Mie

C
P

NC
        

5.2.2.1 Effect of the number of primary particles on radiation pressure cross section 

 

Fig. 21 represents XuP  as a function of the size parameter for a chain-aggregate of SiO2 

primary particles. The variation of prC with primary particle size parameter is similar to the 

one corresponding to the scattering cross section. Two size parameter ranges can be defined. 

In the x-range [0; 2], constructive interferences and multiple scattering (or interaction between 

primary particles) are important. In the x-range [2; 10], the radiation pressure cross section is 

close to the prC of a set of spheres without interaction. However, multiple scattering yet occurs 

at some extend. 
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Fig.21: PXu as a function of the size parameter for the linear configuration with N primary 

particles (2, 4, 8, 16) and for SiO2: (a) for the range  0,3x  and (b)  0,10x .  
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However, the radiation pressure cross section of an aggregate made up of primary particles 

whose size parameter is higher than 1.5 seems to be proportional (by a factor  ,p N x N ) to 

the primary particle radiation pressure cross section.  ,p N x N  is a weak function of x for 

SiO2 (more dependent on x for TiO2). As expected,  XuP x  is similar to  XuK x  in the x-

range [0; 1] because the asymmetry factor of the primary particle is smaller than 0.25. At the 

contrary,  XuP x  must not be related to  XuK x  in the x-range [1; 10]. 

 

5.2.2.2 Effect of the aggregate morphology on radiation pressure cross section 

Figure 22 represents XuP for different configurations of aggregates consisting of 4 primary 

particles arranged according to Fig 9. Similar variations are obtained. The deviation between 

the two extreme configurations is about 10.7%, which is a smaller value than that obtained 

with scaC . But prC  is a little more sensitive to the configuration which are close each other, 

since the average deviation between the p1 and p2 configurations is about 1.3% compared 

with 0.8% for scaC . 
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Fig.22: PXu as a function of the size parameter for different configurations of 4-aggregates 

(linear, compact, plane, p1, p2) for SiO2  
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5.3. Approximate methods for aggregates 

5.3.1. ERI method 

In the same way that we showed the effectiveness of the ERI approximate method, for 

calculation of Csca, we evaluated (Jacquier and Gruy, 2007b) its performances for the 

calculation of Cpr. The ratio of the radiation pressure cross sections obtained on the one hand 

with the exact (GMM) method and on the other hand with the ERI method is denoted Lm: 

, ,

, ,

Cpr ERI N
L

m Cpr Xu N
   
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Fig. 23: Lm  function with 0;10x  
     for linear aggregate (SiO2) 

The deviation of Lm from 1 (Fig. 23) leads to the search of a corrective factor in order to 

reduce it. Jacquier and Gruy (2007b) proposed a corrective factor as a multi-parameter 

function  1, , /G x N d a  for the radiation pressure cross section , ,pr ERI NC  . Thus, the corrected 

radiation pressure cross section obeys the expression:  

 , , , , 1/ , , /corr

pr ERI N pr ERI NC C G x N d a         (24) 

Later on, this method is called ERI/G. 

 

5.3.2. Other methods 

We noticed in paragraph 5.2.2 that PXu of any configuration of soft particles does not vary 

with x for x higher than 1.5. The value of 
 1.5Xu x

P


 depends on the aggregate morphology that 

can be characterized through N and d1/a. However, 
 1.5Xu x

P


 may be a weak function of x for 
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hard material (Fig. 24). We can observe that variations of 
 1.5Xu x

P


 are similar to the ones for 

a two-sphere aggregate.  
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Fig. 24: PXu as a function of the size parameter for the compact configuration with N primary 

particles (2, 4, 8, 16) and for TiO2:  0,10x .  

These comments suggest the two approximate methods:  

 Method Pp1: CprXu,N proportional to Cpr of a primary particle: Cpr Mie, 1  

 Method Pp2: Cpr Xu, N proportional to Cpr of a doublet: CPr Xu,2  

 

The proportionality factors, denoted respectively p1 and p2, can be expressed as a function of a 

single parameter:
1 /

N

d a
  . Corresponding expressions can be found in (Jacquier and Gruy, 

2007b). Table 3 presents the performances of ERI/G, Pp1 and Pp2. It appears that the ERI/G 

method is not as efficient as Pp1 and Pp2 but ERI/G presents the biggest advantage to be used 

over all the size range. 

 1,5<x<10 

 Linear configuration Compact configuration 

material SiO2 Al2O3 TiO2 SiO2 Al2O3 TiO2 

method m σ m σ m σ m σ m σ m σ 

Pp1 1,01 0,05 1,05 0,11 1,06 0,17 1,01 0,04 1,00 0,11 1,08 0,17 

Pp2 0,98 0,04 0,96 0,08 0,94 0,12 0,97 0,04 0,93 0,10 0,93 0,11 

ERI/G 0,93 0,17 0,90 0,15 1,07 0,23 0,92 0,13 0,90 0,11 1,06 0,30 
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Table 3: Approximate method performance for the calculation of Cpr for different material 

with [1.5;10]x . m and  are respectively the mean value and the standard deviation for the 

corresponding dataset.  

5.4. Conclusion  

We presented different ways to calculate approximately the radiation pressure cross section of 

aggregates. The corresponding expressions can be used to study dense suspensions. For 

instance, Tontrup et al. (2000) performed an experimental work about aggregation of TiO2 

micro-particles in water by using a backscattering sensor. They deduced the change of the 

transport mean free path with time. SEM observations showed that the aggregates contain few 

primary particles. Approximations could be used to determine some characteristics of the 

aggregates. 

 

 

6. Scattering properties versus geometrical parameters of aggregates 

 

The main question that appears when studying the formation of particles or aggregates is: 

which is the relevant morphological parameter related to the measurement? The answer 

mainly depends on the particle size and is partially included in theories and modelling leading 

to scattering cross section calculations.  

So, when we consider the Mie theory for homogeneous spheres, the solving method and the 

results are only depending on the relative refractive index and the boundary conditions for the 

Helmholtz equation. From a geometrical point of view, the mathematical function describing 

the particle surface is the relevant parameter. The case of non-spherical convex bodies is 

similar. As the physics is always based on Maxwell and Helmholtz equations, the 

corresponding solution for a natural incident light only depends on the body surface that is 

characterized by the equation  , , 0f x y z  . 

If we are interested in the orientation average of the scattering cross section, a function 

describing the body and being invariant to rotation will be preferred. So, the pair distance 

distribution density (PDDD) could be an interesting approach to describe the shape. It is a 

well known function in physics and can be defined for liquids as: 

  24dN g r r dr    
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dN represents the number of molecules distant from a given (tagged) molecule with the 

distance in the range [r,r+dr]. In the case of liquid, the distribution is nearly isotropic. This 

function clearly appears in RGD approximation for convex bodies (distribution density is 

connected to
2

f ) and BPK approximation for multi-sphere aggregate (in Eq.14a,b). 

In the first case (RGD), we consider any pair of volume elements in the scattering body. The 

pair distance distribution density is a continuous function of the distance between volume 

elements. In our context, we chose the notation  PD r . Then, the orientation averaged 

scattering cross section can be written as (Gruy, 2009): 

     
max

min

,1

24 22
1

3
RGD

R

P

R

C k V m F kr D r dr


                  (25) 

with 

 

         2 4 1 3 2 4 2
3 cos 2 1 5 3 sin 2 2 6 1 3 / 4x x x x x x x x x xF      

             

 

The distribution density function is normalized:  

 
max

min

1

R

P

R

D r dr                     (26) 

Figure 25 presents the function  PD r  for a sphere and various spheroids. The pair 

distribution function for a sphere with radius a obeys the expression:  

     2 3

,

3
12 16

16
p p uaD r D u u u u          (27)

  

with  

/u r a  and 0 2u   



 45 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r/a

D
p

sphere

oblate

prolate

 
Fig.25: Pair distance distribution density for sphere, oblate spheroid (axis ratio equal to 2) and 

prolate spheroid (axis ratio equal to 2). a is the smallest semi-axis length. 

In the second case (BPK), equations contain the inter-particle distance dij. This function is not 

continuous; as far as a cluster of point scatterers is concerned: 

 
 

 
,

1

1
P ij

i j

D r r d
N N

 

                  (28) 

  is the Dirac function. 

 A particular case is the fractal-like aggregate, the PDDD of which obeys the equation 

(continuous form): 

   3FD
PD r r              (29) 

According to paragraph 4.3.2, the BPK approximation gives good results when the size 

parameter of the primary particle is smaller than 2. Thus, the PDDD is the relevant 

morphological parameter. 

It has been shown by Gruy (2009) that this function associated with BP approximation (Berry 

and Percival, 1986) for aggregates of Rayleigh scatterers allows for an estimation of the 
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scattering cross section of convex bodies. This method is proved efficient for spheres and 

spheroids as the scattering efficiency is smaller than 1 and as the material is optically either 

soft or hard.   

Non corrected ERI method is only based on the average projected area p OS   of the body. 

However, it is not suitable for elongated aggregates with small size parameter. p OS   can be 

expressed as a function of the number of primary particles and of the mean inter-particle 

distance (Jacquier and Gruy, 2008a,b): 

2

p O pS R             (30) 

with 

 
1 5 1/3 1/8

1 / 2p ER a d a N d  and 100N  ,    

dE is the space dimension. 

d1 is the relevant morphological parameter. It is directly related to the first moment of the 

distribution  PD r : 

 
 

 
 , ,

1 1
0

0

1 1

1 1
P ij ij

i j i j

D r r d d
N N N N

M rdr rdr d




 
 

        (31) 

It would be possible to choose other moments of the distribution for describing geometrical 

and optical properties of aggregates. For instance, the second order moment is directly related 

to the gyration radius, that is a well known parameter used to define a fractal-like aggregate. 

However, there was no noticeable change and thus no improvement was found when choosing 

another mean distance definition for the aggregate. Thus, we chose the lowest order 

distribution moment. Corrected ERI method also uses d1 distance parameter. 

For large size parameter (x>2), AD approximation becomes efficient. In this case, the relevant 

line is the chord. Expression of the average scattering cross section can be re-written by 

introducing the chord length distribution ( )lD l  (Jacquier and Gruy, 2008a,b): 

 
max

,

[ ] 0

2 (1 cos ( 1)) 2 1 cos ( 1) ( )

p

l

AD N p l

S

C kl m dydz S kl m D l dl          (32) 

The chord length distribution (CLD) is defined as follows: ( )lD l dl represents the number 

fraction of the chord length in the range[ , ]l l dl . Thus, ( )lD l  obeys the normalization 

equation:  
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max

0
( ) 1

l

lD l dl                                 (33)                                                                                          

lmax is the maximum chord length of an aggregate.  

The figure 26 presents the ( )lD l  function for an aggregate consisting of 16 primary particles. 

One observes three very distinct peaks or modes, each one characterized by a chord length 

range: 

- [0 ;2a] corresponds to primary particles (distribution density ,1( )lD l ) 

- [2a ;4a] corresponds to pair of particles in contact (distribution density ,2 ( )lD l ) 

- [4a;lmax] corresponds to the aggregate superstructure  (distribution density  ,l GD l ) 

 

Fig. 26: ( )lD l  for compact aggregate with 16 primary particles. l is normalized by the radius 

of the primary particle.   

 

( )lD l  contains the contributions of each distribution density. These are weighted by the 

coefficients 1 2, , G   : 

 
  

 

  

 
max

,2 , max

1 ,1 2 4

,2 ,

2 4

2 ;4 4 ;
( )

l l G

l l Ga l

l l G

a a

D l a a D l a l
D l D l

D l dl D l dl

  
 

  

 

    (34a) 

with  

1 2 1G               (34b) 

The distribution densities ,1( )lD l  and ,2 ( )lD l  are given by analytical expressions (Jacquier and 

Gruy, 2008).  ,l GD l  is an empirical function, the same for all the aggregates. Only weighting 

coefficients depend on the aggregate morphology. Results shown in Fig. 26 for a particular 
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aggregate are representative for aggregates with primary particle number up to one hundred. 

Coefficients 1 2, , G    depend on 1, , EN d d  (Jacquier and Gruy, 2008).  

The calculation of the scattering cross section using Eqs.32-34a,b is much faster than that 

based on Eq.19. 

Certain presented approximations are characterized by a decoupling or separation between 

optics and geometry. This separation allows for a faster calculation of the optical properties. 

At our knowledge, the relationship between chord length distribution (as defined by figure 15) 

and pair distance distribution is not trivial, particularly for aggregates, and requires 

complementary works in the field of integral geometry. Moreover, the transition between the 

different geometrical characteristics, i.e PDD and CLD, is not yet quantitatively understood as 

the primary particle size increases.  

  

7. Conclusion 

 

The analysis of turbidimetric data during precipitation process is a challenge for researchers 

working in the field of light scattering by particles. The variety of sizes, shapes and optical 

contrast requires several approaches for calculation of their optical properties.  Performance 

criteria are the calculation speed and the accuracy fitted with the measurement one. Accurate 

calculations performed with numerical sophisticated methods will be always needed and used 

for the purpose of validation. Difficulties remain for certain particles with a complex 

morphology. For instance, one observes precipitated zinc sulphide particles in the size range 

[0.5µm; 5µm] exhibiting sand rose (i.e., gypsum flower) morphology.  The typical multi-scale 

morphology of many precipitated particles firstly needs tools coming from the integral 

geometry in order to be described with a minimum number of parameters. Knowing this 

parameter set, optical properties will be calculated with exact theories. The parameter number 

coming from geometrical analysis can be reduced when the optical properties of the particles 

are appropriately considered for the formulation of approximate theories to the calculation of 

scattering properties. An example for such an approach has been presented, but further 

advances are needed.  
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