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Abstract  

       Anomalous Diffraction (AD) method has proved to be an adequate approximation of the 

exact method (GMM code computed by Xu) to obtain the scattering cross section for 

aggregate whose the primary particle size parameter is upper than 2. Indeed, the error of this 

approximated method is less than approximately 10% when the primary particles are in SiO2.  

       However this method is strongly related to the aggregate morphology since it includes in 

its formulation the concept of chord length. We initially studied the chord distribution for 

various aggregates, and then we reformulated the anomalous diffraction method, to 

approximate the scattering cross section, now completely analytically. This new expression is 

entitled ADr with the r for rapid because this one is at least a hundred times faster than the 

standard AD method. 

 
Keywords: Aggregate, Light Scattering, Anomalous Diffraction, Scattering Cross Section, Chord 

Length Distribution 

 

 

1. Introduction 

 

Many industrial operations involve solid-liquid suspensions which are agitated resulting in 

collisions and in the subsequent aggregation of particles. This phenomenon is due to 

Brownian motion in the case of sub-micronic particles and the velocity field heterogeneity in 

the case of larger particles. The formed aggregates usually contain few primary particles 

because large aggregates undergo fragmentation which leads to a size limit for the aggregates. 

Generally, in these suspensions aggregates are composed of less than one hundred primary 

particles. Primary particles and aggregates are composed of various materials with high 

refractive index as titania for instance, intermediate refractive index as alumina or small 

refractive index as silica. The suspending medium is often water. Some applications need to 

know the optical properties of aggregates with low refractive index material: silica, ice 

crystal, gas hydrate crystal, pharmaceuticals in water. The on-line characterization of the 

suspension is made by spectral turbidimetry [1] which is defined as the total attenuation of a 

light beam due to scattering and absorption by particles. In order to analyze the turbidity 

measurements, scattering cross sections of aggregates are needed.  

 

There exist several techniques which can render an exact method as explained by F.M. 

Kahnert [2] to express these cross sections. We have chosen the GMM (Generalized 

Multiparticle Mie solution) developed by Y-L. Xu in 1995 [3] and borne out by experimental 
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verification [4]. GMM is an extension of Mie theory for the case of multiple (spherical and/or 

non-spherical) particles. It is based on the superposition principle derived from the solution of 

Maxwell's and wave equations, with the standard electromagnetic boundary conditions on a 

surface separating two media. 

Moreover, aggregates in suspension may move and present several random orientations to 

the light beam. Thus, only averaged scattering cross section is relevant to turbidity analysis. 

The GMM code is interesting because one can obtain an averaged scattering cross section 

over all possible orientations [5] (for more information see the references therein). 

 

We consider that an aggregate to be composed of N identical primary spherical particles. 

The radius and the dimensionless size parameter of the primary particles are denoted r and 

x=2 r   respectively ( is the wavelength of the incident light in the medium). Then, 

scattering cross sections depend on: the size of the primary particles, morphology of the 

aggregates, and relative refractive index. The relative refractive index (m) is the ratio between 

the primary particle refractive index (np) and refractive index of the medium (nm). 

 

 

This exact, but complicated, GMM theory cannot be easily used to interpret turbidity 

spectra on-line, for instance. This is due to the time-consuming calculations needed for large 

amounts of different aggregates (doublets, triplets...) which can be produced during the 

aggregation process. 

 

In a previous work [6,7], we compared the exact method to several different approximated 

methods among which was the Anomalous Diffraction (AD) which gives the aforementioned 

scattering cross section. We concluded that AD, which takes into account the shape of the 

aggregate, is a efficent approximation for a aggregate composed of primary particles with 

large size parameters (larger than 2).  

 

The topic of this paper is to decrease this method’s computing time, by reformulating 

analytically for cluster of spheres. 

 

We will initially summarize earlier work on Anomalous Diffraction applied to the case of 

a sphere and an aggregate. Then we will evaluate the aggregate chord length distribution 

which will be then used in the AD formulation. Finally, the performance of this new 

formulation will be compared with respect to the exact method. 

 

 

2. Background on Anomalous Diffraction (AD)  

2.1. Principles  

 

Anomalous diffraction approximation [8] provides a method by which the scattering 

properties of a particle can be rapidly obtained for the large size parameter and small optical 

contrast. We will sum up as follows: 

Large particles usually refract strongly and may also absorb. In this case the reflected and 

refracted components of the scattered light are dissipated into an angle larger than where 

diffraction is significant. A negligible amount of the defused light interferes with the 

diffracted. 
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However, for very soft scatters where 1m , this is not the case. Here, the refracted rays 

propagate almost without a change of direction and interfere with the diffracted component. 

This phenomenon is termed anomalous diffraction and evidently occurs when 1x  and 

1 1m (see the discussion of Videen and Chylek [9] and Liu [10] on this validity ranges). 

The second condition implies that the rays are slightly deviated when they cross the 

interface particle-medium and that the reflexion is negligible with the same interface. The 

extinction is thus due to:  

-  absorption of the light passing through the particles 

-  interferences between the light passing through the particle and that going around. 
 
Anomalous Diffraction approximation was applied to a sphere and an infinitely long 

circular cylinder [8], a prism column [11], a hexagonal crystal of ice [12], ellipsoids [13], a 

finite cylinder [14] and various forms ([15], [16]). 

In this paper we consider aggregates of spherical primary particles. Thus we will re-examine 

AD formulation in the case of a sphere and a cluster of spheres.  

 

2.2. Sphere 

 

 

 
 Figure 1: Ray passing through a sphere [8]  

 

On  Figure 1 represents the path of a ray (called l) inside a spherical particle with a 

radius r. 

 

The phase difference between a ray passing through the sphere and a ray passing outside 

is: ( 1) ( 1)2 sink m l k m r     ( k= 2  is the wave vector in the medium) 

We lay down 2 ( 1)x m    

The scattering efficiency extQ  is proportional to the amplitude function (0)S [8]: 

 2

4
(0)extQ e S

x
  with 

2
sin(0) (1 )

2

ik
S e dx dy 



          (1) 

The integrand represents the contribution of shadow (1) minus that of rays passing through 

the sphere sin( )ie   .  

If mr is real:  

2

4 4
2 sin (1 cos )sca extQ Q  

 
                          (2) 

Then   

sca sca pC Q S                (3) 
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Sp represents the projected area ( 2

pS r for a sphere).         

   

 
 

 

2.3. Aggregates 

 

In the case of an aggregate, the step remains the same, namely to determine the chord 

length l. Moreover, we made the remark in [6] that morphology had its importance for the 

great size parameters of the primary particle. AD approximation makes it possible to consider 

the aggregate morphology as well: 
 

 
Figure 2: Projected plan 

 

The various possible chords (or intercepts) are evaluated: 1l , 2l … and are introduced into 

the equation (4) to obtain the scattering cross section CN of the N-aggregate: 

 
2

[ ]

2 (1 cos ( 1))N p

Sp

C r xl m dS              (4) 

With 
1

( , ) ( , )
N

i

i

l x y l x y


  

Integration is performed over the object projected area Sp on a plane perpendicular to 

propagation direction. l is the computed path of light through the object, which is a function 

of the projection coordinates x and y. Lengths (l,li) and area (Sp) are made dimensionless by 

dividing them by the primary particle radius. Note: this kind of calculation was previously 

carried out for fractal (large) clusters by Khlebtsov [17]. 

 
Average CN (< CN>) is obtained while rotating the aggregate on itself (or by changing the 

projection plane) and then by carrying out the average over all the discrete angle values (5). 

2

[ ]

2 (1 cos ( 1))N p

Sp

C r xl m dS



              (5) 
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2.4. AD and  chord length distribution 

 

Since the evaluation of the chord length is the relevant parameter of the AD method, we 

reformulated the AD approximation according to the chord length distribution. 

 

 

 

 

2.4.1. Formulation 

The chord length distribution notion (CLD) is presented as follows: ( )D l dl represents the 

number fraction of the chord length in the range [ , ]l l dl . Thus, D(l) obeys the normalization 

equation:  
max

0
( ) 1

l

D l dl                                                                                                                 (6) 

lmax is the maximum chord length of an aggregate.  

 

The CLD can be used to define the Anomalous Diffraction rapid approximate method: 

ADr is known to be faster than standard AD. The chord length distribution D(l), which 

depends on the morphology of the aggregate, is used to calculate the scattering cross section : 

   
max

2

0

2 1 cos ( 1) ( )

l

r

N pC r S xl m D l dl                          (7) 

 

<Sp> is the projected area averaged over all orientations of the aggregates. 

 

2.4.2. CLD of a single sphere and spheroid 

 

The chord length distribution D(l) for a sphere is:   

( ) 2D l l                                      (8) 

with [0;2]l ( the chord length distribution for a sphere is the same no matter what 

projection angle ).  

By applying this chord length distribution in the equation (7), the expression (3) is obtained. 

We can thus conclude that this new formulation is partially in agreement with the previous. 

 

Moreover the aggregate chord length distribution is not accessible analytically. It was, 

thus, necessary to check if a calculation algorithm, led to similar results to those obtained 

analytically for the simple case of a spheroid (Annex A). On Figure 3a (sphere) and Figure 3b 

(spheroid), the histogram represents the numerical chord length distribution obtained on the 

whole of 106 possible chords, with the analytical chord length distribution represented by a 

continuous line. These two distributions are in agreement. 
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a) b) 

Figure 3: Chord length distribution for a sphere a ) and  a prolate  spheroid b). The ratio of the major and minor 

semi-axis is equal to 2. The dimensionless size l, it is the ratio between the chord length and: the particle radius 

a), the major semi axis length b). 

 

2.4.3. Scattering Cross Section  of a spheroid 

 

Q is define as the ratio of the average of the spheroid scattering cross section and the 

projected surface of an equivalent volume sphere to the spheroid in question (rV is the 

equivalent sphere radius). 

2

v

C
Q

r

 
                          (9) 

The AD method uses the equation (5) (dashed grey line in Figure 4), ADr (dashed dark 

line in Figure 4) uses the equation (7) with D(l) previously obtained by numerical simulation 

with the algorithm (Annex B). One can see that  
rC C    for a spheroid. The 

corresponding proof is shown in Annex C. These two calculations techniques are checked by 

the comparison to the analytical average scattering cross section which is available for a 

spheroid (Annex C) and plotted as a dark line in the Figure 4. 
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a) b) 

 

Figure 4: Comparison of AD and ADr methods  : Q as a function of the equivalent sphere size parameter 

( v vx kr ), for SiO2 (m=1.08) and a spheroid: oblate  (a) and prolate (b). The ratio of the major and minor semi-

axis is equal to 2 and 0.5 respectively. 

 

As illustrated in the figures, whatever the type of spheroid (prolate or oblate), the 

numerical results are in agreement with the analytical. Therefore, the notion of CLD will be 

used for describing the object morphology and will be useful as an intermediate function for 

the calculation of scattering cross sections (7). Thus, CLD will be used in the case of the 

aggregates.  

 

3. Aggregate chord length distribution 

 

In this section, the chord length distributions, previously defined, will be determined for 

aggregates beginning with a table of the examined morphologies.  

3.1. Aggregate configuration 

 

The Table 1 presents the aggregate morphology which will be studied. 
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Table 1: Aggregate configuration 

 linear compact plan cubic spherical random 

4 

spheres 

 

 

 

2*2 - - 

 

8 

spheres 
8 

 

2*4 - - 

 

16 

spheres 
16 

 

4*4 2*2*4 - 

 
25  

spheres 
- - 5*5 - - - 

32 

spheres 
- 

 

- - - - 

33 

spheres 
- - - - 

 

- 

40 

spheres 
40 - - - - 

 
64 

spheres 
64 - 8*8 4*4*4 - - 

100 

spheres 
100 - 10*10 5*5*4 - - 

 

In this paper, only well ordered aggregates (linear, planar, cube) will be studied. We also 

present a sphere (rounded cube) consisting of primary spherical particles. The last column 

contains random aggregates in order to show possible differences from well ordered 

aggregates. 
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3.2. Exact aggregate chord length distribution 

 

The figures (5, 6, 7) represent the chord length distribution of aggregates: 

- linear and compact configurations (with 2, 4, 8 and 16 primary particles)  

Figure 5a through g,  

- cubic configuration (with 64 and 100 primary particles)  Figure 6 a & b, 

- spherical configuration (with 33 primary particles)  Figure 7 . 

These CLDs were executed on a set of 30 000 chords with the algorithm (Annex B).  

 

 

 
a) 

  
b) c) 
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d) e) 

  
f) g) 

Figure 5: Chord length distribution for aggregates with 2, 4, 8, 16 primary particles in linear (a,b,d,f) and 

compact (c,e,g)configuration. 

 

  
a) b) 

Figure 6: Chord length distribution for aggregates with 64 (a) and 100 (b) primary particles in cubic 

configuration. 
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Figure 7: Chord length distribution for aggregates with 33 primary particles in spherical configuration. 

 

It is noticeable that the chord length distribution takes into account the elementary 

structure of the aggregate. Indeed, whatever the aggregate configuration (cubic, planar, linear 

...etc.), there appears in the first part of the chord length range a (sub) distribution similar to 

that of a single sphere (Figure 3 a), which constitutes the elementary structure of the 

considered aggregates. The second element of the distribution is a function of the general 

morphology of the aggregate. This second part of the distribution does not have a maximum 

value higher than the first. Note: the probability to obtain a chord length equal to the greatest 

dimension of the aggregate is almost zero percent. 

 

3.3. Approximated chord length distribution for aggregate 

 

The aggregate chord length distribution was divided into three sub-distributions. The first, 

which corresponds to the elementary structure (a sphere), has range of chord lengths from 

zero to two. The second sub-distribution, with a chord length range between 2 and 4, mainly 

corresponds to the structure of a doublet. The last sub-distribution lies between 4 and the 

maximum chord length which is specific to each aggregate. Each one of these sub-

distributions represents a part of the total chord length distribution; their mutual contributions 

are peculiar to each aggregate.  

Table 2 contains the values (x1, x2, x3) of the normalized integral ( 1 2 3 1x x x   ) of each 

sub-distribution for the different aggregates.  
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Table 2 : x1, x2 and x3 for different aggregates. 

Configuration 
Number of 

primary 
particles 

x1 x2 x3 

Linear 

2 0,959 0,0579 0 

4 0,915 0,0758 0,0092 

8 0,894 0,0897 0,0163 

16 0,891 0,102 0,007 

Compact 

4 0,769 0,231 0 

8 0,672 0,327 0,001 

16 0,443 0,47 0,087 

32 0,373 0,428 0,199 

Plan 

4 0,846 0,154 0 

16 0,786 0,182 0,032 

25 0,811 0,146 0,043 

64 0,739 0,202 0,059 

Cube 
64 0,337 0,329 0,334 

100 0,293 0,297 0,41 

Sphere 33 0,378 0,45 0,172 

Random 

4 0,87 0,125 0,005 

8 0,833 0,144 0,023 

16 0,725 0,24 0,035 

40 0,6 0,306 0,094 

 

 

3.3.1. Decomposition into sub distributions 
 

The first two sub-distributions are clearly identified. However, the last sub-distribution 

corresponds to the global morphology of the aggregate and is more difficult to model.  

 

One modelling approach would be to identify this sub-distribution as being that of an 

equivalent sphere (in quantity of matter) to the aggregate. However, the sphere chord length 

distribution is an increasing function of chord length (Figure 3 a) whereas the third sub-

distribution decreases with the chord length. Considering this sub-distribution as a sphere 

leads to an erroneous distribution, especially when x3 is not negligible (eg: Figure 5 g). 

Another technique would be to assimilate the third sub-distribution, with a form that has 

an equivalent geometrical shape. Such approach implies finding, for each aggregate, an 

equivalent object fitting its general shape, and, to know its chord length distribution. This idea 

is thus exceedingly difficult to put into practice. 

 

The simplest method would be to consider the third sub-distribution as a chord length 

distribution obeying: 

3 max2

max

2
( ) ( )D l l l

l
    .                (10) 

This corresponds to the reversed chord length distribution of the equivalent sphere in volume. 

This straightforward way of expressing the third sub-distribution does not have any physical 

basis as far as we can tell. Nevertheless, this approach makes possible to obtain the best visual 

fit empirically. Moreover, it possible to construct this aggregates chord length distribution 

simply and automatically. 
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Thus the aggregate chord length distribution will be written as follows:  

( ) ( ) ( ) ( )Dg l Da l Db l Dc l            (11) 

with: 

- Da(l) the sub-distribution attached to that of a primary sphere D1(l):  

 

1 1( ) ( )Da l x D l .                                                                                           (12)                                                                                               

with: 1( ) 2D l l                                                                                            (13)                      

 

- Db(l) is the sub-distribution corresponding to the doublet (two-particles set) 

D2(l), l in the range[2,4] :  

2
2 4

2

2

( [2,4])
( )

( )

D l
Db l x

D l dl






.                                                                                   (14)                         

The chord length distribution for a doublet is analytically available: 

2

1 2 1 2
2 2 2 2

2

1
( [2,4])

8
16 1

3

16 3 16
arcsin 1 arcsin 1

16 8 16 4 16

D l

l l l l l
l

l



 

 
 
 

 

         
                        

                                                                                                                                

(15) 

 

- Dc(l) is the contribution of the chord length distribution of the equivalent object 

for aggregate (10). This method limits the maximum chord length to 
1/ 3

max 2l N  

with N the number of primary particles within the considered aggregate. This 

leads thus to:  

max

3 max
3

3

4

( [4, ])
( )

( )

l

D l l
Dc l x

D l dl






                                                                                 (16)                                                                          

 

 

3.3.2. Relations for x1, x2, x3 and <Sp> 

 

In order to complete the aggregates CLD description, we need to express x1, x2, x3 and 

<Sp> according to parameters which consider the aggregate morphology. For that, we suggest 

expressing them according to both the number N of primary particles and the morphological 

parameter d1 which is defined as the average distance between primary particles in the 

aggregate: 

 

1 ,

,

1

( 1)
i j

i j

d d
N N



          (17) 



 14 

,i jd is the centre-centre distance between i and j particles. This parameter ,i jd is 

dimensionless. 

 

- x1, x2, x3  

 

Figure 8 represents the change of x3, according to N and d1, for 19 aggregates (Table 2). 

 
Figure 8: x3 according to the number of primary particles N and the average inter particle distance d1. 

 

Following this representation, x3 is defined as follows: 

 

2

3 0.0031 0.0182x     with 
 

1.2

1

3

1

1
2 2

d N

d


  
      

                                         (18) 

The term 
3

1( / 2)N d characterizes the compactness of the aggregate. The term 1 1
2

d 
 

 
shows 

that only large aggregates have high x3 values. 

  

We express the ratio x2/x1 instead of x2 or x1, because x2/x1 is easier to link to N and d1. 

Thus the Figure 9 represents the change of x2/x1 according to N and d1. 
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Figure 9 : Evaluation of x2/x1 according to the number of primary particles N and the average inter particle 

distance d1. 

 

The relevant morphological parameter is  
1( )(1 )Ed CI N                                                                                                         (19) 

- CI is a compactness index defined by  
3

13 log(( 1) / 5 )CI N d                                                                           (20) 

- dE  is the aggregate space dimension (linear: dE =1, plan: dE =2, compact: dE 

=3) 

 

The higher CI is, the higher the compactness is. 

Thus, with an average error of 26%:  

 1

2 1

1
/ 0.96 exp ( )(1 ) 0.05

320
Ex x d CI N  

    
 

                                                   (21) 

 

 

Knowing x3 and x2/x1 we deduce x2 with an average error of 19% and 1 2 31x x x    with 

an average error of 6.6%. 

 

 

- Average projected area <Sp> 

 

We also calculated the average projected area for different configurations and expressed it 

by the following function:  
1.25

1 3

1/311.25
2

p

d
S N

  
       

                                                                                 (22) 

The average error relative to this expression is around 5%.  

 

The use of expressions for <Sp>, x1, x2 and x3 leads to having an analytical equation for 

the CLD of aggregates. 

 



 16 

3.3.3. Approximated CLD 

 

Figure 10 and Figure 11 compare the CLD resulting from numerical simulations for the 

chosen aggregates to those obtained using our predefined sub-distributions (the x1, x2, x3 

values are exactly those of Table 2). The following Figure 10 corresponds to the well ordered 

aggregates. 

 

. 

 

 
 

a) 

  
b) c) 

  
d) e) 
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f) g) 

Figure 10 : Comparison between CLD resulting from numerical simulations and those rebuilt with the sub-

distributions (analytical)), for aggregates with  2, 4, 8 and 16 primary particles in linear (a,b,d,f) and compact 

(c,e,g) configurations. 

 

The following Figure 11a,b,c,d correspond to the random aggregates. 

  
a) b) 

  
c) d) 
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Figure 11 : Comparison between the CLD resulting from numerical simulations and those rebuilt with the sub-

distributions (analytical), for aggregates with 4, 8, 16 and 40 primary particles in random configuration. 

 

We conclude that the way to analytically represent the chord length distribution for an 

aggregate is not perfect but is a satisfactory approximation. So, in the next section we will 

compare the scattering cross section values obtained with the exact method (GMM), 

anomalous diffraction AD approximation (5) and anomalous diffraction which uses the chord 

length distribution in its formulation ADr ((7) and (11)). 

 

4. Aggregate scattering cross section with the AD method 

 

We studied aggregates with N primary particles in the range [2,100]. The size parameter 

of primary particles is in the range [2, 9.25]. For each N-aggregate, several morphologies or 

compactness: linear, plan, compact, random configuration were considered. Each material is 

considered non-absorbent i.e. the imaginary part of the relative refractive index is equal to 

zero (Im(m)=0), with low (SiO2, m=1.08) and intermediate (Al2O3, m=1.32) optical contrast 

in water.  

 

 

In order to compare the approximated methods (AD and ADr), the ratio R which is 

defined as the ratio of the aggregate scattering cross section obtained with the ADr method, 

and AD method was evaluated. 

,

,

ADr N

AD N

C
R

C
                                                                                                                  (23) 

 

The table 3 contains the comparison of ADr to AD, with the mean value of R (over 100 x-

values) and the relative standard deviation (σ) between ADr and AD . 

Two extreme configurations (linear and compact) and the random configuration for SiO2 

material are presented below.  

 

Table 3: Comparison between AD & ADr for SiO2 with the primary particle size range [2,10]x   and 

different cluster type. 

   linear configuration  compact configuration  random configuration 

R 
mean 0,97 0,97 0,95 

σ 0,05 0,04 0,08 

 

The mean value of R is close to 1  no matter what the configuration. The deviation 

between AD and ADr seems to be smaller than 5%. 

 

The scattering cross section computation times are a function of: the primary particle size 

parameter, number of primary particle in the aggregate and shape of the aggregate. Table 4 

gives an example of this. Since scattering cross section computation times entail many 

parameters their times can be excessive. However, ADr computation times are always the 

same. Given that the ADr computation times are less than those of AD a least a factor 100, 

our method proves to be extremely advantageous.  

 

 

 



 19 

Table 4: CPU time for  AD  and ADr methods obtained with AMD Athlon 64 processor 3500, 2.23Ghz, 1G.  

 

 x=3.96 x=9.91 

 AD ADr AD ADr 

16 spheres in compact configuration 47.3s 0.05s 49.2s 0.05s 

64 spheres in cubic configuration 259.5s 0.05s 280.4s 0.05s 

 

 

Now the scattering cross section will be evaluated by comparing the values obtained with 

AD and ADr with those resulting from the exact method. 

The term, exact method, indicates that the results are obtained with the GMM computer code 

developed by Y-L. Xu. We compare the scattering cross section obtained with the 

approximated method to that of the exact method by means of the ratio Rm defined by:  

 

,

,

method N

m

Xu N

C
R

C
                                                                                                              (24) 

An illustration of the effect of the change of size parameters for ratio Rm can be found in 

the following figure 12. 

 

As expected, the AD method is unsuited to the small size parameters but proves to be 

adequate approximation for a size parameter higher than 2. The deviation between ADr and 

the exact method is smaller than 15% for primary particle size parameters larger than 2.  It is 

important to recall that the AD method is strongly related to the configuration (morphology) 

since it includes in its formulation the chord length distribution of the aggregate. 

The approximated methods AD and ADr (Figure 12) lead to qualitatively and quasi 

quantitatively identical curves whatever the configuration. But the results obtained with ADr 

are not as close to the exact method as AD is. According to the analysis of the curves, this 

weakness in ADr method is observed for configurations where the approximated third chord 

length sub-distribution is imperfect. 

The same study was performed for Al2O3 material. The results are presented in Annex D. 

The optical refractive index is far from the validity range within which the AD method can be 

applied. However this study shows that ADr results are similar to AD. 
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AD ADr 

Linear configuration 

  
a) b) 

Compact configuration 

  
c) d) 

Random configuration 

  
e) f) 

Figure 12: AD (1st column) and ADr (2nd column) methods with [0.7,1.2]mR   as a function of the primary 

particle size parameter, for SiO2  and 3 configurations: linear (1st row), compact (2nd row) and random (3rd row). 
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The ADr method was also evaluated when x1, x2, x3 and <Sp> are defined as presented in 

the paragraph 3.3.2. 

 

Linear configuration Compact configuration 

  
a) b) 

Figure 13: ADr method with analytical x1, x2, x3, <Sp> as a function of the size parameter, for SiO2 material and 

2 configurations : linear (1st column) and compact (2nd column) . 

 

When we use x1, x2, x3 and <Sp>, such as they are defined in the previous section, there is 

a loss of accuracy which is a function of the aggregate configuration and the number of 

primary particles in it. In order to improve the analytical method, it will be necessary to re-

examine the empirical expressions for these four parameters. 

 

5. Conclusion 

 

Although the Anomalous Diffraction method is valid only for soft material, this approach 

was tested not only for SiO2 in water, but also for Al2O3 as well. 

  

Since chord length is the relevant variable, the AD method was reformulated according to 

the chord length distribution: ADr 

 

On the basis of the assessment that the aggregate chord length distribution is not 

analytically accessible this was studied. In conclusion: 

 

- chord length distribution clearly shows the fine structure of the aggregate, 

- aggregate chord length distribution may be broken up into three sub-distributions. 

Each one of these sub-distributions represents a part of the whole distribution, with 

their contribution  peculiar to each aggregate,  

- proportions of these sub-distributions were expressed according to parameters 

connected to the aggregate morphology (number of primary particles N within the 

aggregate and the average inter-particle distance d1), 
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The comparison of the AD and ADr methods shows that: the introduction of the chord 

length distribution is fertile ground for study. The developed ADr method gives the same 

results as AD with an error rate of around plus or minus 5%. The use of empirical equations 

for x1, x2, x3, <Sp> offers the possiblility to formulate analytically the Anomalous Diffraction 

method. This decreases the computing times by at least a factor of 100. Unfortunately,  ADr 

does diverge slightly from the exact method than AD. 

In order to diminish this small discrepancy between AD and ADr, future work must be 

done on the manner of expressing both: the third sub-distribution representation and x1, x2, x3, 

<Sp> functions analytically. Work is already in planning, in part, to resolve this problem by 

increasing the studied number of aggregates in order to develop more precise laws for x1, x2, 

x3. 
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6. Appendix: 

A. Expression for the chord length distribution of a spheroid 

 

In this appendix,  different lengths are kept with their dimensions. 

 

A prolate or an oblate spheroid is considered: 2 2 2 2 2 2/ / / 1x a y b z b    

The spheroid projection on an unspecified plan was examined. This is equivalent to 

examining the projection of a tilted spheroid on the plan (x,z). The angle between the semi-

axis a and the plan (x,z) is denoted by . 

cS  is the area of the ellipse, which is the locus of constant chord length l. 

The ratio between cS  and the projected area pS represents the chord fraction of which the 

length is greater than l. 

 2/ 1 / 4c pS S Cl   with 2 2 2 2sin / cos /C a b    

Thus, chord length density is:  

 , / / / 2c pD l dS S dl Cl                                             (25) 

with  
2/

0

1

C

D l dl   

 

 if a<b; C is an increasing function of  

The probability P that the chord length (noted h) is greater than a given value (noted l) is 

equal to:  

 
 

 

 

0

/ 2

0

, cos

cos

N l

c

p

S h l d
P h l

S d





  

  


 




                    (26) 

N  is such as:  , 0c NS l   , i.e.   24/NC l   

 

We deduce from P, D(l) , which is the derivative of P(h> l) compared to l: 

 
 

 

 

0

/ 2

0

cos

2 cos

N l

p

p

S C dl
D l

S d





  

  




                               (27) 

 if a>b,  
 

 

 

2

/ 2

0

cos

2 cos

N
p

l

p

S C d
l

D l
S d







  

  




 

The average projected area obeys:  
/ 2

0

cosp pS S d



      

by denoting sinN Nh  ,   
1/ 2

2 2/ 1U b a  ,   
1/ 2

2 21 /V b a  ,  

one obtains : 

 If a<b      
3/ 2

2 2

0

( ) / 2 1
Nh

pD l a b S l U h dh    
    ,     1/ 2 / ln /pS ab b a U b a U      
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then : 

- if al 2  

     
    

     

1/ 2
2 2 2

1/ 2 1/ 2
2 2

2 / 1 2 / 3 8 /

/ 16

4ln 2 / 2 / 1 ln 2 / 2 / 1
p

b l b l b l

D l a b S U l

b l b l b l b l



 
 

 
                   

     

(28) 

- if 2l a  

   2 1/ 2 2 2 1/ 2 2 1/ 2( ) ( ) /(16 ) ( 1) (5 2 ) 4ln ( 1) ln ( 1)pD l a b S U l U U U U U U U                
 (29) 

 If a>b      
1

3/ 2
2 2( ) / 2 1

N

p

h

D l a b S l V h dh    
     , 

    1/ 2 / arcsinpS ab b a V V     then : 

-if bl 2  

     
       

    

1/ 2 1/ 2
2 22 2

1/ 2 1/ 2
2 2 2 2 2 2

1 2 / 2 / 3 8 / 3arcsin 1 2 /
/ 16

3 2 / 1 / / 3arcsin 1 /
p

b l b l b l b l
D l a b S V l

b a b a b a b a



 
   

    
   

      

         (30) 

- if 2l b  

2 2 2 2 1/ 2 2 2 1/ 2( ) ( ) /(16 ) (3 2 / )(1 / ) / 3arcsin(1 / )pD l a b S V l b a b a b a b a                                 (31) 
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B. Algorithm for chord length distribution: 

Enter the number of spheres, their coordinates and radius, the number of projection events: 

N, xp1, R, Pl 

step=min(R)/100 

For Np=1,2,…, Pl 

Calculate the coordinates of each sphere in Nth projected plan: xp2  

Determine the coordinates of the 2 apexes belonging to the 2nd diagonal of a rectangle 

containing the aggregate projection: xmax, xmin 

 

For l=1,2  n(l)=integer((xmax(l)-xmin(l))/step) ; 

 

For g1= 1,…,n(1) 

 For g2=1,..,n(2) 

chord=0 

For k=1,…, N 

       
2 2

2

1 2 2 2( ) ( ,1) ( ,2)p pdist R k g step x k g step x k      

    If dist>0  2chord chord dist    

End 

  End 

 End 

End 
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C. Calculation of the average scattering cross section for a spheroid particle: 

 

In this appendix, the different lengths are kept with their dimensions. 

 

The equation was used (5) 
[ ]

2 (1 cos ( 1)) p

Sp

C kl m dS



    and insert the chord length 

distribution ( , )D l  :  

[ ]

2 (1 cos ( 1)) ( ) ( , )p

Sp

C kl m S D l dl



                                                           (32) 

However, the chord length density (25)  can be used and integrated over a solid angle: 

   
 max/ 2

0 0

(1 cos ( 1)) cos

l

pC kl m S C ldl d



                                                 (33) 

 

Nevertheless, a chord length distribution was calculated averaged on all the orientations in 

the simulations as expressed by the equation (27) in Annex A , so one may write: 

       
 max max

0 0 0

2 1 cos ( 1) ( ) 1 cos ( 1) cos
N ll l

r

p pC S kl m D l dl kl m S C l d dl



             

 

We conclude that 
rC C   and calculate that: 

 

If  a<b : 

     
1

1/ 2 1/ 2
2 2 5 2 2 2

/

4 1 / 2 sin cos 1 /

r

a b

C C

a a b y y y qy qy qy q dy
 

  

  

       
 

                                                                                                                                    (34) 

with  
2

2 1rq m b



   

 

If a>b: 

     
/

1/ 2 1/ 2
2 2 5 2 2 2

1

4 1 / 2 sin cos 1 /

r

a b

C C

a a b y y y qy qy qy q dy
 

  

  

        
 

                                                                                                                                                (35) 
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D.  Comparison of AD and ADr for Al2O3 

AD ADr 

Linear configuration 

  
a) b) 

Compact configuration 

  
c) d) 

Random configuration 

  
e) f) 

Figure 14: AD (1st column) and ADr (2nd column) method as a function of the primary particle size parameter, 

for Al2O3 and 3 configurations: linear (1st row), compact (2nd row) and random (3rd row). 
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Table 5: Comparison between AD  and ADr  for Al2O3, with the primary particle size range [2,10]x   and 

different cluster type. 

 

 

   linear configuration  compact configuration  random configuration 

R 
mean 0,98 0,97 0,96 

σ 0,04 0,04 0,07 
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