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Introduction

Synthesis of inorganic material often leads to clusters of small particles. The successive steps of a precipitation are nucleation and growth of particles. When the particles reach a micronic size, growth stops and particles collide and aggregate. However, the particles are under the shear stress of the suspending medium. As a consequence, there is a competition between aggregation and break-up leading to aggregates with a little number of primary particles. The techniques planned to obtain information in real time on aggregates formation are the ones that use light-matter interaction. Turbidimetry is one of them. It is based on the measurement of the light intensity attenuation due to light scattering. Nevertheless, this kind of sensor does not allow, for the moment, to characterize aggregates by their shape, the number of primary particles that they contain their chemical nature. In fact, the analysis of the turbidity uses the Mie theory that is only suitable for spherical particle. However, there is an extension of the Mie theory to the case of aggregate: Kahnert [START_REF] Kahnert | Numerical methods in electromagnetic scattering theory[END_REF] sums up some of them, one is entitled GMM (Generalized Multi-particle Mie solution) developed by Xu in 1995 ( [START_REF] Xu | Orientation-averaging radiative properties of an arbitrary configuration of scatterers[END_REF] for more information see the references therein). However, Xu's computer codes, making possible the calculation of the optical characteristics of aggregates, need consequent computing times. This limits the use of GMM theory because spectral turbidity analysis needs the knowledge of the scattering cross section of numerous different aggregates. Thus, in [START_REF] Jacquier | Approximation of the light scattering cross-section for aggregated spherical non-absorbent particles[END_REF], we compared the exact method (GMM) against several approximated methods allowing the fast computation of the scattering cross section. Thereafter we [START_REF] Jacquier | Anomalous diffraction approximation for light scattering cross section: Case of ordered clusters of non-absorbent spheres[END_REF] presented the improvement of one of these approximated method named rapid Anomalous Diffraction (ADr). This approximation makes easier the calculation of the scattering cross section for an aggregate consisting in optically soft primary particle whose size parameter is higher than 2. ADr was established for ordered aggregates but the ordered structure can support constructive or destructive interferences like a grating do. The topic of this paper is to extend the ADr approximation to the case of the random aggregates. The background on AD and ADr approximations will be reminded in the section 2. Then, ADr approximation will be tested for random aggregates and an improved version will be proposed in the section 3. This section will be followed by conclusions.

Background on Anomalous Diffraction

The Anomalous Diffraction approximation is used to calculate the scattering cross section of large particles consisting in soft material. We consider an aggregate composed of N identical primary spherical particles. The radius and the dimensionless size parameter of the primary particles are respectively denoted r and x= 2 r  ( is the wavelength of the incident light in the medium). Then, scattering cross sections depend on: the size of the primary particles, morphology of the aggregates, and relative refractive index. The relative refractive index (m) is the ratio between the material refractive index (np) and the refractive index of the medium (nm).

ADr Formulation

Calculations based on anomalous diffraction approximation are time-consuming. Attempts were made to reduce the computation time [START_REF] Yang | A new look at anomalous diffraction theory (ADT): Algorithm in cumulative projected area distribution domain and modified[END_REF]. As the chord length l appears in AD approximation, it is obvious that the scattering cross section contains morphological parameters such as the Chord Length Distribution (CLD) and the projected area. Then, one can show that the scattering cross sections averaged over all orientations can be written as:
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The projected area and the chord length are made dimensionless in Eq.1 by dividing the dimensional area and length by, respectively r 2 and r. The benefit of this equation lies in the two quantities : the projected area <Sp> averaged over all orientations and the chord length distribution D(l). The two quantities are only depending on the morphology of the aggregate and not on the orientation. This modification is called ADr, because the computational time is much shorter than the one of standard AD method. CLD is presented as follows: () D l dl represents the number fraction of the chord length in the range[ , ] l l dl  . Thus, D(l) obeys the normalization equation: max 0 ( )
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lmax is the maximum chord length of an aggregate.

Analytical evaluation of CLD

With the aim of obtaining an analytical CLD, it is necessary to study the CLD got by a simulation using the algorithm presented in [START_REF] Jacquier | Anomalous diffraction approximation for light scattering cross section: Case of ordered clusters of non-absorbent spheres[END_REF]. Figure 1 presents the CLD for a compact aggregate formed by 16 primary particles. The simulated CLD, as shown in [START_REF] Jacquier | Anomalous diffraction approximation for light scattering cross section: Case of ordered clusters of non-absorbent spheres[END_REF], contains three contributions. The corresponding decomposition can be generalized to other aggregates.

Fig. 1: The three sub-distributions represent a part of the total chord length distribution for aggregates. Case of an aggregate with 16 primary particles in compact configuration

CLD formulation

The aggregate chord length distribution will be written as follows :

( ) ( ) ( ) ( ) D l Da l Db l Dc l    (3) 
The aggregate chord length distribution was divided into three sub-distributions corresponding to:

-the elementary structure (a sphere), for the chord lengths in the l-range from [0;2]:
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-the two-sphere aggregate characterized by D2(l), with a chord length range [2;4]:
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)
Note that the chord length distribution for a two-sphere aggregate is analytically available [START_REF] Jacquier | Anomalous diffraction approximation for light scattering cross section: Case of ordered clusters of non-absorbent spheres[END_REF][START_REF] Gruy | The chord length distribution of a two-sphere aggregate[END_REF]: 
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-the equivalent object for aggregate, characterized by the last sub-distribution lying in the l-range [4;lmax] where lmax is the diameter of the volume equivalent sphere (
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3 () Dl corresponds to the reversed chord length distribution of the equivalent sphere in volume:
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Each one of these sub-distributions represents a part of the total chord length distribution (e.g. Figure 1); their mutual contributions are peculiar to each aggregate. The values (x1, x2, x3) of the normalized integral ( 1 2 3 1

x x x    ) are the weighted values of each sub-distribution for an aggregate.

Then, ADr method can be analytically performed if x1, x2, x3 and <Sp> are expressed.

Previous relations for x1, x2, x3 and <Sp>

We previously were interested by a set of ordered aggregates and we expressed x1, x2, x3 and <Sp> according to parameters that characterize the aggregate morphology: the number N of primary particles and the morphological parameter d1 that is defined (Eq. 10) as the average distance between primary particle centres in the aggregate. 

ij ij dd NN    1 ( 1) 
, ij d is the centre-centre distance between i and j particles. , ij d is dimensionless. The expressions for x1, x2, x3 and <Sp> lead to a scattering cross section value in agreement with the one coming from the exact method. In fact, for ordered aggregate the error is smaller than 15%.

Morphological Parameters for disordered aggregates

Introduction

New routes of particle synthesis lead to monodisperse suspensions consisting in monosized spherical particles. The possible aggregates are composed of a few monosized primary particles. Depending on the locus of the aggregation process, aggregates with different spatial extent are observed. For instance, 1D, 2D and 3D aggregates are, respectively produced:

-in a channel into a microfluidics device or along the streamline in a laminar flow -on a surface or an interface -in a stirred chemical reactor. The space dimension dE of the aggregation locus is an important parameter. Aggregation mainly leads to random aggregates. There is an extensive literature dedicated to random aggregation. Most of investigators consider computer simulations for building random aggregates from simple collision mechanisms. Among these models let us quote [START_REF] Jullien | Aggregation and fractal aggregates World Scientific[END_REF]: the Ballistic Particle-Cluster Aggregate model (BPCA), the Ballistic Cluster-Cluster Aggregate model (BCCA), the Diffusion Limited Aggregation model (DLA), the Reaction Limited Aggregation (RLA). At each mechanism and space dimension corresponds a fractal dimension of the so-built aggregates. Later on, more sophisticated models were developed (see, for instance, [START_REF] Brasil | Numerical characterization of the morphology of aggregated particles[END_REF]). These models may represent some experimental observations as soot agglomerates formation in combustion processes [START_REF] Lapuerta | A method to determine the fractal dimension of diesel soot agglomerate[END_REF][START_REF] Mackowski | A simplified model to predict the effects of aggregation on the absorption properties of soot particles[END_REF] or silica and titania agglomerate formation by flame aerosol processes [START_REF] Pratsinis | Flame aerosol synthesis of ceramic powders[END_REF]. However, it is not always the case. For instance, in industrial chemical reactors the produced aggregates contain a few primary particles (less than one hundred) and their morphology cannot be characterized by a fractal dimension. This results from a more complex formation mechanism (see, for instance [START_REF] Boer | Coagulation in turbulent flow.Part I,II[END_REF]) than the abovementioned ones. As the aim of this work is the search of expressions for scattering cross section of any aggregate without reference to their formation mechanism, fractal-like aggregates will not be particularly considered.

Description

In this article, an aggregate is constituted by identical spherical primary particles. The disordered (random) aggregates are constructed according to the process of particle-cluster aggregation but with no condition on fractal dimension. Each new particle is added to one particle belonging to the aggregate either by a completely randomly way (procedure P') or randomly by checking the angle between triplets equal to 90° or 180° (procedure P). The added particle will be in touch with other ones in aggregate. The two procedures are as follows: -step 0: The space dimension dE of the aggregate is fixed among the values (linear: dE =1, plane: dE =2, compact: dE =3). The number N of primary particles in aggregate is chosen (N>2). An integer n (which will be the maximum co-ordination number for a primary particle in the built aggregate) is chosen. -step 1 : a primary particle denoted A in aggregate is selected at random ; the number nA of its linked neighbours (co-ordination number) is determined -step 2 (procedure P) : if nA is smaller than n, then a new primary particle B will be in touch with the previous primary particle A. if not, return to step 1. With procedure P, n is strictly smaller than 7. -step 2' (procedure P') : if nA is smaller than n, then a new primary particle B will be in touch with the previous primary particle A. if nA is equal to n or greater than n or if the particle B overlaps another primary particle in aggregate, do not link the particle B and go to step 1. 1). For getting a loose aggregate, it is necessary to limit the number of nearest neighbours of a given particle into the aggregate (see figures f,g,i,j in Table 1). 

Results

In this section, the new disordered aggregates depicted above are used to evaluate the accuracy of the ADr method. Firstly the relations previously proposed for ordered aggregates will be tested, then the scattering cross section obtained with ADr method will be compared to the one calculated with AD.

Expressions for x1, x2, x3 and <Sp>

The chord length distribution of an aggregate is obtained by the use of an algorithm introduced in [4] from a 10 6 chords set for a given orientation. 300 arbitrary aggregate orientations of a given aggregate were performed. Then, x1, x2, x3 are deduced from the averaged CLD. At the same time, <Sp> was obtained as the averaged projected area over 300 aggregate orientations. These x1, x2, x3 and <Sp> values will be called in the continuation of the text as simulated values. Table 1 collects these values for several disordered aggregates. Given the number N of primary particles, the space dimension dE and the maximum coordination number n of a primary particle in the aggregate, a set of aggregates are built. Then, x1, x2, x3 and <Sp> are calculated for each aggregate. The mean value xp and the standard deviation p of x1, x2, x3 and <Sp> were estimated for this set of aggregates. This represents the fluctuation amplitude Af due to the weak description of aggregates (N, dE and n). The procedure is performed for different number [4;100] of primary particles, space dimension [1;3] and co-ordination number [2;6]. Table 2 contains the maximum value of the standard deviation p (for x1, x2 and x3) and of the standard deviation p over the mean value xp (for <Sp>). This two statistical parameters represent Af. [START_REF] Jacquier | Anomalous diffraction approximation for light scattering cross section: Case of ordered clusters of non-absorbent spheres[END_REF], ε1 and ε2 are the mean standard deviation between the analytical values and respectively the ones obtained by simulation for the 17 aggregates chosen in [START_REF] Jacquier | Anomalous diffraction approximation for light scattering cross section: Case of ordered clusters of non-absorbent spheres[END_REF] and the aggregates used in this article ( § 3.2). Asterisk is the mean absolute difference.

Analytical expressions [4]
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Then, the relations for x1, x2, x3 and <Sp> summarized in Table 3 were tested with all the new disordered aggregates. Table 3 contains ε1 and ε2 values. 1 and ε2 are the mean standard deviations between the analytical values and, respectively the simulated ones for the 17 ordered aggregates [START_REF] Jacquier | Anomalous diffraction approximation for light scattering cross section: Case of ordered clusters of non-absorbent spheres[END_REF] and for the disordered aggregates used in this article. The larger number of disordered aggregates should reduce the mean standard deviation. Figures 2,3 and 4 represent, respectively x3, x2/x1 and <Sp> values against morphological parameters. One observes that disordered aggregates basically behave as ordered aggregates. However, the representation of x1, x2, x3 and <Sp> can be improved.

Figure 2 shows a good agreement between x3 values and approximation (Eq. ( 11)) for ordered and disordered aggregates but the agreement is less good from Figures 3 and4 where there is some discrepancy. Figure 3 permits to compare x2/x1 and equations 12-14, while Figure 4 shows the difference between <Sp> value and equation 15. The sequence of x2/x1 values (Figure 3) shows that the equations 12-14 cannot be applied to disordered aggregates. The is not a so relevant single variable. We suggest a new expressions set to evaluate x1, x2, x3 and <Sp> (Table 4). These empirical expressions are simpler and more efficient. 3 is the mean standard deviation between the analytical values and the ones obtained by simulation. 

Concerning the standard deviation values, it is preferable to use equations 11, 14 and 16 in place of expressions included in Table 3. However, we still recommend the use of equations in table 3 for ordered aggregates because the corresponding standard deviations are reduced by one third compared to those coming from equations (11, 14, 16 and 18). Figure 5 represents the x2 values obtained by simulation and with equation (16); the points furthest away from the approximation correspond to high compactness aggregates with a symmetry centre. Figure 6 presents the <Sp> values obtained by simulation and with equation ( 18). The corresponding error on <Sp> is reduced to 9%. The points, which are the farthest from the curve describing the equation ( 18) correspond to the 1D non-continuous aggregates consisting in 4 or 8 primary spherical particles. The error on <Sp> is reduced to 7.2% if these aggregates are not considered. Thus, the expression (18) is satisfactory for physical aggregates. The use of expressions (18), ( 14), ( 16) and [START_REF] Pratsinis | Flame aerosol synthesis of ceramic powders[END_REF], respectively for <Sp>, x1, x2 and x3 leads to having an analytical equation for the aggregates CLD.

Aggregate scattering cross section with ADr method

We studied aggregates with N primary particles in the range [START_REF] Xu | Orientation-averaging radiative properties of an arbitrary configuration of scatterers[END_REF]100]. The size parameter x of primary particles is in the range [2; 9.25]. For each N-aggregate, several morphologies or compactness were considered. The chosen material is silica SiO2. It is considered nonabsorbent, i.e. the imaginary part of the relative refractive index m is equal to zero (Im(m)=0). The relative refractive index of silica in water is taken equal to 1.08.

In order to compare the approximated methods (AD and ADr), the R parameter, which is defined as the ratio of the aggregate scattering cross section obtained with the ADr method and AD method, was evaluated. , ,

ADr N AD N C R C  (19) 
The table 5 compares ADr to AD methods, by the mean value of R (over 500 x-values) and the relative standard deviation (σ) between ADr and AD . The results for three silica aggregate space dimensions dE, are presented below. The mean value of R is close to 1 no matter what the space dimension. In the case of 1D space dimension an error is introduced by the presence of not connected primary particles in certain aggregates (see Table 1, c) : however, such configuration has no physical meaning for aggregation. The deviation between AD and ADr methods seems to be smaller than 4 %.

Conclusion

ADr is an efficient method making it possible to quickly calculate the scattering cross section of aggregates consisting in optically soft spheres. This method needs the chord length distribution, which can be written as a linear combination of elementary functions. Use of ADr requires the knowledge of the mean projected area <Sp> and the weighing coefficients x1, x2 and x3. The expressions previously established for <Sp>, x1, x2 and x3 in the case of ordered aggregates were tested in the disordered aggregates case (90 tested aggregates). These expressions are suitable for disordered aggregates, but the agreement between exact and calculated values is not so good. This suggests new expressions (x2, <Sp>) and leads to an improved method by determining firstly x3, then x2 and finally x1.

In the future, the equations for <Sp>, x1, x2 and x3 will be tested for the case of fractal-like aggregates.

Table 1 :

 1 Examples of disordered aggregates with their geometrical characteristics (N, dE, d1/2, <Sp>, x1, x2, x3)

  x2/x1 values sequence presents a local maximum around 

Fig. 2 :Fig. 3 :Figure 4 :

 234 Fig. 2: Evaluation of x3 according to the equation (11) (square for all aggregate set, triangular for ordered aggregates)

Fig. 5 :

 5 Fig. 5: Evaluation of x2 according to the equation 16 (square for all aggregate set, triangular for ordered aggregates)

Fig. 6 :

 6 Fig. 6: Evaluation of <Sp> according to the equation 18 (square for all aggregate set, triangular for ordered aggregates)

Table 1

 1 

(first column) contains few examples among the 90 aggregates used in this study. The full random process (procedure P') may lead to "compact" aggregates (see figures e,h,k in Table

Table 2 :

 2 fluctuation amplitude Af for x1, x2, x3 and <Sp>

							x1	x2	x3	<Sp>
	Af					0,01	0,01	0,001	0,01
	The small observed amplitude allows us for asserting the existence of a relation between (x1,
	x2, x3 and <Sp>) and (N, dE and n). However, we prefer to link (x1, x2, x3 and <Sp>) to (N, dE
	and d1) as d1 may represent the aggregate size.
	Analytical expressions for x1, x2, x3, <Sp> in [4] were obtained from the study of 17 different
	ordered aggregates. The analytical expressions are summarized in Table 3. In these
	expressions, appear several morphological parameters depending on N and d1:
	-	1 ( / 2) Nd	3	characterizes the compactness of the aggregate; one also defines a compactness
	index	CI	3 log((  	N		3 1) / 5( / 2) ) 1 d
	-1 1 2 d    	shows that only large aggregates have high x3 values.

Table 3 :

 3 Analytical expressions obtained for x1, x2, x3 and <Sp> in

Table 4 :

 4 New analytical expressions obtained for x1, x2, x3 and <Sp>, ε3 are the mean standard deviation between the analytical values and the ones got by simulation.

					Analytical expressions	3
											(%)
	x3										(11) 1*
	x2	2 x	0.12 ln E d  	   	1/ 3   1 2 d    	1/ 4 1 N	   		0.08	(16) 12
	x1										(14) 3.7
	<Sp>	pp SR   	2	with	R	15 pE 1/ 3 1/8 1 2 d N d    	(18)

Table 5 :

 5 Comparison between AD and ADr methods for the primary particle size parameter range[START_REF] Xu | Orientation-averaging radiative properties of an arbitrary configuration of scatterers[END_REF][START_REF] Mackowski | A simplified model to predict the effects of aggregation on the absorption properties of soot particles[END_REF] x  and different space dimensions dE.

		dE	1	2	3
	R	mean σ	1.15 0.04	1.03 0.04	0.95 0.02

3,32 5,76 0,52 0,32 0,16
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