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Abstract  

   

We previously (Jacquier S. & Gruy F., Journal of Quantitative Spectroscopy & Radiative 

Transfer, 109(2008) 789-810) reformulated the anomalous diffraction (AD) approximation to 

calculate the light scattering cross section of aggregates by introducing their chord length 

distribution. It was applied to several ordered aggregates. This new method is entitled ADr 

with the r for rapid because this one is at least one hundred times faster than the standard AD 

method. In this article, we are searching for an approximated expression for chord length 

distribution suitable all at once for ordered and disordered aggregates. The corresponding 

scattering cross section values are compared to the ones coming from the standard AD 

approximation.  

      
Keywords: Aggregate, Light Scattering, Anomalous Diffraction, Scattering Cross Section, Chord 

Length Distribution 

 

 

1. Introduction 

 

Synthesis of inorganic material often leads to clusters of small particles. The successive steps 

of a precipitation are nucleation and growth of particles. When the particles reach a micronic 

size, growth stops and particles collide and aggregate. However, the particles are under the 

shear stress of the suspending medium. As a consequence, there is a competition between 

aggregation and break-up leading to aggregates with a little number of primary particles.  The 

techniques planned to obtain information in real time on aggregates formation are the ones 

that use light-matter interaction. Turbidimetry is one of them. It is based on the measurement 

of the light intensity attenuation due to light scattering. Nevertheless, this kind of sensor does 

not allow, for the moment, to characterize aggregates by their shape, the number of primary 

particles that they contain their chemical nature. In fact, the analysis of the turbidity uses the 

Mie theory that is only suitable for spherical particle. However, there is an extension of the 

Mie theory to the case of aggregate: Kahnert [1] sums up some of them, one is entitled GMM 

(Generalized Multi-particle Mie solution) developed by Xu in 1995 ([2] for more information 

see the references therein). However, Xu’s computer codes, making possible the calculation 

of the optical characteristics of aggregates, need consequent computing times. This limits the 

use of GMM theory because spectral turbidity analysis needs the knowledge of the scattering 

cross section of numerous different aggregates. Thus, in [3], we compared the exact method 

(GMM) against several approximated methods allowing the fast computation of the scattering 

cross section. Thereafter we [4] presented the improvement of one of these approximated 
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method named rapid Anomalous Diffraction (ADr). This approximation makes easier the 

calculation of the scattering cross section for an aggregate consisting in optically soft primary 

particle whose size parameter is higher than 2. ADr was established for ordered aggregates 

but the ordered structure can support constructive or destructive interferences like a grating 

do. The topic of this paper is to extend the ADr approximation to the case of the random 

aggregates. 

The background on AD and ADr approximations will be reminded in the section 2. Then, 

ADr approximation will be tested for random aggregates and an improved version will be 

proposed in the section 3. This section will be followed by conclusions.  

 

2. Background on Anomalous Diffraction 

 

The Anomalous Diffraction approximation is used to calculate the scattering cross section 

of large particles consisting in soft material. We consider an aggregate composed of N 

identical primary spherical particles. The radius and the dimensionless size parameter of the 

primary particles are respectively denoted r and x=2 r   ( is the wavelength of the 

incident light in the medium). Then, scattering cross sections depend on: the size of the 

primary particles, morphology of the aggregates, and relative refractive index. The relative 

refractive index (m) is the ratio between the material refractive index (np) and the refractive 

index of the medium (nm).  

 

2.1. ADr Formulation 

Calculations based on anomalous diffraction approximation are time-consuming. Attempts 

were made to reduce the computation time [5]. As the chord length l appears in AD 

approximation, it is obvious that the scattering cross section contains morphological 

parameters such as the Chord Length Distribution (CLD) and the projected area.  Then, one 

can show that the scattering cross sections averaged over all orientations can be written as: 

   
max

2

0

2 1 cos ( 1) ( )

l

r

N pC r S xl m D l dl                          (1) 

The projected area and the chord length are made dimensionless in Eq.1 by dividing the 

dimensional area and length by, respectively r2 and r. 

The benefit of this equation lies in the two quantities : the projected area <Sp>  averaged over 

all orientations and the chord length distribution D(l). The two quantities are only depending 

on the morphology of the aggregate and not on the orientation. This modification is called 

ADr, because the computational time is much shorter than the one of standard AD method. 

CLD is presented as follows: ( )D l dl represents the number fraction of the chord length in 

the range[ , ]l l dl . Thus, D(l) obeys the normalization equation:  

max

0
( ) 1

l

D l dl                                                                                                                 (2) 

lmax is the maximum chord length of an aggregate.  

 

 



 3 

2.2. Analytical evaluation of CLD 

 

With the aim of obtaining an analytical CLD, it is necessary to study the CLD got by a 

simulation using the algorithm presented in [4]. Figure 1 presents the CLD for a compact 

aggregate formed by 16 primary particles. The simulated CLD, as shown in [4], contains three 

contributions. The corresponding decomposition can be generalized to other aggregates. 

 
Fig. 1: The three sub-distributions represent a part of the total chord length distribution for aggregates. Case of 

an aggregate with 16 primary particles in compact configuration 

 
 

2.2.1. CLD formulation 

 

The aggregate chord length distribution will be written as follows :  

( ) ( ) ( ) ( )D l Da l Db l Dc l                      (3) 

 

The aggregate chord length distribution was divided into three sub-distributions 

corresponding to:   

- the elementary structure (a sphere), for the chord lengths in the l-range from [0;2]: 

1 1( ) ( )Da l x D l                                                                                                (4) 

with 

1( ) 2D l l                                                                                                 (5) 

 

- the two-sphere aggregate characterized by D2(l), with a chord length range [2;4]: 

2
2 4

2

2

( [2,4])
( )

( )

D l
Db l x

D l dl






.                                                                                   (6) 

Note that the chord length distribution for a two-sphere aggregate is analytically 

available [4, 6]: 

2

1 2 1 2
2 2 2 2

2

1
( [2,4])

8
16 1

3

16 3 16
arcsin 1 arcsin 1

16 8 16 4 16

D l

l l l l l
l

l



 

 
 
 

 

         
                        
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                                                                                                                                 (7) 

 

- the equivalent object for aggregate, characterized by the last sub-distribution lying in 

the l-range [4;lmax] where lmax is the diameter of the volume equivalent sphere 

(
1/ 3

max 2l N ):  

 

max

3 max
3

3

4

( [4, ])
( )

( )

l

D l l
Dc l x

D l dl






                                                                                 (8) 

3( )D l  corresponds to the reversed chord length distribution of the equivalent sphere in 

volume: 

3 max2

max

2
( ) ( )D l l l

l
    .                  (9) 

 

 

Each one of these sub-distributions represents a part of the total chord length 

distribution (e.g. Figure 1); their mutual contributions are peculiar to each aggregate. The 

values (x1, x2, x3) of the normalized integral ( 1 2 3 1x x x   ) are the weighted values of each 

sub-distribution for an aggregate.  

 

Then, ADr method can be analytically performed if x1, x2, x3 and <Sp> are expressed. 
 

 

2.2.2. Previous relations for x1, x2, x3 and <Sp> 

 

We previously were interested by a set of ordered aggregates and we expressed x1, x2, x3 

and <Sp> according to parameters that characterize the aggregate morphology: the number N 

of primary particles and the morphological parameter d1 that is defined (Eq. 10) as the 

average distance between primary particle centres in the aggregate. 

 

1 ,

,

1

( 1)
i j

i j

d d
N N



          (10) 

,i jd is the centre-centre distance between i and j particles. ,i jd  is dimensionless. 

The expressions for x1, x2, x3 and <Sp> lead to a scattering cross section value in agreement 

with the one coming from the exact method. In fact, for ordered aggregate the error is smaller 

than 15%. 

 

 

3. Morphological Parameters for disordered aggregates 

3.1. Introduction  

New routes of particle synthesis lead to monodisperse suspensions consisting in monosized 

spherical particles. The possible aggregates are composed of a few monosized primary 



 5 

particles. Depending on the locus of the aggregation process, aggregates with different spatial 

extent are observed. For instance, 1D, 2D and 3D aggregates are, respectively produced: 

- in a channel into a microfluidics device or along the streamline in a laminar flow  

- on a surface or an interface 

- in a stirred chemical reactor. 

The space dimension dE of the aggregation locus is an important parameter.     

Aggregation mainly leads to random aggregates. There is an extensive literature dedicated to 

random aggregation. Most of investigators consider computer simulations for building 

random aggregates from simple collision mechanisms. Among these models let us quote [7]: 

the Ballistic Particle-Cluster Aggregate model (BPCA), the Ballistic Cluster-Cluster 

Aggregate model (BCCA), the Diffusion Limited Aggregation model (DLA), the Reaction 

Limited Aggregation (RLA). At each mechanism and space dimension corresponds a fractal 

dimension of the so-built aggregates. Later on, more sophisticated models were developed 

(see, for instance, [8]). These models may represent some experimental observations as soot 

agglomerates formation in combustion processes [9, 10] or silica and titania agglomerate 

formation by flame aerosol processes [11]. However, it is not always the case. For instance, in 

industrial chemical reactors the produced aggregates contain a few primary particles (less than 

one hundred) and their morphology cannot be characterized by a fractal dimension. This 

results from a more complex formation mechanism (see, for instance [12]) than the above-

mentioned ones. As the aim of this work is the search of expressions for scattering cross 

section of any aggregate without reference to their formation mechanism, fractal-like 

aggregates will not be particularly considered.  

 

3.2. Description  

In this article, an aggregate is constituted by identical spherical primary particles. The 

disordered (random) aggregates are constructed according to the process of particle-cluster 

aggregation but with no condition on fractal dimension. Each new particle is added to one 

particle belonging to the aggregate either by a completely randomly way (procedure P’) or 

randomly by checking the angle between triplets equal to 90° or 180° (procedure P). The 

added particle will be in touch with other ones in aggregate. 

The two procedures are as follows: 

- step 0: The space dimension dE of the aggregate is fixed among the values (linear: dE =1, 

plane: dE =2, compact: dE =3). The number N of primary particles in aggregate is chosen 

(N>2). An integer n (which will be the maximum co-ordination number for a primary 

particle in the built aggregate) is chosen. 

- step 1 : a primary particle denoted A in aggregate is selected at random ; the number nA of 

its linked neighbours (co-ordination number) is determined  

- step 2 (procedure P) : if nA is smaller than n, then a new primary particle B will be in 

touch with the previous primary particle A. if not, return to step 1. With procedure P, n is 

strictly smaller than 7. 

- step 2’ (procedure P’)  : if nA is smaller than n, then a new primary particle B will be in 

touch with the previous primary particle A. if nA is equal to n or greater than n or if the 

particle B overlaps another primary particle in aggregate, do not link the particle B and go 

to step 1. 

 

Table 1 (first column) contains few examples among the 90 aggregates used in this study. 

The full random process (procedure P’) may lead to “compact” aggregates (see figures e,h,k 

in Table 1). For getting a loose aggregate, it is necessary to limit the number of nearest 

neighbours of a given particle into the aggregate (see figures f,g,i,j in Table 1).  
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Table 1 :  Examples of disordered aggregates with their geometrical characteristics (N, dE, d1/2, <Sp>, x1, x2, x3) 

 

 Random aggregate  N dE d1/2 <Sp> x1 x2 x3 

a 

 

8 2 1,93 2,53 0,82 0,16 0,02 

b 

 

8 3 1,81 2,54 0,81 0,18 0,01 

c 

 

16 1 11,8 3,89 0,948 0,05 0,002 

d 

 

16 2 2,46 3,46 0,8 0,17 0,03 

e 

 

32 3 2,57 4,39 0,593 0,31 0,097 

f 

 

64 2 9,1 7,2 0,84 0,14 0,02 

g 

 

64 3 7,39 6,9 0,76 0,2 0,04 

h 

 

64 3 3,32 5,76 0,52 0,32 0,16 
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i 

 

100 2 23 9,03 0,84 0,14 0,02 

j 

 

100 3 11,6 8,65 0,77 0,195 0,035 

k 

 

100 
3 

 
3,7 6,8 0,45 0,3 0,25 

 

 

3.3. Results 

In this section, the new disordered aggregates depicted above are used to evaluate the 

accuracy of the ADr method. Firstly the relations previously proposed for ordered aggregates 

will be tested, then the scattering cross section obtained with ADr method will be compared to 

the one calculated with AD. 

 

3.3.1. Expressions for  x1, x2, x3  and <Sp> 

 

The chord length distribution of an aggregate is obtained by the use of an algorithm 

introduced in [4] from a 106 chords set for a given orientation. 300 arbitrary aggregate 

orientations of a given aggregate were performed. Then, x1, x2, x3 are deduced from the 

averaged CLD. At the same time, <Sp> was obtained as the averaged projected area over 300 

aggregate orientations. These x1, x2, x3 and <Sp> values will be called in the continuation of 

the text as simulated values. Table 1 collects these values for several disordered aggregates. 

Given the number N of primary particles, the space dimension dE and the maximum co-

ordination number n of a primary particle in the aggregate, a set of aggregates are built. Then, 

x1, x2, x3 and <Sp> are calculated for each aggregate. The mean value xp and the standard 

deviation p of x1, x2, x3 and <Sp> were estimated for this set of aggregates. This represents 

the fluctuation amplitude Af due to the weak description of aggregates (N, dE and n). The 

procedure is performed for different number [4;100] of primary particles, space dimension 
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[1;3] and co-ordination number [2;6]. Table 2 contains the maximum value of the standard 

deviation p (for x1, x2 and x3) and of the standard deviation p over the mean value xp (for 

<Sp>).  This two statistical parameters represent Af.  
 

Table 2: fluctuation amplitude Af  for x1, x2, x3 and <Sp> 

 

 x1 x2 x3 <Sp> 

Af 0,01 0,01 0,001 0,01 

 

The small observed amplitude allows us for asserting the existence of a relation between (x1, 

x2, x3 and <Sp>) and (N, dE and n). However, we prefer to link (x1, x2, x3 and <Sp>) to (N, dE 

and d1) as d1 may represent the aggregate size. 

Analytical expressions for x1, x2, x3, <Sp> in [4] were obtained from the study of 17 different 

ordered aggregates. The analytical expressions are summarized in Table 3. In these 

expressions, appear several morphological parameters depending on N and d1: 

- 
3

1( / 2)N d characterizes the compactness of the aggregate; one also defines a compactness 

index  
3

13 log(( 1) / 5( / 2) )CI N d           

- 1 1
2

d 
 

 
shows that only large aggregates have high x3 values. 

 

Table 3: Analytical expressions obtained for x1, x2, x3 and <Sp> in [4], ε1 and ε2  are  the mean standard deviation 

between the analytical values and respectively the ones obtained by simulation for the 17 aggregates chosen in 

[4] and the aggregates used in this article (§ 3.2). Asterisk is the mean absolute difference. 

 

 

 

 
Analytical expressions [4] 1 

(%) 

2 

(%) 

x3 
2

3 0.0031 0.0182x     with 
 

1.2

1

3

1

1
2 2

d N

d


  
      

(11)                                          1* 1* 

Intermediate 

step : 2 1/u x x  
 11

0.96 exp ( )(1 ) 0.05
320

Eu d CI N  
    

 

                                (12) 
18 24 

x2    2 31 / 1x x u u                                                           (13) 13 19 

x1 1 2 31x x x                                                                       (14)                                                              6 11 

<Sp> 2

p pS R      

5/8
1 3

1/ 211.25
2

p

d
R N

  
      

                    (15)                                       8 17 

 

Then, the relations for x1, x2, x3 and <Sp> summarized in Table 3 were tested with all 

the new disordered aggregates. Table 3 contains ε1 and ε2 values. 1 and ε2  are  the mean 

standard deviations between the analytical values and, respectively the simulated ones for the 

17 ordered aggregates [4] and for the disordered aggregates used in this article. The larger 

number of disordered aggregates should reduce the mean standard deviation. Figures 2,3 and 

4 represent, respectively x3, x2/x1 and <Sp> values against morphological parameters. One 

observes that disordered aggregates basically behave as ordered aggregates. However, the 

representation of  x1, x2, x3 and <Sp> can be improved. 
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Figure 2 shows a good agreement between x3 values and approximation (Eq. (11)) for ordered 

and disordered aggregates but the agreement is less good from Figures 3 and 4 where there is 

some discrepancy. Figure 3 permits to compare x2/x1 and equations 12-14, while Figure 4 

shows the difference between <Sp> value and equation 15. The sequence of x2/x1 values 

(Figure 3) shows that the equations 12-14 cannot be applied to disordered aggregates. The 

x2/x1 values sequence presents a local maximum around   11 4Ed CI N   , i.e. for 

aggregates with 2Ed  . The not monotonicity of the function indicates that 

  11Ed CI N    is not a so relevant single variable. 

 

 
Fig. 2: Evaluation of x3 according to the equation (11) (square for all aggregate set, triangular for ordered 

aggregates) 

 

 
Fig. 3: Evaluation of x2/x1 according to the equations (12-14) (square for all aggregate set, triangular for ordered 

aggregates) 
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Figure 4: Evaluation of <Sp> according to the equation (15) (square for all aggregate set, triangular for ordered 

aggregates) 

 

 

We suggest a new expressions set to evaluate x1, x2, x3 and <Sp> (Table 4). These empirical 

expressions are simpler and more efficient. 3 is the mean standard deviation between the 

analytical values and the ones obtained by simulation.  

 

 
Table 4: New analytical expressions obtained for x1, x2, x3 and <Sp>, ε3  are the mean standard deviation between 

the analytical values and the ones got by simulation. 

 

 

 Analytical expressions 3 

(%) 

x3                                                                         (11) 1* 

x2 
1/3

1
2 1/ 4

1
0.12 ln 0.08

2
E

d
x d

N

  
       

                          (16) 12 

x1                                                                         (14) 3.7 

<Sp> 2

p pS R   with 

1 5

1/3 1/81

2
p E

d
R N d

 
  
 

        (18) 
9 

 

 

Concerning the standard deviation values, it is preferable to use equations 11, 14 and 16 in 

place of expressions included in Table 3. However, we still recommend the use of equations 

in table 3 for ordered aggregates because the corresponding standard deviations are reduced 

by one third compared to those coming from equations (11, 14, 16 and 18). Figure 5 

represents the x2 values obtained by simulation and with equation (16); the points furthest 

away from the approximation correspond to high compactness aggregates with a symmetry 

centre.  
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Fig. 5: Evaluation of x2 according to the equation 16 (square for all aggregate set, triangular for ordered 

aggregates) 

 

Figure 6 presents the <Sp> values obtained by simulation and with equation (18). The 

corresponding error on <Sp> is reduced to 9%. The points, which are the farthest from the 

curve describing the equation (18) correspond to the 1D non-continuous aggregates consisting 

in 4 or 8 primary spherical particles. The error on <Sp> is reduced to 7.2% if these aggregates 

are not considered. Thus, the expression (18) is satisfactory for physical aggregates.  

 

 
Fig. 6: Evaluation of <Sp> according to the equation 18 (square for all aggregate set, triangular for ordered 

aggregates) 
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The use of expressions (18), (14), (16) and (11), respectively for <Sp>, x1, x2 and x3 leads 

to having an analytical equation for the aggregates CLD. 

 

3.3.2. Aggregate scattering cross section with ADr method 

 

We studied aggregates with N primary particles in the range [2,100]. The size parameter x 

of primary particles is in the range [2; 9.25]. For each N-aggregate, several morphologies or 

compactness were considered. The chosen material is silica SiO2. It is considered non-

absorbent, i.e. the imaginary part of the relative refractive index m is equal to zero (Im(m)=0). 
The relative refractive index of silica in water is taken equal to 1.08.   

In order to compare the approximated methods (AD and ADr), the R parameter, which is 

defined as the ratio of the aggregate scattering cross section obtained with the ADr method 

and AD method, was evaluated. 

,

,

ADr N

AD N

C
R

C
                                                                                                                  (19) 

 

The table 5 compares ADr to AD methods, by the mean value of R (over 500  x-values) 

and the relative standard deviation (σ) between ADr and AD . 

The results for three silica aggregate space dimensions dE, are presented below.  

 

Table 5 : Comparison between AD and ADr methods for the primary particle size parameter range [2,10]x  

and different space dimensions dE. 

 

 dE  1  2  3 

R 
mean 1.15 1.03 0.95 

σ 0.04 0.04 0.02 

 

The mean value of R is close to 1 no matter what the space dimension. In the case of 1D 

space dimension an error is introduced by the presence of not connected primary particles in 

certain aggregates (see Table 1, c) : however, such configuration has no physical meaning for 

aggregation.  The deviation between AD and ADr methods seems to be smaller than 4 %. 

 

4. Conclusion 

 

ADr is an efficient method making it possible to quickly calculate the scattering cross 

section of aggregates consisting in optically soft spheres. This method needs the chord length 

distribution, which can be written as a linear combination of elementary functions. Use of 

ADr requires the knowledge of the mean projected area <Sp> and the weighing coefficients 

x1, x2 and x3. The expressions previously established for <Sp>, x1, x2 and x3 in the case of 

ordered aggregates were tested in the disordered aggregates case (90 tested aggregates). These 

expressions are suitable for disordered aggregates, but the agreement between exact and 

calculated values is not so good. This suggests new expressions (x2, <Sp>) and leads to an 

improved method by determining firstly x3, then x2 and finally x1.  

In the future, the equations for <Sp>, x1, x2 and x3 will be tested for the case of fractal-like 

aggregates. 
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All the data can be accessible by sending a request to the authors 
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