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Abstract: Energy consumption has become a major concern for society, and since the industrial
sector is the largest consumer, companies are urged to improve energy efficiency of their
production systems. This paper investigates how Reconfigurable Manufacturing Systems (RMS),
and particularly their scalability feature, can be exploited in order to minimize the energy cost
in production systems w.r.t. a Time-Of-Use pricing scheme. In the case of RMS, the resulting
energy cost optimization problem is a Bilevel Optimization problem, as it jointly considers both
the line balancing and the production planning. After introducing the problem and its features,
a solving approach based on a simulated annealing algorithm and a linear program is proposed.
The approach is then validated on designed instances based on classical test problems taken from
the literature. Results show that considerable savings in terms of energy cost can be achieved
w.r.t. dedicated lines, even when optimally designed, ultimately showing the great potential of
RMS towards energy efficiency.

Keywords: Energy-efficiency, Flexible and reconfigurable manufacturing systems, Process
Planning/Equipment Selection

1. INTRODUCTION

Energy consumption worldwide is supposed to rise by
nearly 50% by 2050 and the industrial sector is the largest
energy consumer, with an electricity usage that is ex-
pected to grow by 40% in the projected period (U.S. EIA,
2019). However, the concern of society for the environ-
ment is driving companies to adopt more energy-efficient
and sustainable production systems. This also implies the
design and management of energy-efficient manufacturing
systems (MS) to increasingly consider renewable energy
sources, which usage is expected to spread in all sectors
during the next decades (Battäıa et al., 2020). Conse-
quently, energy efficiency must be considered at all levels,
be it strategic, tactical or operational (Giret et al., 2015).
When considering energy efficiency of production systems,
three measures are usually referred to (see e.g. Masmoudi
et al. (2019)): total energy consumption; total energy cost
w.r.t. to a given pricing scheme – more often Time-Of-Use
(TOU); power peak limitation.
Moreover, world gross output is expected to double world-
wide in the next decades, with high volatility of the market
which requires production systems to quickly adapt their
throughput. The notion of Reconfigurable Manufacturing
System (RMS), introduced by Koren et al. (1999), aims
to achieve such reactivity by means of efficiently reconfig-
urable production systems. Typical RMS are composed by
several serial workstations with multiple parallel identical
machines used at each stage. The machines on each work-
station are generally computer numerical control machines
or reconfigurable machine tools, but can also consist in

other types of resources (e.g., workers with cobot). RMS
can be an interesting lever to deal with variable energy
availability or pricings, as it is the case with TOU, since it
allows to change the system structure to better fit energy
requirements. In costlier periods, a less consuming config-
uration, even with lower productivity, can be used, before
switching to a higher-throughput higher-consumption con-
figuration in periods with lower energy prices and meet
the demand. In this paper, we deal with the problem of
balancing an RMS in order to define a most fitting set of
configurations so as to minimize the energy cost associated
with a given demand and w.r.t. a energy cost profile. The
problem has been shown to be a Bilevel Optimization
problem in Cerqueus et al. (2020b) which first studied
it. The authors have proposed a two-phase decomposition
approach to tackle it but have only shown its effectiveness
on a case study with realistic energy cost parameters. In
this work, we extend the two-phase approach and perform
an extensive computational experience so as to validate it
and better assess the potential gains in terms of energy
cost that could derive by the use of RMS.
The plan of the paper is as follows. Section 2 reviews sim-
ilar works in the literature. Section 3 outlines the problem
at study. Section 4 delves into the details of the decom-
position approach. Section 5 describes the computational
sessions. Finally, Section 6 shows the conclusions and per-
spectives of this work.

2. LITERATURE REVIEW

RMS have been introduced in Koren et al. (1999). They
aim at reaching as much flexibility as flexible MS while
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keeping as high a production rate as dedicated lines.
Specific features of RMS are modularity, integrability,
convertibility, diagnosability, customization and scalability
(Koren et al., 2017). Scalability is enabled by the capacity
to integrate or remove parallel machines on workstations
and motivated by the need to adapt the production level
to fluctuations of demand or energy price. The literature
on RMS mainly deals with system design, layout, pro-
cess planning, and reconfigurable control (Bortolini et al.,
2018), and it seems that few papers consider scalability
as a lever for productivity. Deif and ElMaraghy (2007)
investigates a model for assessing the scalability capacity
of a make-to-order RMS according to different demand
scenarios and performance measures. In Wang and Koren
(2012) a scalability planning methodology for reconfig-
urable manufacturing is explored. The approach consists
in changing the capacity of an existing system by succes-
sive reconfigurations, in order to minimize the number of
machines required to respect a new throughput. In Hees
et al. (2017), a production planning system that focuses
on the scalability of the production capacities and the
adaptation of functionalities is investigated. In Moghad-
dam et al. (2020), two different approaches are considered
to design multi-product and scalable RMS for multiple
production periods. The objective is to minimize design
and reconfiguration costs while fulfilling a given demand.
Both approaches are based on the estimated demand of
different parts: (i) up- or downgrade the RMS depending
on estimates for each production period, or (ii) select and
reconfigure the reconfigurable manufacturing tools for all
periods based on longer-term estimates.
Putnik et al. (2013) states that scalability can improve the
optimization of manufacturing system design and manage-
ment, and help to develop new paradigms for sustainabil-
ity, but few papers actually consider this last criterion.
Zhang et al. (2015) introduces the concept of energy-
efficient RMS and investigates a discrete event simulation
model to evaluate the systems energy efficiency. For RMS,
Choi and Xirouchakis (2015) investigates a multi-objective
production planning problem that considers energy con-
sumption, throughput, and inventory holding costs to
assess the performance of the planning. A configuration
corresponds to a production plan which is adjoined by
a total energy consumption. In Touzout and Benyoucef
(2019) a multi-objective problem for sustainable process
planning in RMS is addressed. Three optimization criteria
are considered: (i) the total production cost, (ii) the total
completion time, (iii) the amount of greenhouse gases
emitted. Gianessi et al. (2019) is one of the first papers
dealing with energy at the design stage for dedicated lines,
more precisely by minimizing peak power.
The recent survey of Battäıa et al. (2020) shows that few
research projects exploit the capacity of RMS to improve
energy efficiency and sustainability in production. To the
best of our knowledge, the first study that has considered
scalability as a lever to adapt energy consumption in the
context of RMS is the one of Cerqueus et al. (2020b).

3. PROBLEM DESCRIPTION

In this work, we consider the optimization problem of
determining both a set of configurations of an RMS at
the design stage, and the planning of their use. The set of
configurations must be large enough so that the RMS can

adapt the production planning according to the varying
energy costs of a TOU pricing scheme, while fulfilling
a demand ∆ over a given period T . The planning then
consists in selecting which configuration should be used
at each moment of the timespan T : the objective is to
minimize the total energy cost of production.
This problem, which has first been studied in Cerqueus
et al. (2020b), is actually a Bilevel Optimization prob-
lem (see e.g. Colson et al. (2005), or Moore (1988) for
an application to production planning). Indeed balancing
and planning problems are usually considered separately
by manufacturers with different decision-makers and time
horizons – the former is a strategic problem, the latter a
tactical/operational issue. In the case of RMS, however, it
is useful to design the production system from the start in
such a way that its scalability can be exploited as much
as possible w.r.t. to a given objective – here energy cost.
As a consequence, and regardless of the specific objective,
the two decision layers become strongly interconnected:
one can easily see that on one hand the performance of a
configuration set cannot be assessed without constructing
the planning of how configurations are used over the period
T , while on the other hand the planning problem cannot
be solved if the configuration set is not known in advance.
Moreover, the design of an RMS is more complex than that
of a dedicated MS. The design decisions of a dedicated MS
mainly concern how the n production tasks are assigned
to the m ≤ n available workstations, so as to comply with
technological constraints and optimize production crite-
ria. Even the Simple Assembly Line Balancing Problem
(SALBP), that studies a straight paced assembly line in
which design decisions only concern the takt time and/or
the number of workstations, is NP-Hard and has given rise
to a large amount of scientific works (see e.g. Scholl and
Becker, 2006). The consideration of a different criterion
can only make the problem even harder, as shown for
instance in Gianessi et al. (2019) for power peak. With
RMS, the task is much harder, as the goal of the design
stage is to determine a set of line configurations that differ
in the assignment of tasks to workstations and in the
number of identical resources assigned to each workstation.
In this work, as it has been done in Cerqueus et al. (2020b),
we focus on scalability and consider the particular case
in which all the configurations of the set share the same
balancing, and only differ in the number rk of resources
of each workstation k. As a direct consequence of this
assumption, system reconfigurations can be seen as switch-
ing on/off resources, and hence reconfiguration times can
be neglected since a reconfiguration does not imply a
reassignment of tasks and materials to workstations.
Under this assumption, and by considering the minimiza-
tion of the energy cost of production as the main objective,
the goal of the design stage is to determine the balancing x
that gives rise to the most fitting set of descending configu-
rations C(x) in terms of per-time-unit energy consumption
Qi and takt time ci, i ∈ C(x). The Bilevel Optimization
problem at hand can then be expressed as:

min
x
F(x,y?); max

x
S(x) (1)

s.t. B(x) ≤ 0 (2)

y? = argmin
y
E(x,y) (3)

s.t. P(y) ≤ 0 (4)



In the upper-level problem (1)-(3), F is an overall cost
function and S a scalability measure of x; (2) enforce the
balancing constraints; (3) certifies that planning y? has
minimum energy cost E , given balancing x.
Binary upper-level variables xjk take value 1 if task j ∈
{1,...,n} is assigned to workstation k ∈ {1,...,m} w.r.t. an
upper bound nmax on the number of tasks assigned to the
same workstation. Each task features a processing time
tj and a total energy consumption ej (i.e. the integral
of the power consumption profile of task j over its pro-
cessing time). The basic configuration that descends from
balancing x has rk = 1 ∀k ∈ {1,...,m}, and workstation
k could have takt time ck = Wk

rk
equal to its workload

Wk =
∑
j tj xjk. The takt time of the line, c, is then set

according to the bottleneck workstation k′ = arg max ck.
Other configurations can be derived from balancing x by
increasing the number rk of resources of workstations, but
only those having a higher production rate, i.e. a lower c,
are worth being considered. By definition, c can only be
reduced by increasing by one the number rk′ of resources
of the bottleneck station. This can result in a possible
new bottleneck station. This process can be repeated until
the bottleneck station would exceed the maximum number
of resources per workstation rmax. By following this rea-
soning, one can obtain the full set C(x) of configurations
originating from x, with descending takt time values.
As for energy consumption, we assume that during idle
time Ik = c− ck stations have a residual energy consump-
tion which is proportional by a factor α to Ik, the number
of resources rk and the per-resource, per-time-unit energy
consumption of tasks assigned ηk

Wk
, with ηk =

∑
j ej xjk.

Hence, the energy consumption of workstation k during
a takt is Ek = ηk(1 + α rk IkWk

). This allows to associate

each configuration i ∈ C(x) with a per-time-unit energy
consumption Qi:

Qi = 1
ci

∑
k E

i
k = 1

ci

∑
k ηk (1 + α

rik I
i
k

Wk
) (5)

in which ηk and Wk are invariants of the configuration i,
while ci, rik, Iik and thus Eik depend on i.
The lower-level problem (3)-(4) represents the planning
decisions, i.e. how configurations of C(x) should be used
w.r.t. a given pricing scheme to minimize the production
energy cost while ensuring fulfilment of demand ∆. Since
we are considering a TOU pricing scheme, the time horizon
T is divided in several cost periods and lower-level vari-
ables yip represent the portion of period p spent produc-
ing according to configuration i ∈ C(x). Constraints (4)
enforce planning feasibility and demand fulfilment, while
term E(x,y) of (3) is the total energy cost of producing
according to configurations C(x) and planning y.

4. DECOMPOSITION APPROACH

As in Cerqueus et al. (2020b), the algorithmic approach
presented in this paper for the Bilevel Optimization prob-
lem is a two stage decomposition approach. Phase 1 ad-
dresses the balancing problem through a metaheuristic
and yields a balancing x, and a set C(x) of configu-
rations generated from it, which seek to optimize both
the scalability of the production system and its capacity
to fulfill a large range of economical demands. Starting
from set C(x), Phase 2 solves the planning problem to
minimize the energy cost of the production process needed

to satisfy demand ∆ over time horizon T . In the following,
we describe the two phases in detail.

4.1 Phase 1: Generating a Configuration Set

Phase 1 of the metaheuristic consists in a Simulated An-
nealing (SA) algorithm (see e.g. Aarts et al., 2005). In the
two-phase approach for the problem at hand, the SA-based
algorithm begins by randomly building a feasible balancing
x, i.e. that complies with the other previously mentioned
constraints, as well as with precedence constraints (here
denoted by symbol ≺) among tasks:

(∀ j1, j2 ∈ {1,...,n} : j1≺j2)
∑
kk(xj2,k − xj1,k) ≥ 0

This also defines the basic configuration, i.e. with rk =
1 ∀k, of set C(x). Other configurations i ∈ C(x) are then
derived from it as previously described in Section 3.
The neighbors of a balancing x are those which can be
obtained by moving one task j from its current workstation
k to another k 6= k, k1 ≤ k ≤ k2, where

(∀ j1≺j)
∑
k k xj1,k ≤ k1 ; (∀ j≺j2) k2 ≤

∑
k k xj2,k

i.e. such that no precedence constraint involving j is
violated. Moreover, a candidate destination workstation
cannot be chosen if nmax tasks have already been assigned
to it. New workstations can be opened to be assigned tasks,
up to a maximum number m.
A balancing x is evaluated by means of a weighted sum
Φ(x) of two terms, namely a hypervolume metricH(x) and
the production rate P(x) of the most productive among
the configurations derived from x.
Hypervolume H(x) is computed based on the takt time
ci and per-time-unit energy consumption Qi of configu-
rations i ∈ C(x) that are non-dominated configurations
w.r.t. c and Q (i.e. those for which no other configuration

i′ ∈ C(x) exists s.t. ci
′ ≤ ci and Qi

′ ≤ Qi). We suppose
without loss of generality that configurations i ∈ C(x)
are sorted by decreasing c values. The values of ci and
Qi are normalized using suitable upper (cU , QU ) and

lower (cL, QL) bounds: c̃ = c−cL
cU−cL and Q̃ = Q−QL

QU−QL
. The

hypervolume of balancing x is then:

H(x) = (1− c̃1)(1− Q̃1) +
∑
i≥2(c̃i−1 − c̃i)·(1− Q̃i) (6)

To have the same order of magnitude, the second part of
the weighted sum is also normalized:

P(x) =
cUcL
cU − cL

(
1

c|C(x)|
− 1

cU
) (7)

The fitness Φ(x) of x (with weight factor λ) is then:

Φ(x) = λH(x) + (1−λ)P(x) (8)

Hypervolume H allows to use an aggregated criterion to
evaluate the scalability of a set C(x) (Cerqueus et al.,
2020a). The maximization of H is meant to hopefully lead
to configuration sets whose c and Q values are at the
same time as diversified and as low as possible. The latter
aspect, in particular, is expected to yield configurations
which are both highly producing and energy efficient.
Figure 1 depicts the calculation of H for an example set.
The second term of fitness function Φ in (8) is proportional
to P to further stress the fact to seek for a configuration
with a consistent highest production level.
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Fig. 1. Hypervolume calculation for a set of 8 configura-
tions (1 dominated, in red).

4.2 Phase 2: Planning Configurations over the Timespan

The planning problem of Phase 2 consists in optimally
deploying the configurations of C(x) over a period T to
fulfill demand ∆ and is solved as a Linear Program (LP).
We suppose that the considered pricing scheme is of type
TOU, i.e. with a set P of time periods each featuring
a energy unit cost Up; durations of periods Dp are s.t.
T =

∑
p∈P Dp. Lower-level variables yip are then [0, 1]

real variables modeling the portion of time period p spent
producing with configuration i ∈ C(x). The LP model is:

min
∑

i∈C(x),p∈P
Dp · Up ·Qi · yip (9)

s.t.
∑

i∈C(x),p∈P

Dp

ci · yip ≥ ∆ (10)∑
i∈C(x)

yip ≤ 1 ∀p ∈ P (11)

Dp yip is the time spent using configuration i ∈ C(x) to
produce during period p. Hence:

• (9) represents the energy cost to minimize, since
QiDp yip is the associated energy consumption, and
• (10) ensures that demand ∆ is satisfied, since

1
ci Dp yip is the corresponding produced quantity, re-

sulting from the production rate 1
ci .

Finally, (11) impose that production in a period p cannot
last more than Dp,

∑
i yip < 1 meaning that production is

suspended for a time (1−
∑
i yip)Dp.

5. COMPUTATIONAL EXPERIENCE

We tested our approach on benchmark SALBP instances
derived from Scholl (1995) and Otto et al. (2013). For the
instances of Scholl (1995), since the author provides sets
of instances with same tasks and different c values, we
derived one instance per set, with median takt time value.
The obtained SALBP instances are enhanced with energy,
demand, time horizon and TOU pricing features. The de-
mand is directly derived from the takt time of the SALBP
instance. The energy consumption ej of each task j is
computed as the product of its processing time tj and a
randomly generated average power consumption (uniform
distribution in [5;50]). We considered a energy cost profile
in which a time horizon T of 24h (hours) is subdivided in
6 periods: 1 low-cost period of 8h with a (energy) unit cost

of 18, 3 medium-cost periods of total 10h with unit cost
65, and 2 high-cost periods of total 6h with unit cost 108.
In order to have (for comparison purposes) a reference
dedicated line we run a SALBP-1 model on IBM CPLEX
with a 3 hours time limit. We discarded Scholl instances
for which no SALBP-1 feasible solution could be found
within time limit (namely two instances, called Scholl and
Barthol2). We only considered 36 instances of Otto et al.
(2013), 18 of which are taken from the set of instances with
n = 20 tasks and 18 from the set with n = 50 tasks, evenly
distributed in order to have a representative sample of each
of the parameter values that the authors of Otto et al.
(2013) used for the generation of the instances. All of such
Otto instances have a SALBP-1 feasible solution within
time limit and are thus considered here. The determination
of the reference dedicated line also allows to complete the
instances with the upper limit on the number of stations,
which is fixed to one third higher than the number of
stations obtained when solving the SALBP-1 version.
As for the simulated annealing, the descent factor for the
temperature is 0.98 and the initial temperature is set to
10. The weight factor in the fitness function Φ (see (8)) is
λ = 0.5. The total number of iterations and the length of
the steps are proportional to the number of tasks in the
instance (resp. 1250n and 5n). The simulated annealing
having a random component, for each instance the whole
of SA and LP is replicated 10 times. Table 1 compares our
approach with the performance in terms of energy cost
saving that could be achieved w.r.t. the reference dedi-
cated line. Two levels of demands are considered, “lower
demand” is the demand directly derived from the takt time
of the instances and “higher demand” is a demand 25%
higher. Phases 1 and 2 of the metaheuristic use the same
set of configurations for both lower and higher demands, as
demand is not a parameter of the metaheuristic (contrary
to SALBP-1 which considers the demand as known). The
value N/A for the higher demand for Bowman denotes
that the demand is higher than what could be achieve
by the reference dedicated line (the desired takt time is
smaller than the higher task processing time). However,
our approach finds a solution, since it can use parallel
resources on the stations. Instances with name marked by
a ’*’ are those for which the solution of the SALBP-1 with
higher demand is not optimal (due to exceeded time limit).
For lower demands, using our planning instead of a ded-
icated line results in an overall 65% average reduction in
cost. This does not seem to depend on the dataset, nor on
the instance size (69% for Otto with n = 20, 64% for Otto
with n = 50, 63% for Scholl). For higher demands, the cost
reduction is lower (56% on average). For all instances but
six, the reduction of cost by our approach is significantly
lower for higher demands than for lower demands. The
difference between categories and size of instances is more
visible than for lower demands (64% for Otto with n = 20,
54% for Otto with n = 50, 51% for Scholl).
As for the occupation rates of the different time periods of
the TOU scheme, without surprise the dedicated lines use
almost all of the time horizon T . Only high-cost periods are
used less than 100% (95% on average for lower demands,
97% for higher demands). For the RMS, low-cost periods
are densely used (96% on average for lower demands,
almost 100% for higher demands), medium-cost periods
are scarcely used (average 3% for lower demands, 14% for



Name n tSA
# conf

created

lower demand higher demand

# conf Cost # conf Cost

used (%) used (%)

Otto-20-10 20 0.34 8.80 1.90 -68 1.90 -70

Otto-20-40 20 0.58 23.60 1.30 -70 1.30 -56

Otto-20-70 20 0.32 8.80 1.90 -70 1.90 -70

Otto-20-100 20 0.52 22.70 1.80 -70 1.80 -57

Otto-20-130 20 0.41 16.10 1.50 -69 1.50 -69

Otto-20-160 20 0.31 8.80 1.60 -70 1.60 -70

Otto-20-190 20 0.65 21.70 1.10 -68 1.30 -55

Otto-20-220 20 0.31 9.00 1.80 -70 1.80 -70

Otto-20-250 20 0.49 20.10 1.50 -69 1.60 -54

Otto-20-280 20 0.33 12.90 1.40 -70 1.20 -67

Otto-20-310 20 0.32 8.40 1.70 -70 1.70 -69

Otto-20-340 20 0.53 21.20 1.30 -69 1.30 -54

Otto-20-370 20 0.32 8.40 1.70 -70 1.70 -70

Otto-20-400 20 0.59 20.80 1.10 -69 1.10 -53

Otto-20-430 20 0.41 12.60 1.50 -70 1.50 -70

Otto-20-460 20 0.34 9.00 2.00 -70 2.00 -70

Otto-20-490 20 0.61 21.70 1.10 -70 1.10 -56

Otto-20-520 20 0.35 8.80 2.00 -70 2.00 -70

Otto-50-10 50 1.46 17.60 1.20 -70 1.20 -66

Otto-50-40∗ 50 3.27 41.10 1.60 -52 1.60 -40

Otto-50-70 50 1.57 22.80 1.50 -69 1.60 -55

Otto-50-100 50 1.20 17.30 1.10 -69 1.20 -67

Otto-50-130 50 1.85 25.90 1.30 -67 1.30 -51

Otto-50-160 50 1.45 19.50 1.40 -69 1.60 -63

Otto-50-190 50 3.58 44.40 1.60 -53 1.60 -41

Otto-50-220 50 1.68 24.10 1.60 -69 1.60 -53

Otto-50-250 50 1.18 17.80 1.00 -70 1.30 -63

Otto-50-280 50 1.85 26.50 1.40 -66 1.40 -51

Otto-50-310 50 1.42 19.70 1.20 -70 1.50 -61

Otto-50-340 50 3.52 42.40 1.70 -53 1.70 -41

Otto-50-370 50 1.98 24.80 1.30 -69 1.40 -55

Otto-50-400 50 1.37 19.10 1.00 -70 1.20 -63

Otto-50-430 50 1.94 28.10 1.60 -60 1.60 -46

Otto-50-460 50 1.20 17.00 1.20 -70 1.60 -62

Otto-50-490 50 3.08 38.90 2.00 -48 2.00 -38

Otto-50-520 50 1.46 21.90 1.50 -68 1.50 -52

Mertens 7 0.11 6.00 1.00 -67 1.00 -71

Bowman 8 0.12 6.00 1.00 -71 N/A N/A

Jaeschke 9 0.15 8.00 1.00 -71 2.00 -59

Jackson 11 0.18 8.00 1.10 -70 1.10 -62

Mansoor 11 0.16 5.00 2.00 -70 1.00 -54

Mitchell 21 0.36 9.00 1.60 -70 1.40 -57

Roszieg 25 0.51 11.70 1.50 -70 1.90 -59

Heskiaoff 28 0.55 11.90 1.60 -70 1.20 -65

Buxey 29 0.75 15.70 1.40 -69 1.60 -55

Sawyer 30 0.79 16.20 1.10 -69 1.30 -53

Lutz1 32 0.80 20.00 1.30 -69 1.40 -58

Gunther 35 0.91 17.70 1.40 -67 1.50 -52

Kilbridge 45 1.15 16.00 1.00 -70 1.20 -60

Hahn 53 1.01 12.80 1.30 -70 1.50 -63

Warnecke 58 2.93 29.20 1.50 -49 1.50 -37

Tonge 70 2.65 26.90 1.30 -60 1.30 -45

Wee-mag 75 7.95 26.30 1.40 -55 1.40 -41

Arcus1 83 2.65 24.50 1.30 -61 1.30 -45

Lutz2∗ 89 5.49 19.10 1.70 -41 1.70 -29

Lutz3 89 3.64 24.10 1.70 -50 1.70 -38

Mukherje 94 2.92 27.50 1.40 -51 1.40 -39

Arcus2 11 4.53 29.80 1.40 -51 1.40 -37

Barthold 148 5.98 23.80 1.50 -67 1.50 -53

Table 1. Energy cost of the planning of an RMS
yielded by our method (SA and LP), compared
with that of a dedicated line. Term tSA is the
solving time of our approach. Columns 4, 5 and
7 are resp. the number of configurations output
by the SA and the average number (over 10
replications) of those used during the planning
to satisfy lower and higher demands. Cost
columns are energy cost percentage decrease
values, i.e. the energy cost of the RMS, minus
that of the dedicated line, divided by the latter.

higher demands), high-cost periods are never used. The
average number of used configurations is always below 2.
The typical planning generated for the RMS has the fol-
lowing structure. Let j, k ∈ C(x) be the configurations
with lowest per-takt energy consumption and highest pro-
ductivity, respectively. Then:

• if the demand can entirely be fulfilled during the low
cost period, then the configuration j and k are used
so that the per-produced-item energy consumption is
minimized and the demand is answered;

• if the demand is greater than such limit, then config-
uration k is used for the full low-cost period and the
exceeding demand is fulfilled in priority during the
medium-cost periods, according to the same scheme.

This planning profile is a consequence of the fact that
there is only a 5% difference in terms of per-produced-
item energy consumption between the most and the least
consuming configurations, which is largely smaller than
the difference of per-time-unit energy cost between low-,
medium- and high-cost periods (40%).
Few replications (8 out of 610) use a configuration that is
neither the most productive, nor that with the lowest per-
takt energy consumption, but instead offers an interesting
tradeoff between productivity and energy cost.
Since this solution structure is recurring, simple heuristics
could be derived to easily build the production planning
of an RMS and achieve significant cost economies.

6. CONCLUSION

In this article, we address the Bilevel Optimization prob-
lem of balancing a Reconfigurable Manufacturing System
(RMS) and derive a set of system configurations that
would allow to obtain a production plan of minimum
energy cost w.r.t. a Time-Of-Use (TOU) pricing scheme
and capable of meeting a given demand over a given time
horizon. The purpose of this study is to show the relevance
of RMS when dealing with energy-efficient production, an
issue nowadays more and more sensitive.
The problem has been first studied in Cerqueus et al.
(2020a), which investigated whether the scalability of RMS
can be a lever for energy efficiency. We deal here with
the same problem and propose an extended version of
the two-phase metaheuristic. A thorough computational
experience is performed to better assess both the problem
interest and the approach effectiveness. In Phase 1, a Sim-
ulated Annealing seeks for a balancing of the production
line. A balancing is evaluated by assessing the quality of
the derived configuration set via a weighted sum of the
highest attainable production rate and of the scalability
of the production system (defined as the diversity and the
performance of its configuration set). Phase 2 solves a Lin-
ear Program to optimally use the configurations derived
from such balancing over the considered time horizon.
Tests have been run on benchmark instances of the
SALBP, enhanced with problem-specific features, and re-
sults have been compared with dedicated lines composed
of optimal or near-optimal SALBP solutions. The com-
parison shows that substantial savings can be achieved in
terms of energy costs, even with tight levels of demand, by
using a low number of configurations on average.
Many future research paths can be outlined.
First, Phase 1 could benefit from the use of other neigh-
borhood operators or metaheuristic schemes, e.g. Variable
Neighborhood Search. Moreover, the proposed metaheuris-
tic can be improved by a feedback mechanism so as to
include in the evaluation of a balancing the optimal cost of
a planning made up of the configurations derived from it. A
feedback mechanism would also allow to better exploit the



Bilevel nature of the problem, as opposed to the two-steps
hierarchization considered here, and ultimately lead to
algorithms capable of achieving globally better solutions.
To this end, the most promising direction seems the design
of an exact Bilevel Optimization algorithm. The multi-
objective nature of the upper-level problem also deserves
further investigations.
The structure of solutions could be studied from a theo-
retical point of view to seek for properties (e.g. in terms
of dominance w.r.t. takt time and energy parameters)
that could help design even more performing algorithms
to obtain energy-efficient RMS.
By removing the same-balancing assumption of Cerqueus
et al. (2020a), a far wider range of industrial cases could
be considered, as well as potentially better (since less con-
strained) configuration sets. In this case, reconfiguration
times could not be neglected anymore in the planning
problem but more energy-efficient configurations could be
available and ultimately allow larger economic savings.
Lastly, future research works could also consider some
other industrial constraints, such as a power peak limit.
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