
HAL Id: emse-03541834
https://hal-emse.ccsd.cnrs.fr/emse-03541834

Submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Unrelated parallel machine scheduling with new criteria:
Complexity and models

Abdoul Bitar, Stéphane Dauzère-Pérès, Claude Yugma

To cite this version:
Abdoul Bitar, Stéphane Dauzère-Pérès, Claude Yugma. Unrelated parallel machine scheduling with
new criteria: Complexity and models. Computers and Operations Research, 2021, 132, pp.105291.
�10.1016/j.cor.2021.105291�. �emse-03541834�

https://hal-emse.ccsd.cnrs.fr/emse-03541834
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Unrelated parallel machine scheduling with new criteria:
Complexity and models

Abdoul Bitar1 Stéphane Dauzère-Pérès1,2 Claude Yugma1

1Mines Saint-Etienne, Univ Clermont Auvergne
CNRS, UMR 6158 LIMOS

CMP, Department of Manufacturing Sciences and Logistics
Gardanne, France

E-mail: abdlbitar@gmail.com, {dauzere-peres, yugma}@emse.fr

2Department of Accounting, Auditing and Business Analytics
BI Norwegian Business School

Oslo, Norway

Abstract

In this paper, a scheduling problem on non-identical parallel machines with
auxiliary resources and sequence-dependent and machine-dependent setup
times is studied. This problem can be found in various manufacturing con-
texts, and in particular in workshops of wafer manufacturing facilities. Three
different criteria are defined and analyzed: The number of products com-
pleted before the end of a given time horizon, the weighted sum of comple-
tion times and the number of auxiliary resource moves. The first criterion
is maximized, while the two others are minimized. The first and the third
criteria are not classical in scheduling theory, but are justified in industrial
settings. The complexity of the problem with each of the new criteria is
characterized. Integer linear programming models are also proposed and
numerical experiments are conducted to analyze their behavior.

Keywords: Scheduling, Unrelated parallel machines, Sequence-dependent
setup times, Auxiliary resources, Complexity, Integer linear programming

1. Introduction

The photolithography workshop is critical in the fabrication process of
many electronic devices. In this workshop, lots of silicon products have to
be processed on non-identical parallel machines (see Moench et al. (2011)).

Preprint submitted to Computers & Operations Research

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0305054821000836
Manuscript_48546dc7c8209ddf79532e791099e339

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0305054821000836
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0305054821000836


Each lot, called job in this paper, typically consists of its maximum size of 25
products that are processed as a whole. Although a job comes back multiple
times (up to 40 times for the most complex processes) to the photolithog-
raphy workshop in its manufacturing route, only one operation per job is
considered on a short-term scheduling horizon. To be processed, each job
requires one and only one auxiliary resource (often simply called resource in
this paper). This resource is necessary to shape a pattern on the products.
Hence, an operation can only be performed if both the job and the right
auxiliary resource are available at a given time. Also, an auxiliary resource
must be on the machine for the duration of the process and each auxiliary
resource is unique because of its cost. Thus, if two jobs require the same
auxiliary resource, they cannot be processed in parallel. Indeed, one auxil-
iary resource can be required by multiple jobs. Moreover, machines need a
specific configuration to process a job and switching from one configuration
to another on a machine requires a setup time, depending on the previous
job, the next job and the machine. Thus, setup times are both sequence
dependent and machine dependent. Finally, machines are only qualified (or
eligible) for a limited number of jobs, i.e. they cannot process the other
ones: For each job (or job family), the set of its qualified machines is the set
of machines that can process the job. Also, machines do not always have the
same processing times for the same job. Hence, machines are non-identical,
or unrelated.

Three criteria are introduced and motivated in Section 2.3. Two of these
criteria have, to our knowledge, never been studied in the scientific literature,
except in Bitar et al. (2016) for one of them. The first original criterion is
motivated by the fact that jobs are continuously arriving in the workshop
and, although release dates are not considered, it is relevant to optimize the
schedule of jobs on a limited time horizon. The second original criterion is
related to the management of auxiliary resources.

The paper is organized as follows. The scheduling problem is described
in Section 2, with its constraints and the three criteria. Section 3 surveys
the existing work on related scheduling problems. Complexity results and
Integer Linear Programming (ILP) models are provided in Sections 4, 5
and 6 for each criterion respectively. Some numerical results are discussed
in Section 7, and Section 8 concludes the paper.

2. Problem description

In the following, the problem is defined. First, some notations are given,
then the constraints and the criteria are introduced.

2



2.1. Notations

The notations below are used throughout the article to denote each in-
stance of the unrelated parallel machine scheduling problem with process-
ing set restrictions, sequence-dependent and machine-dependent setup times
and auxiliary resources. Let us consider a set J of N jobs, a set M of M
machines and a set A of A (A ≤ N , in practice A is usually much smaller
than N) auxiliary resources, necessary to process jobs on machines. We also
have:

• For job j ∈ J , its number of products nj ∈ N, its priority wj , its set
of qualified machines Mj ⊆ M, and the auxiliary resource ϕj ∈ A
required to process it,

• For auxiliary resource a ∈ A, the set Ea = {j ∈ J | ϕj = a} of jobs
in J that require this resource to be processed,

• For job j and machine m, m ∈ Mj , the processing time ρjm ∈ N of
job j on machine m,

• For jobs j and k, and machine m such that m ∈ Mj ∩ Mk, the
sequence-dependent and machine-dependent setup time βjmk ∈ N re-
quired by machine m to process job k immediately after job j,

• For auxiliary resource a ∈ A, its initial location Ra ∈ {0, . . . ,M},
the machine where the auxiliary resource is initially located, where 0
stands for the storage area,

• A specified time horizon [0, H], where H ∈ N is the end of the time
horizon,

• Let us denote by Πh the problem of maximizing the number of products
completed before H, by Πw the problem of minimizing the weighted
sum of completion times and by ΠM the problem of minimizing the
number of auxiliary resource moves.

2.2. Constraints

The constraints of the problem are listed below:

• A job j is processed once and only once on a machine m qualified for
this job, i.e. m ∈Mj ,

• The start dates are integers and machines are available at time 0,

3



• There is no preemption, i.e. a job is not interrupted after its start,

• A machine can only process one job at a time,

• There are sequence-dependent and machine-dependent setup times be-
tween consecutive processes of jobs on the same machine (we assume
that the first job scheduled on each machine does not require setup
times, although the models proposed later could be extended to con-
sider initial setup times),

• Two jobs j and k having the same required auxiliary resource (i.e. ϕj =
ϕk) cannot be processed simultaneously on two different machines,

• Moving an auxiliary resource from one machine to another takes a
unitary transport time.

2.3. Criteria

Three objective functions covering important goals, such as job priori-
ties, productivity, and auxiliary resource moves, are detailed below. These
choices are explained and motivated.

Minimize the weighted sum of completion times. Jobs have priorities
because of their waiting times in the workshop or the fact that they are related
to different customers or products. Hence, the weighted sum of completion
times is considered. Let us denote by Cj the completion time of job j. The
objective function to minimize is:

N∑
j=1

wjCj .

This is a classical scheduling criterion. Let us denote this problem Πw.

Maximize products completed before H. The number of completed products
is an important criterion. This criterion makes no sense if there is no limit
on the scheduling horizon, since all jobs will always be scheduled. Since there
is a continuous flow of arriving jobs, specifying a limited time horizon [0, H]
is relevant because jobs arriving after the start of the horizon have to be
taken into account before completing all jobs already available (for instance,
to save setup times). Hence, the number of products completed before H is
maximized. If, in a solution, we denote by mj the machine assigned to job
j and its start time by tj , then the number of completed products before H
can be written as follows:

N∑
j=1

njθj

4



where θj is the ratio of job j that is processed before H, over its processing
time, i.e.

θj =


min(ρjmj

,H−tj)
ρjmj

if tj ≤ H,

0 if tj > H.

which models the fact that the number of completed products of a job is
proportional to the elapsed time before the end of the time horizon. Let us
denote this problem Πh.

Minimize the number of auxiliary resource moves. Moving an auxiliary re-
source from one position to another requires a human operator that needs to
stop his current task to perform the move. Minimizing these interruptions
helps to reduce the risk of errors and time waste. In the remainder of the pa-
per, let us denote this problem ΠM . Note that machine eligibility constraints
are critical since, in the specific case of total eligibility (where all machines
can process all jobs), the problem becomes trivial. Indeed, it can be shown
that an optimal solution for this criterion is to assign to the same machine
all the jobs that share the same resource.

To illustrate the third criterion, let us analyze the number of auxiliary re-
source moves in Figure 1. Note that the solution in the example is not
optimal with respect to the number of auxiliary resource moves, and is used
to illustrate how the criterion is calculated:

• Jobs 1, 6 and 7 require the same auxiliary resource. Job 7 is processed
on machine 2, then job 1 on machine 1 (which implies two move from
machine 2 to machine 1), then job 6 again on machine 2 (which implies
another move from machine 1 to machine 2).

• Jobs 2 and 5 require the same auxiliary resource, and are both processed
on machine 2.

• Jobs 3, 4 and 8 require the same auxiliary resource. Job 4 cannot
be processed by machine 1, and jobs 3 and 8 cannot be processed by
machine 2 (eligibility constraints). Thus, one move from machine 1 to
machine 2 is required, as observed on the schedule.

• Note that jobs start on machine 1 at time 1 and not time 0. The reason
is that the auxiliary resource for job 8 is initially located in the storage
area, so a unitary transport time is required before starting processing
job 8. If the auxiliary resource required by job 8 had already been on
machine 1, the process would have started at time 0, and a resource
move would have been avoided.

• There are a total four auxiliary resource moves in this schedule. Note
that, by processing job 6 before job 1, the number of moves can be
reduced by one.

5



Figure 1: A schedule for an instance of our unrelated parallel machine scheduling problem,
with 8 jobs, 2 machines and 3 auxiliary resources.

3. Literature review

In the literature, heuristics based on dispatching rules for the problem
Pm|rj , aux|

∑
wjCj are described, for example by Cakici and Mason (2007).

Metaheuristics are also proposed to solve unrelated parallel machine prob-
lems with sequence-dependent setup times. We study in this paper an unre-
lated parallel machine scheduling problem with eligibility constraints, auxil-
iary resources and sequence-dependent and machine-dependent setup times,
with three criteria: The weighted sum of completion times, the number
of processed products within a time horizon and the number of auxiliary
resource moves. To our knowledge, the second criterion has only been con-
sidered in Bitar et al. (2016) and the last criterion has never been studied.
A contribution of this paper is to analyze these problems, in terms of com-
plexity and mathematical modeling.

Many studies have been conducted considering non-identical parallel ma-
chines and when the weighted sum of completion times is minimized. For
instance, Skutella (2001) studies the scheduling problem R||

∑
wjCj with

convex quadratic program relaxation and approximation algorithms with
ratio 3

2 . Bruno et al. (1974) prove that R||
∑
Cj is polynomial and they

propose an O(n3) algorithm to solve it. More recently, Wang and Alidaee
(2019) are also interested by solving the unrelated parallel machine schedul-
ing problem. Very large-scale instances can be solved using a Tabu Search
algorithm that embeds a multiple-jump strategy. In these problems, no
setup times are considered, and there are neither eligibility constraints nor
auxiliary resources.

With identical parallel machines and job priorities, some results already
exist. Kawaguchi and Kyan (1986) give a 1

2(1 +
√

2) ≈ 1.207 approximation
ratio for P ||

∑
wjCj , obtained with a Weighted Shortest Processing Time

sorting of jobs, which is the best known approximation ratio for this problem.
Woeginger and Skutella (2000) give the first PTAS for the strongly NP-Hard
problem P ||

∑
wjCj . Sahni (1976) gives an FPTAS for Pm||

∑
wjCj where

6



the number of machines is a constant, Bruno et al. (1974) show that, when
the number of machines is a constant (not a parameter of the problem) and
at least two, then the problem is NP-Hard. In particular, they show that
P2||

∑
wjCj is weakly NP-Hard. Lee and Uzsoy (1992) propose a pseudo-

polynomial dynamic programming algorithm for Pm||
∑
wjCj whose com-

plexity depends on the sum of the weights whereas, in classical approaches,
it depends on the sum of processing times. Smith (1956) shows that, in the
case of a single machine, the problem is in P , using Smith’s rule (WPST
sorting).

Concerning the problem with sequence-dependent setup times (with-
out eligibility constraints and auxiliary resources), Webster and Azizoglu
(2001) consider the problem with setup families and the

∑
wjCj criterion.

They propose two dynamic programming algorithms. When the number of
machines and families are fixed, these algorithms are pseudo-polynomial.
Otherwise, the authors show that the problem is strongly NP-Hard. If the
number of machines is fixed and there is only one family, the problem is
NP-Hard. So with a fixed number of families, the problem is NP-Hard. But
when the job weights are unitary, the problem is in P . Monma and Potts
(1989) show that, for the same problem, an optimal solution is such that
all jobs of the same family are scheduled in the WPST order. Obeid et al.
(2014) propose a linear programming model to solve a scheduling problem
on unrelated parallel machines with setup times. In that case, setup times
only depend on the job families, not the sequence. Ekici et al. (2019) also
consider sequence-dependent setup times in a problem inspired from assem-
bly lines in the electronic industry. They propose a mathematical model
with precedence variables. Fanjul-Peyro et al. (2019) study a scheduling
problem with unrelated parallel machines and makespan minimization and
propose an exact algorithm.

Concerning auxiliary resources, Blazewicz et al. (1983) propose a clas-
sification of resource-constrained scheduling problems in the literature and
introduce a generic notation for this kind of constraints. With this notation,
the resource constraints studied in this article are written res.11, where “.”
means that the number of resources is a parameter of the problem, the first
“1” means that there is only one resource of each type, and the other “1”
means that each job only requires a unitary quantity of its required auxiliary
resource (since there is only one auxiliary resource of each type). Blazewicz
et al. (1983) provide interesting complexity results, and show, for example,
that P3|res.11, pj = 1|

∑
Cj is strongly NP-Hard. Edis et al. (2013) present

an interesting review on the parallel machine scheduling problems with ad-
ditional resources. Integer linear programming models are also developed

7



for the makespan criterion and without setup times. Vallada et al. (2019)
present a new Scatter Search algorithm for the unrelated parallel machine
problem with one additional resource where the makespan is minimized.
A Repairing Mechanism is used to reach feasible solutions and various lo-
cal search procedures are also introduced. Yepes-Borrero et al. (2020) also
study a parallel machine scheduling problem where setups require additional
resources. Two objectives are optimized, the makespan and the number of
additional resources.

For the unrelated parallel machine scheduling problem with sequence-
dependent setup times and additional resources, Fanjul-Peyro (2020) pro-
poses a mixed integer linear program and a three-phase algorithm to mini-
mize the makespan.

Some research have been made on eligibility constraints (also called
scheduling typed task systems or scheduling with processing set restrictions),
but usually without sequence-dependent setup times and auxiliary resources.
Shchepin and Vakhania (2005) propose an approximation algorithm with ra-
tio 2 − 1

m for the case of identical parallel machines. Brucker et al. (1997)
show that, when minimizing the (non-weighted) sum of completion times,
the problem is in P . Leung and Li (2008) survey the existing work on
scheduling with eligibility constraints. Nattaf et al. (2019) study an identical
parallel machine problem with machine qualifications, i.e. where qualifying
a machine for a specific process is part of the decision. The authors pro-
pose a mixed-integer linear program with time-indexed variables. In Perez-
Gonzalez et al. (2019) and to minimize the total tardiness, constructive
heuristics and a mixed integer liner program are proposed for the unrelated
parallel machines scheduling problem with machine eligibility and sequence-
dependent setup times. Inspired by the plastic injection industry, Bektur
and Saraç (2019) address the unrelated parallel machine scheduling problem
with sequence-dependent setup times and eligibility constraints with a com-
mon server. In their problem, jobs have release dates and the criterion is
the total weighted tardiness. A mathematical model (with positional vari-
ables) and two heuristic approaches, tabu search and simulated annealing,
are proposed and their results are compared. Note that there is only one
server to set up machines in Bektur and Saraç (2019) and that the server
has no transport times, whereas we consider multiple auxiliary resources
and their transport times. Sahney (1972) and Cheng and Kovalyov (2003)
consider two-machine scheduling problems (parallel machines in the first pa-
per and flow shop in the second paper) also with a single server (operator),
but with switching times of the server between the machines. In Werner
and Kravchenko (2010), identical parallel machines require a server to setup

8



jobs. Although multiple servers are considered, they are identical and there
is no transport time for the servers. Moreover, only the cases with unit
setup times or constant setup and processing times are investigated. Very
recently, Lee and Kim (2020) also consider several setup operators when
scheduling jobs that can be split on parallel machines and with sequence
dependent setup times. Here again, the machines are identical as well as the
servers, and no transport time for the servers is taken into account. More
importantly, compared to the previous literature, we consider different and
new criteria.

Maximizing the number of products completed before H, the end of a
time horizon, can be seen as minimizing the weighted number of late jobs
with H as a common due date for all the jobs, except that we consider
the ratio of the jobs that start before H and are completed after H, which
is a major difference. We can cite Dauzère-Pérès and Sevaux (2004) and
M’Hallah and Bulfin (2007), who propose exact methods to minimize the
number of tardy jobs on a single machine.

Finally, in Bitar et al. (2016), we propose a memetic algorithm to solve
the problem for the weighted sum of completion times and the number of
products completed before H. The minimization of the number of aux-
iliary resource moves, considered in this article, is a new criterion to our
knowledge.

4. Minimizing the weighted sum of completion times

4.1. Complexity results

A first statement about Problem Πw is that it is strongly NP-Hard.
Indeed, it is more general than R||

∑
wjCj , which is strongly NP-Hard.

Each instance of R||
∑
wjCj can be written as an instance of Πw by stating

A = N , i.e. a specific auxiliary resource to each job, and Ra = 0 for
each auxiliary resource a. Then, the constraints on auxiliary resources and
auxiliary resource transport times only refer to machine availability at time
1. Sequence-dependent and machine-dependent setup times are set to 0 and
Mi = {1, . . . ,m}. Because of the auxiliary resource unitary transport times,
the first job on each machine starts at time t = 1, which does not change
the problem complexity.

4.2. Integer Linear Programming (ILP) model

In this section, an Integer Linear Programming (ILP) model with time-
indexed variables is proposed for Πw. Time-indexed formulations for single-
machine scheduling problems have been studied by van den Akker et al.

9



(2000) and Dyer and Wolsey (1990). Many valid inequalities were pro-
posed and polyhedral studies conducted for this formulation, for instance
by van den Akker et al. (2000) and Sousa and Wolsey (1992). It led to effi-
cient linear programming-based and combinatorial lower bounds. In Obeid
et al. (2014), a time-indexed ILP model is designed to solve an unrelated
parallel machine scheduling problem. This model extends the time-indexed
formulation for the single machine problem. In our case, adapting these
constraints is not straightforward because of the sequence-dependent and
machine-dependent setup time constraints. The ILP in Fanjul-Peyro (2020)
relies on disjunctive variables, i.e. binary variables that model whether job i
is processed right after j or not. Although unrelated parallel machines with
sequence-dependent setup times and auxiliary resources are also considered,
the makespan is minimized.

The choice of our modeling is motivated by the fact that time-indexed
formulations are: (1) Powerful enough to linearly express a wide variety of
constraints, as it is the case in our problem, (2) “Natural”, i.e. there is a
direct semantic relation between the variables of the model and the decision
variables of our problem, and, importantly, (3) Known to provide good
linear relaxation bounds, and thus effective in integer linear programming
solvers. When the number of products completed before H is maximized,
i.e. for problem Πh studied in Section 5, time-indexed variables are actually
necessary to model the problem.

Let T be an integer large enough, e.g. chosen to be larger than or equal
to the makespan of any optimal solution of problem Πw.

A feasible solution of the problem can be represented as follows:

(ujmt)j∈{1,...,N},m∈Mj ,t∈{0,...,T−ρjm}

where ujmt ∈ {0,1}, and ujmt is equal to 1 if and only if job j is processed
on machine m and begins its process at date t. Let U be the set of such
vectors.

The constraints on variables (ujmt) of U are listed below.

4.2.1. Classical constraints

The classical assignment constraints are:

∑
m∈Mj

T−ρjm∑
t=0

ujmt = 1 ∀j = 1, . . . , N. (1)

By adapting classical capacity constraints from the time-indexed formu-

10



lation for single-machine problems, one obtains:

∑
j|m∈Mj

min(T−ρjm,t)∑
t0=max(0,t−ρjm+1)

ujmt0 ≤ 1,∀m = 1, . . . ,M, t = 0, . . . , T − min
j|m∈Mj

{ρjm}.

(2)

Another valid inequality is further added to the model. Constraints (3)
deal with the auxiliary resource constraints and model the fact that jobs
requiring the same auxiliary resource cannot be processed simultaneously
on different machines.

∑
j|ϕj=k

∑
m∈Mj

min(T−ρjm,t)∑
t0=max(0,t−ρjm+1)

ujmt0 ≤ 1, ∀k ∈ {1, . . . , A}, t ∈ {0, . . . , T}.

(3)

4.2.2. Constraints on auxiliary resources, sequence-dependent and machine-
dependent setup times

To represent a feasible solution of Πw, variables (ujmt) ∈ U must also
satisfy the constraints below:

L(1− ujmt) ≥
∑

j0|m∈Mj0
j0 6=j

min(T−ρj0m,t+ρjm−1+βjmj0
)∑

t0=t

uj0mt0+

∑
j0|ϕj0

=ϕj

j0 6=j

∑
m0∈Mj0
m0 6=m

min(T−ρj0m0
,t+ρjm)∑

t0=t

uj0m0t0

∀j = 1, . . . , N,∀m ∈Mj , ∀t = 0, . . . , T − ρjm, (4)

where L is an upper bound of the right member sum. Here, L stands for a
big-M constant, to avoid confusion with the number of machines. The big-
M is computed as the maximum number of variables that are likely to be
equal to 1 in the right-hand side of the inequality. We consider the number
of distinct job indices in both sums, according to the assignment constraints
(a job is assigned to at most one machine, and has a single start time).
Then, for a given job j and a given machine m, the big-M coefficient can
be set to the number of jobs, other than j, that either can be processed by

11



machine m or require the same resource as j. Here, we take advantage of
other constraints of the model to derive a bound.

These big-M constraints can be removed and replaced by other inequal-
ities. Indeed, each job j0 of the right member sum can be considered sepa-
rately:

ujmt +
∑

m0∈Mj0
\{m}

min(T−ρj0m0
,t+ρjm)∑

t0=max(0,t−ρj0m0
)

uj0m0t0+

∑
m0∈Mj0

∩{m}

min(T−ρj0m0
,t+ρjm−1)∑

t0=max(0,t−ρj0m0
+1)

uj0m0t0 ≤ 1,

∀j = 1, . . . , N,∀m ∈Mj ,∀t = 0, . . . , T−ρjm,∀j0 6= j such that ϕj0 = ϕj (5)

and

ujmt +

min(T−ρj0m,t+ρjm−1+βjmj0
)∑

t0=max(0,t−ρj0m+1−βj0mj)

uj0mt0 ≤ 1,

∀j = 1, . . . , N,∀m ∈Mj ,∀t = 0, . . . , T − ρjm,∀j0 ∈ Qm \ {j}. (6)

Remark 1. Note that Constraints 6 imply that setup times must follow a
relaxed version of the triangular inequality: For each pair of jobs (j1, j2)
and each machine m, there is no other job j3 such that

βj1mj3 + ρj3m + βj3mj2 ≤ βj1mj2 ,

which means that there must not be another job j3 that, being processed
between jobs j1 and j2, can reduce the time elapsed between the end of j1
and the start of j2.

Constraints (5) and (6) ensure that, if job j is scheduled on machine
m and starts at time t, then no other job j0 requiring the same auxiliary
resource is started on another machine m0 between t−ρj0m0 and t+ρjm, and
no other job j0 is started on the same machine between t− ρj0m + 1−βj0mj
and t+ ρjm − 1 + βjmj0 .

Other models use this type of constraints to model the non-simultaneous
processing of jobs on a machine. However, in our model, these two families
of constraints also deal with auxiliary resources and sequence-dependent and

12



machine-dependent setup times. Constraints (2) are consequently used as
valid inequalities, to provide better bounds.

Finally, the following constraints are added.

N∑
j=1

∑
m∈Mj

m 6=Rϕj

ujm0 = 0. (7)

Constraints (5) and (6) take into account auxiliary resources but not
their initial locations. The unitary auxiliary resource transport time pre-
vents from using an auxiliary resource on a machine at time t = 0, unless
this auxiliary resource is initially on the machine. Hence, a job j starts on
a qualified machine m (m ∈ Mj) at time t = 0 only if Rϕj = m, as shown
in constraints (7).

4.2.3. Complete model

Because of the assignment constraints (1), there exists a unique couple
in Mj × {0, . . . , T − ρjm} such that ujmt = 1 for any job j. Therefore,

Cj =
∑

m∈Mj

T−ρjm∑
t=0

ujmt(t+ ρjm).

Hence the following ILP model is valid for Πw.

min

N∑
j=1

wj

 ∑
m∈Mj

T−ρjm∑
t=0

ujmt(t+ ρjm)

 (8)

s. t.∑
m∈Mj

T−ρjm∑
t=0

ujmt = 1 ∀j = 1, . . . , N (1)

ujmt +
∑

m0∈Mj0\{m}

min(T−ρj0m0
,t+ρjm)∑

t0=max(0,t−ρj0m0 )

uj0m0t0+

∑
m0∈Mj0

∩{m}

min(T−ρj0m0
,t+ρjm−1)∑

t0=max(0,t−ρj0m0
+1)

uj0m0t0 ≤ 1

∀j = 1, . . . , N,∀m ∈Mj ,∀t = 0, . . . , T−ρjm,∀j0 6= j such that ϕj0 = ϕj (5)

13



ujmt +

min(T−ρj0m,t+ρjm−1+βjmj0
)∑

t0=max(0,t−ρj0m+1−βj0mj)

uj0mt0 ≤ 1

∀j = 1, . . . , N,∀m ∈Mj ,∀t = 0, . . . , T − ρjm,∀j0 ∈ Qm \ {j}. (6)

N∑
j=1

∑
m∈Mj

m 6=Rϕj

ujm0 = 0 (7)

ujmt ∈ {0,1} ∀j = 1, . . . , N,∀m ∈Mj ,∀t = 0, . . . , T − ρjm. (9)

This model includes the same constraints, which are:

• Assignment constraints (1): Each job is processed by one and only one
machine,

• Auxiliary resource constraints (5): Each pair of jobs that require the
same auxiliary resource cannot be processed simultaneously on two
machines,

• Capacity constraints (6): Each machine can process at most one job
at a time (including the sequence-dependent setup times),

• Initial conditions (7): Impossible to start a job on a machine at t = 0
if the required resource is located elsewhere.

Computational experiments on this model are presented and discussed in
Section 7.

5. Maximizing the number of products completed before H

5.1. Complexity results

Let us recall that Πh is the scheduling problem introduced in Section 2,
in which the number of products completed before H is maximized.

The following proves that Πh is harder than a generalization of R||Cmax.
An important link between the makespan criterion and the number of pro-
duced wafer before a time limit is established.

Lemma 1. Let I be an instance of Πh and C(I) the minimum makespan
for I. The following property holds: If H ≥ C(I), then the criterion for the
optimal solution S∗ of Πh, i.e. the number of products completed before H,
is c(S∗) =

∑N
j=1 nj. If H < C(I), then c(S∗) <

∑N
j=1 nj.

14



Proof. If H ≥ C(I), then there exists a schedule with makespan lower than
H, i.e. where each job is completed before H. Hence, the criterion of the
optimal solution is the total number of products completed before H, i.e.∑N

j=1 nj . If H < C(I), the optimality property of C(I) implies that there
is no solution with makespan lower than or equal to H. For each solution,
there exists at least one job that is completed after H, hence the inequality
c(S∗) <

∑N
j=1 nj .

Let us denote by ΠC the problem Πh in which the objective function is
the minimum makespan. The following lemma shows that Πh is harder than
ΠC .

Lemma 2. If there exists a polynomial (resp. pseudo-polynomial) time al-
gorithm for Πh, then there exists a polynomial (resp. pseudo-polynomial)
time algorithm for ΠC .

Proof. Let I be an instance of Πh, K1 = 0 and K2 an upper bound of the
minimum makespan for I. This upper bound can be for example K2 =∑N

j=1 maxm∈Mj{ρjm}+ (N − 1) maxj,m,k{βjmk}+N . We consider a poly-
nomial (resp. pseudo-polynomial) time algorithm for Πh.

We use this algorithm with H = bK1+K2
2 c. If the criterion of the optimal

solution is
∑N

j=1 nj , then according to Lemma 1, H is larger than or equal to
the minimum makespan, which leads to setting K2 = H and repeating the
same operation. Otherwise, H is strictly lower than the minimum makespan,
which leads to setting K1 = H and repeating the same operation.

Then we use binary search until K1 = K2, i.e. the minimum makespan
is determined.

The number of iterations is O(logK2), which is polynomial in the size of
the instance (since K2 can be expressed as an exponential function of the size
of the instance), so binary search is in polynomial (resp. pseudo-polynomial)
time since the algorithm for Πh is in polynomial (resp. pseudo-polynomial)
time.

Theorem 1. Problem Πh is strongly NP-Hard.

Proof. According to Lemmas 1 and 2, Πh is harder than ΠC , which is a
generalization of R||Cmax. And according to Garey and Johnson (1979),
R||Cmax is strongly NP-Hard, since it generalizes P ||Cmax. Which proves
the theorem.

15



5.2. Integer Linear Programming (ILP) model

The linear programming model introduced in Section 4.2 can also be
used to model problem Πh.

Remark 2. For problem Πh, in every solution, jobs that begin after H
do not change the value of the objective function. Then, by relaxing the
constraints ensuring that all jobs must be processed, we obtain a similar ILP
as for problem Πh. The following constraints model the relaxed assignment
constraint. The assignment equality is replaced by an inequality, because all
that matters is what happens before H. The jobs starting after H may not
be processed, since they do not impact the objective function.

∑
m∈Mj

T−ρjm∑
t=0

ujmt ≤ 1 ∀j = 1, . . . , N (10)

The objective function of Πh,
N∑
j=1

njθj , can be expressed as follows:

max

N∑
j=1

∑
m∈Mj

H−ρjm∑
t=0

njujmt +

H∑
t=H−ρjm+1

nj
H − t
ρjm

ujmt

 (11)

since, for every job j:

θj =
∑

m∈Mj

H−ρjm∑
t=0

ujmt +
H∑

t=H−ρjm+1

H − t
ρjm

ujmt

 .

As described in Section 2.3, the following definition of θj is used:

θj =


min(ρjmj

,H−tj)
ρjmj

if tj ≤ H,

0 if tj > H,

where tj is the starting time of job j. Note that (11) is a linearization of
this expression. Indeed, we can denote as mj the machine to which job j is
assigned and consider the related term in the sum over m ∈ Mj . For each
term of this sum, there is at most one index t for which ujmt 6= 0. Then,
there are two cases:

16



• If tj > H, then all variables ujmjt are equal to 0 in the sum

H−ρjmj∑
t=0

ujmjt +

H∑
t=H−ρjmj

+1

H − t
ρjmj

ujmjt,

since variable t is in the range [0, H]. Hence, as in the expression of
θj , the value is 0.

• If tj ≤ H, then only one ujmjt is equal to 1 in the sum

H−ρjmj∑
t=0

ujmjt +

H∑
t=H−ρjmj

+1

H − t
ρjmj

ujmjt,

since variable t is in the range [0, H]. If tj ≤ H − ρjmj , then variable

ujmjt that is equal to 1 is in the left-hand sum, i.e.
∑H−ρjmj

t=0 ujmjt.
Hence, the value of the term is equal to 1. As wanted in the expression

of θj =
min(ρjmj

,H−tj)
ρjmj

, since tj ≤ H − ρjmj , θj =
ρjmj

ρjmj
= 1. If tj >

H − ρjmj , then

θj =
min(ρjmj , H − tj)

ρjmj

=
H − tj
ρjmj

,

which is the coefficient of variable ujmjt in the right-hand sum.

Hence, Πh can be solved by solving the ILP with objective function (11)
and Constraints (5), (6) (7), (9) and (10) .

Remark 3. As illustrated below, the proposed ILP models can be adapted to
a generalization of the problem: If the transport times depend on the origin
and destination of the auxiliary resources instead of being constant, then a
matrix (Tuv)u,v∈{0,...,M} indicates the transport time of an auxiliary resource
from machine u to machine v. In this case, Constraints (5) can be rewritten:

ujmt +
∑

m0∈Mj0

min(T−ρj0m0
,t+ρjm−1+Tmm0 )∑

t0=max(0,t−ρj0m0
+1−Tm0m)

uj0m0t0 ≤ 1 (12)

∀j = 1, . . . , N,∀m ∈Mj ,∀t = 0, . . . , T − ρjm,∀j0 6= j such that ϕj0 = ϕj.
The only thing that changes compared to constraints (5) is the transport

time Tmm0, which is the transport time from machine m to machine m0.

17



Furthermore, Constraints (7) are rewritten:

N∑
j=1

∑
m∈Mj

m 6=Rϕj

min(TRϕjm
−1,T−ρjm)∑

t=0

ujmt = 0. (13)

Here, Rϕj is the initial location of the required auxiliary resource of job
j. Then, for each machine m, TRϕjm

stands for the transport time between
the initial location of the resource and machine m. This constraint states
that no job can be processed before its required resource is transported from
its initial location.

6. Minimizing the number of auxiliary resource moves

6.1. Complexity results

Preliminary properties are necessary to derive complexity results for the
problem of minimizing the number of auxiliary resource moves, denoted by
ΠM . Let us recall that, for each auxiliary resource a, Ea = {j ∈ J | ϕj = a}
is the set of jobs that require a.

Some additional notations are introduced:

• For each machine m, Qm denotes the set of jobs j such that m ∈Mj ,
i.e. for which m is qualified.

• For each machine m, for each auxiliary resource a, Mm(a) = Qm ∩
Ea denotes the set of jobs in Ea for which machine m is qualified;
furthermore M0(a) = ∅.

• For each auxiliary resource a, Na = |Ea| is the number of jobs that
require a.

6.1.1. Solution representation

The set χ ⊂ {1, . . . ,M}N × {1, . . . , N}N represents feasible solutions of
ΠM , where each vector (x, y) ∈ χ has the following components:

• A vector
y = (y1, . . . , yA)

where ya = (ya1 , . . . , y
a
Na

) and yaj ∈ {1, . . . , N} is the index of the
j-th job (in the chronological order) requiring auxiliary resource a.
For example, if jobs 3, 7 and 4 require auxiliary resource a and are

18



processed in the order 3, 7, 4, (since they require the same auxiliary
resource, they cannot be processed in parallel), then ya1 = 3, ya2 = 7
and ya3 = 4.

• A vector
x = (x1, . . . , xA)

where xa = (xa1, . . . , x
a
Na

) and xaj ∈ {1, . . . ,M} is the machine process-
ing the j-th job (in chronological order) requiring auxiliary resource
a. Using the same example, if jobs 3 and 4 are on machine 2 and job
7 is on machine 1, then xa1 = xa3 = 2 and xa2 = 1.

Let f : χ→ N be the mapping that sends each feasible solution (x, y) ∈ χ
to the number of auxiliary resource moves induced by this solution. For all
(x, y) ∈ χ:

f(x, y) =
A∑
a=1

∣∣{j ∈ {0, . . . , Na − 1}
∣∣xaj 6= xaj+1

}∣∣
with, for all a ∈ {1, . . . , A}, xa0 = Ra.
Note that the start times of the jobs have no influence on the objective

function. An O(N) algorithm to compute feasible start times from a given
solution (x, y) is proposed.

According to the following result, we can search the optimal solution
within χ.

Proposition 1. For each (x, y) ∈ χ, a solution (x, y, t) with start times can
be built in O(N) time with Algorithm 1, where parameters β0mj, y

a
0 , t0 and

ρ0m are fixed to 0.
Algorithm Building-Start-Times returns a feasible schedule in O(N)

time.

Note that array D includes the last jobs scheduled on the machines at
the end of each iteration. Initially, all components of D are equal to 0, since
the solution is empty (see line 5). Array D is used to compute the setup time
when starting a new job on a machine (setup times are sequence dependent,
hence the need to keep track of the previous job on each machine), and is
updated at the end of each iteration of the main loop (line 15). The same
goes for array S (the current locations of the resources), which is used to
compute the transport times of the resources (see if condition, lines 10 and
11).

19



Algorithm 1 Building-Start-Times(x, y)

1: for a← 1 to A do
2: S[a]← Ra {Current location of auxiliary resources}
3: end for
4: for m← 1 to M do
5: D[m]← 0 {Last job scheduled on each machine}
6: end for
7: for a← 1 to A do
8: for j ← 1 to Na do
9: τ ← 0

10: if S[a] 6= xaj then
11: τ ← 1 {For unitary auxiliary resource transport times}
12: end if
13: S[a]← xaj {Updates current locations of auxiliary resources}
14: tyaj ← max(tyaj−1

+ ρyaj−1x
a
j−1

+ τ, tD[xaj ]
+ ρD[xaj ]x

a
j

+ βD[xaj ]x
a
j y

a
j
)

15: D[xaj ]← yaj {Updates the last scheduled job}
16: end for
17: end for
18: return (x, y, t1, . . . , tN )

Proof. • Complexity: Each iteration of the main loop takes constant
time O(1) and the maximum number of iterations is

∑A
j=1Na = N .

• Correctness: We show that, at the end of each iteration of the main
loop, the start time of job yaj

– Is in the same order as in (x, y) for all jobs that require the same
auxiliary resource a

– And satisfies the constraints (sequence-dependent and machine-
dependent setup times, non simultaneous process of jobs on the
same machine, unitary auxiliary resource transport time and non
simultaneous process of jobs requiring the same auxiliary re-
source).

Let us first show that, in the solution returned by Algorithm 1, the
order of jobs requiring the same auxiliary resource a is the same as
in (x, y). Let us denote by Dm the index of the last scheduled job on
machine m. In the algorithm, this value is given by D[m].

Job yaj is always processed on machine xaj . Moreover, for all a ∈
{1, . . . , A}, start times are computed in the increasing order of index

20



j (from 1 to Na) and the equality (line 14)

tyaj = max(tyaj−1
+ ρyaj−1x

a
j−1

+ τ, tDxa
j

+ ρDxa
j
xaj

+ βDxa
j
xaj y

a
j
)

(where τ is equal to 1 if an auxiliary resource move is required, 0
otherwise) ensures the inequality tyaj ≥ tyaj−1

, which confirms that the
solution returned by the algorithm satisfies the process order of jobs
requiring the same auxiliary resource, given in (x, y).

Then, we show that the start times tyaj satisfy the sequence-dependent
setup times and the auxiliary resource and machine capacity con-
straints, with the following inequalities:

tyaj ≥ tDxa
j

+ ρDxa
j
xaj

tyaj ≥ tyaj−1
+ ρyaj−1x

a
j−1

+ τ

tyaj ≥ tDxa
j

+ ρDxa
j
xaj

+ βDxa
j
xaj y

a
j
.

The first inequality ensures the non-simultaneous process of different
jobs on the same machine. The second inequality ensures the aux-
iliary resource transport times and the non-simultaneous process of
jobs requiring the same auxiliary resource. The last inequality corre-
sponds to the sequence-dependent and machine-dependent setup time
constraints.

6.1.2. Splitting the problem

Proposition 1 allows the following problem ΠM to be considered:

min
(x,y)∈χ

f(x, y)

which is equivalent to:

min
(x,y)∈χ

f(x, y) +A

since A is a constant term.
Indeed, in the following, we prove that this problem can be split into A

subproblems, one per auxiliary resource. Then we prove that every A-tuple
of solutions of these subproblems corresponds to a solution of the initial
problem. Thus, solving the subproblems provides a method to solve ΠM .

21



For all a ∈ {1, . . . , A}, let us consider the set

χa = {(xa, ya)|∃(x1, . . . , xa, . . . , xA, y1, . . . , ya, . . . , yA) ∈ χ}

and introduce the function fa : χa → N, defined as follows:

fa(x
a, ya) =

∣∣{j ∈ {0, . . . , Na − 1}
∣∣xaj 6= xaj+1

}∣∣ ,
which implies

f(x, y) =

A∑
a=1

fa(x
a, ya).

Proposition 2. The following equality holds.

min
(x,y)∈χ

f(x, y) =
A∑
a=1

min
(xa,ya)∈χa

fa(x
a, ya).

and, for all optimal solutions (xa, ya), a ∈ {1, . . . , A}, an optimal solution
(x1, . . . , xA, y1, . . . , yA) of ΠM is obtained.

Proof. Let us recall that, for every auxiliary resource a, Ea is the set of jobs
that require a. We consider, for every auxiliary resource a, the problem

Π̃a : min
(xa,ya)∈χa

fa(x
a, ya).

First, let us prove that each A-tuple of solutions ((x1, y1), . . . , (xA, yA)) ∈
χ1×. . .×χA of Problems Π̃a corresponds to a solution (x1, . . . , xA, y1, . . . , yA)
of ΠM .

Indeed, each job belongs to one and only one set Ea. These sets form
a partition of J . This implies that the constraints on the unique process
of jobs are satisfied by each solution (x1, . . . , xA, y1, . . . , yA) built from the
A solutions ((x1, y1), . . . , (xA, yA)) of Problems Π̃a. Machine eligibility con-
straints are also satisfied since these constraints are the same in Problems
Π̃a.

Furthermore, to each feasible solution (x1, . . . , xA, y1, . . . , yA) can be as-
sociated A feasible solutions

((x1, y1), . . . , (xA, yA))

for Problems Π̃a.

22



Let us consider the optimal solutions ((x1
∗
, y1
∗
), . . . , (xA

∗
, yA

∗
)) of Prob-

lems Π̃a.
Each optimal solution

(x̂1, . . . , x̂A, ŷ1, . . . , ŷA)

of ΠM has a criterion of
∑A

a=1 fa(x̂
a, ŷa). Also,

A∑
a=1

fa(x
a∗, ya∗) =

A∑
a=1

min
(xa,ya)∈χa

fa(x
a, ya) ≤

A∑
a=1

fa(x̂
a, ŷa).

Because (x1
∗
, . . . , xA

∗
, y1
∗
, . . . , yA

∗
) is feasible, it is optimal.

Let (x∗, y∗) = (x1
∗
, . . . , xA

∗
, y1
∗
, . . . , yA

∗
) be an optimal solution of ΠM .

If there exists (xk
∗
, yk
∗
) such that

fk(x
k∗, yk

∗
) 6= min

(xk,yk)∈χk
fk(x

k, yk),

then

f(x∗, y∗) =
A∑
a=1

fa(x
a∗, ya∗) <

A∑
a=1

min
(xa,ya)∈χa

fa(x
a, ya)

which leads to a contradiction and proves the proposition.

Corollary 1. Solving Problem ΠM is equivalent to solving the A problems

Π̃1, . . . , Π̃A

and building a solution in O(A) time (see Algorithm 2).

Algorithm 2 Min-Auxiliary-Resource-Moves(I)

for a← 1 to A do
(xa, ya)←Min-Auxiliary-Resources(Ea,M, a)

end for
return (x1, . . . , xA, y1, . . . , yA) {Return a combination in O(A) time}

Then, analyzing the complexity of Problems Π̃a helps to characterize the
complexity of ΠM , which is a generalization.

6.1.3. Solving subproblems

Let us recall that we consider, for each solution (xa, ya), the values xa0 =
Ra.

23



Proposition 3. Each solution (xa1, . . . , x
a
Na
, ya1 , . . . , y

a
Na

) of Π̃a satisfying
the following property is dominant:

∀j ∈ {0, . . . , Na − 1} s. t. xaj 6= xaj+1, xaj 6= xak ∀k ∈ {j + 2, . . . , Na}.

Proof. Let (xa, ya) = (xa1, . . . , x
a
Na
, ya1 , . . . , y

a
Na

) be a solution of ΠM that
does not verify this property. Then let us consider an index j ∈ {0, . . . , Na−
1} such that xaj 6= xaj+1 and there exists k ∈ {j + 2, . . . , Na} such that
xaj = xak.

Let k′ = min{k ∈ {j + 2, . . . , Na} | xaj = xak}, which exists according to
the hypothesis.

Then, let us consider the solution

(x′a, y′a) = (xa1, . . . , x
a
j , x

a
k′ , x

a
j+1, . . . , x

a
k′−1,

xak′+1, . . . , x
a
Na
, ya1 , . . . , y

a
j , y

a
k′ , y

a
j+1, . . . , y

a
k′−1, y

a
k′+1, . . . , y

a
Na

).

We have

fa(x
′a, y′a) =


fa(x

a, ya)− 1 if k′ = Na

fa(x
a, ya) si k′ < Na and xak′ = xak′+1

fa(x
a, ya)− 2 if k′ < Na, x

a
k′ 6= xak′+1 and xak′−1 = xak′+1

fa(x
a, ya)− 1 otherwise.

then fa(x
′a, y′a) ≤ fa(xa, ya).

It is possible to show that a non-dominant solution cannot be optimal.
Indeed, let us assume the case where k′ < Na and xak′ = xak′+1, then the
criterion remains the same. But we can apply the same transformation to
the solution (x′a, y′a) until we reach one of the three other cases. This is
possible since k′ + 1 is the minimum index in {j + 2, . . . , Na} such that
x′aj = xak′+1, and since the maximum index of this set cannot reach this case.

Corollary 2. Determining an optimal solution among dominant solutions
is equivalent to determining the minimum number of machines to which
auxiliary resource a is assigned. Hence, an upper bound on the minimum
number of auxiliary resource moves is M ×A.

Proof. In the dominant solutions (xa, ya), the number of distinct values of
(xa0, x

a
1, . . . , x

a
Na

) is the number of machines to which auxiliary resource a is
moved. This is the number of auxiliary resource moves increased by one.

24



Remark 4. The storage area is considered as a machine, with regards to
the auxiliary resource moves.

For example, if xa = (2, 1, 2, 6, 5, 4, 4, 4, 3, 3, 6), the corresponding solu-
tion is not dominant and cannot be optimal, because machine 1 is used once
between two processes of machine 2. A dominant solution would be, for
instance, (2, 2, 1, 6, 6, 5, 4, 4, 4, 3, 3). Here, the number of used machines is
6, and the number of auxiliary resource moves is 6− 1 = 5, whereas in the
first solution, for the same number of used machines, there are 7 auxiliary
resource moves.

According to Corollary 2, solving Π̃a is equivalent to determining the
minimal number of machines to which auxiliary resource a is assigned.

6.1.4. Polynomial reduction

The following theorem links the problem to another combinatorial op-
timization problem, well-known in the literature. The Set Cover problem
is strongly NP-Hard and generalizes the Vertex Cover. It is one of the
first problems for which approximation algorithms were analyzed (Johnson
(1974) and Lovász (1975)).

Theorem 2. The Set Cover problem and Π̃a, a ∈ {1, . . . , A}, are equivalent.

Proof. First, let us prove that there is a polynomial time reduction from the
Set Cover problem to Problem Π̃a, a ∈ {1, . . . , A}. The Set Cover problem
has the following entries:

• A set T to cover,

• s subsets T1, . . . , Ts of T such that T1 ∪ . . . ∪ Ts = T .

The question is to determine a subset {V1, . . . , Vk} of {T1, . . . , Ts} of
minimum cardinality such that ∪ki=1Vi = T .

Let us consider an instance of Set Cover, and show how to build an
instance of Π̃a:

• Ea = T ,

• Mm(a) = Tm, for all 1 ≤ m ≤M .

The optimal solution of this instance gives the minimal number of ma-
chines that can process the jobs of Ea, i.e. the minimal number of machines
to which auxiliary resource a is assigned. In this way, we obtain the minimal
cover of the set T by subsets T1, . . . , Ts.

25



Let {Mm1(a), . . . ,Mmd
(a)} be an optimal solution of the problem. The

dominance property imposes first to assign all jobs in Mm1(a) on m1 and
to process them consecutively. Then, all jobs in Mm2(a) \ Mm1(a) are
assigned to m2 and processed consecutively. This is repeated until all jobs in

Mmd
(a) \

(
∪d−1r=1Mmr(a)

)
are assigned to md and processed consecutively.

This procedure gives the minimal number of subsets that cover T = Ea.
Otherwise we could find another set with lower cardinality as a solution,
and thus a lower number of machines that would use auxiliary resource a,
which leads to a contradiction.

Similarly, each optimal solution of the Set Cover problem corresponds
to an optimal solution of Π̃a. The same contradiction proof scheme can be
used.

Let us also show that there exists a polynomial time reduction from Π̃a

to Set Cover. Let I be an instance of Π̃a. We show how to build an instance
I ′ of Set Cover.

The set to cover T is equal to the set Ea ∪ {0} where 0 represents a
dummy job, and the covering sets are the setsMm(a) (0 ≤ m ≤M), where
MRa(a) contains the additional dummy job 0. This is to ensure that the
solution includes the initial location of auxiliary resource a.

Every optimal solution of I ′ corresponds to an optimal solution of Π̃a

(the set of machines for the auxiliary resource). Indeed, if there exists a set
of machines with lower cardinality r that can process all the jobs requiring
auxiliary resource a, then there exists a set {Mm1(a), . . . ,Mmr(a)} that
covers the set T = Ea, which contradicts the fact that the previous solution
was optimal for I ′. The reverse remains true, with a similar reasoning.

Corollary 3. Problem ΠM is strongly NP-Hard.

Remark 5. Corollary 3 is true when the number M of machines is not
fixed, i.e. it is a parameter of the problem. The following theorem shows
that it does not stand when M is fixed.

Theorem 3. If M is a constant, Problem ΠM is in P .

Proof. Proving this theorem, according to Corollary 1 and Proposition 2, is
the same than showing that the Set Cover problem is in P when the number
of covering sets is constant. In that case, the number of feasible solutions
of the problem is the number of subsets of the set of the M covering sets,
which is 2M . Then, using Proposition 2, there are A× 2M solutions for one
instance of Problem ΠM among which we can search an optimal solution in
O(A) time, and 2M is assumed constant.

26



6.2. Integer Linear Programming (ILP) model

A well-known ILP model exists for the Set Cover problem and, according
to the preliminary remarks and properties, we can show how to adapt it and
formulate an ILP model for ΠM . In fact, the solution will only specify
which auxiliary resource goes to which machine. Because of the dominance
property, this is sufficient since we know the initial location Ra of each
auxiliary resource a and there is always a way to build a feasible solution
with correct start times from the order of jobs requiring the same auxiliary
resource and their machine assignment.

The ILP model of Set Cover (with set T and subsets T1, . . . , Ts) uses
binary variables xi ∈ {0,1} such that xi = 1 if and only if subset Ti is in the
solution.

min
s∑
j=1

xj (14)

s. t.∑
j|k∈Tj

xj ≥ 1 ∀k ∈ T (15)

xj ∈ {0, 1} ∀j = 1, . . . , s (16)

When adapted to Problem Π̃a, the model becomes (with T = Ea ∪ {0},
Tm =Mm(a) for all m ∈ {0, . . . ,M} \ {Ra}, and TRa =MRa(a) ∪ {0}).

min
M∑
m=0

xm (17)

s. t.∑
m|j∈Tm

xm ≥ 1 ∀j ∈ Ea ∪ {0} (18)

xm ∈ {0, 1} ∀m = 0, . . . ,M (19)

27



Theorem 4. The following formulation is valid for Problem ΠM .

min
A∑
a=1

M∑
m=0

uam −A (20)

s. t.∑
m|j∈Mm(a)

uam ≥ 1 ∀a = 1, . . . , A, ∀j ∈ Ea ∪ {0} (21)

uaRa = 1 ∀a = 1, . . . , A (22)

uam ∈ {0, 1} ∀a = 1, . . . , A, ∀m = 0, . . . ,M (23)

Proof. We consider that variable uam ∈ {0, 1} is equal to 1 if and only if
auxiliary resource a goes to machine m in the solution.

Hence,
∑M

m=0 uam is the total number of machines to which auxiliary
resource a is assigned. Then let

(x, y) = (x1, . . . , xA, y1, . . . , yA)

be the corresponding solution. Hence,

fa(x
a, ya) + 1 =

M∑
m=0

uam.

This implies that
A∑
a=1

(
M∑
m=0

uam

)
=

A∑
a=1

(fa(x
a, ya) + 1) = f̃(x, y) +A.

Then, the objective function of this integer linear program is the objec-
tive function of ΠM .

As a constraint, for each auxiliary resource a and each job requiring
that resource, there exists at least one eligible machine for the job to which
auxiliary resource a is assigned, otherwise it is impossible to process the job.
This is ensured by Constraints (21).

Constraints (22) correspond to the fact that an auxiliary resource is on
its initial location.

Then, each feasible solution of this program is a feasible solution of Π̃
and, using Algorithm 1, it is possible to build a solution of ΠM in O(N)
time, with the same criterion.

28



7. Computational experiments

In the following, computational experiments are presented and discussed
to evaluate the performances of the three ILP models. The time-indexed for-
mulation has been tested with the big-M Constraints (4) (column big-M)
and compared to the model where they are removed and replaced by Con-
straints (5) with right-hand side 1 (column RHS 1). These experiments are
performed on randomly generated instances that have common characteris-
tics with industrial data. They were run on an Intel Core i7-2640M CPU,
2.80GHz, using the SCIP C++ library and the solver IBM ILOG CPLEX
12.9.

Most of the jobs have 25 products and, with a probability of 10%, be-
tween 1 and 25 products following a uniform distribution. This relates to
the industrial context of semiconductor manufacturing where lots contain at
most 25 wafers, and most of the lots exactly 25 wafers. The maximum num-
ber of eligible machines for a job is set to max(2, M2 ). The processing times
are in {1, . . . , 10} and the sequence-dependent and machine-dependent setup
times are in {0, . . . , 5}. These relatively limited ranges for the processing
and setup times again fit the industrial context, and are helpful for the type
of formulations we adopted (time-indexed formulation). Our hypothesis is
that there is not a significant variability in the processing times (which is
the case in our industrial context), which can be normalized to be bounded
to the sets {1, . . . , 10} and {0, . . . , 5}. Indeed, setup times are rarely larger
than 50% of the processing times on average. The 1-to-10 and 1-to-5 ra-
tios are actually relatively extreme, which explains why we did not want
to exceed them. Finally, at most 50% of the pairs of jobs that can go on
the same machine have a sequence-dependent and machine-dependent setup
time that is not equal to 0. The reason is that some jobs can be processed
without any setup, to create what are called “trains” of jobs, because they
share the same properties on a given machine. We wanted to reproduce this
aspect of the photolithography workshop in the generated instances.

In the tables, the instances are given in the format (N−M−A) stands for
(number of jobs − number of machines − number of resources)), except for
problem Πh, for which there is a fourth parameter (H, end of time horizon).

As shown in Table 1, our Set Cover based approach works very well on
industrial-like instances. Because the number of machines is limited, the
number of covering sets is very small, which leads to an extremely quick
resolution.

The experiments on problems Πw and Πh are detailed in Table 2. For
each of the 11 instance sizes, 10 randomly generated instances are solved by

29



Inst. ΠM

Gap(%) Time (s)

(8-2-3) 0 1

(32-4-8) 0 1

(128-15-15) 0 1

(500-18-25) 0 1

(1600-20-25) 0 1

Table 1: Results for Problem ΠM with the Set Cover type model.

Πw Πh

Inst. Resolution time Inst. Resolution time
big-M RHS 1 big-M RHS 1

(8-2-3) 9.0 1.2 (8-2-3-20) 6.7 1.0

(10-2-3) 29.7 7.6 (10-2-3-25) 35.5 15.8

(10-2-4) 22.0 6.3 (10-2-4-25) 31.3 19.2

(10-3-3) 21.4 4.8 (10-3-3-16) 10.9 1.8

(15-2-3) 194.4 273.9 (15-2-3-16) 39.4 11.0

(15-3-3) 87.2 59.6 (15-3-3-25) 89.7 161.7

(15-3-5) 45.4 35.9 (15-3-5-25) 91.7 205.1

(20-2-3) 2 798.5 7 909.9 (20-2-3-28) 500.8 > 12 337.1

(20-3-3) 582.1 1 343.2 (20-3-3-20) 162.9 246.5

(25-3-3) 7 951.1 23 130.7 (25-3-3-20) 397.6 1 022.7

(25-3-12) 913.9 1517.5 (25-3-12-20) 149.6 > 3 471.12

Table 2: Resolution times (in seconds as an average of 10 randomly generated instances)
for problems Πw and Πh with time indexed model.

our exact method, with two different versions of the model: (1) With big-M
constraints (column “big-M”), and (2) With right-hand side 1 constraints
(column “RHS 1”). For problem Πw (minimization of weighted completion
times) and for small size instances, note that the RHS 1 model provides
better results with shorter resolution times, but it is outperformed by the
big-M formulation, starting from 20 jobs, when the size of the problem
increases. Indeed, for 25 jobs and 3 machines for instance, it takes on average
three times less resolution time with the big-M formulation than the RHS
1 formulation (7 951 seconds versus 23 130 seconds). Note also that the
resolution time decreases when the number of auxiliary resources increases.

30



Inst. No Const. (2) Const. (2) Best known
big-M RHS 1 big-M RHS 1 solution

(10-2-4) 69.9 95.9 137.3 143.2 170

(10-3-3) 73.0 95.4 107.0 113.6 134

(15-2-3) 88.8 132.9 210.1 216.8 278

(15-3-10) 100.3 126.0 195.6 200.4 246

(15-3-3) 86.3 121.0 148.4 160.7 214

(15-3-5) 94.3 137.6 168.5 182.1 229

(16-3-6) 100.8 137.8 198.1 206.4 243

(20-2-3) 106.7 167.2 322.0 329.9 485

(20-3-3) 147.0 206.9 336.4 348.6 478

(25-2-3) 172.9 257.0 686.6 690.9 872

(25-3-3) 152.4 220.5 387.4 396.2 547

(25-3-12) 156.8 216.2 420.6 431.2 531

(30-3-4) 192.6 280.1 577.3 589.9 756

(32-4-8) 230.6 311.5 523.4 542.6 723

(40-3-4) 270.5 393.4 1004.0 1014.2 1291

(50-3-6) 321.2 456.2 1448.0 1456.8 1781

Table 3: Lower bound improvements induced by valid inequalities (2) for Problem Πw

The comparison of the (25 − 3 − 3) and the (25 − 3 − 12) instances shows
that, in both cases, the average resolution time is 93% lower with the RHS
1 formulation (1 517 seconds with 12 resources versus 23 130 seconds with
3 resources) and 88% lower with the big-M formulation (913 seconds with
12 resources versus 7 951 seconds with 3 resources). This can be explained
by the fact that increasing the number of resources reduces the number of
jobs that are linked by shared resources, and thus mitigates the impact of
the auxiliary resource constraints.

The same observations can be made for problem Πh. Here, the sizes of
the instances are given as (N −M − A − H), where the last value is H,
the end of the time horizon on which the number of products is computed.
The same efficiency for the big-M formulation is observed on large enough
instances. For instance, it takes on average less than 150 seconds to solve the
(25− 3− 12− 20) instances, while the RHS 1 formulation provides optimal
results in more than 3 471 seconds on average. The > sign on the table
means that the solver was stopped because of too large resolution times
(more than 29 000 seconds). In all these cases (4 instances in total: 3 in the

31



(20 − 2 − 3 − 28) instances and 1 in the (25 − 3 − 12 − 20) instances), the
optimal solution was found but the upper bound decreased too slowly and
the branch-and-bound took hours to improve the gap.

The valid inequalities added to the models for Πw and Πh lead to better
bounds. Table 3 shows the lower bound improvements induced by both types
of valid inequalities, with big-M constraints (column “big-M”) and with
the right-hand side member 1 (column “RHS 1”). Bold values in the “Best
known solution” column mean the solution is optimal. On large instances,
the difference is larger. The relaxation bound is even 5 times larger in some
cases. Therefore, these constraints can be relevant to optimally solve larger
instances. The relaxation bound improvement is very small when using the
model where big-M Constraints (4) are replaced by Constraints (5) with
right hand side 1. Constraints (2) help to reduce the gap between both
formulations.

8. Conclusions and perspectives

We presented an original scheduling problem on unrelated parallel ma-
chines, by considering sequence-dependent and machine-dependent setup
times, auxiliary Resources and three criteria that are important in practical
settings. The problem complexity was analyzed for each criterion, lead-
ing to two NP-hardness results. Integer linear programming models were
also presented, and were tested on instances randomly generated with char-
acteristics from industrial data. They show that very large instances can
be solved very quickly when minimizing the number of auxiliary resource
moves, but that the computational times rapidly increase with the size of
the instances for the two other criteria.

Our future research aims at developing multi-criteria approaches relying
both on the models proposed in this paper, in particular the most efficient
one for the number of auxiliary resource moves, and the memetic algorithm
proposed in Bitar et al. (2016). One of the challenges is to characterize
the relevant solutions in the Pareto front. This is particularly important
because the criteria have different units, but also can somehow compensate
each other, e.g. additional moves of auxiliary resources are acceptable if
the productivity is improved enough, i.e. if the increase of the number
of products completed before H is large enough. Another perspective it
to use the mathematical models introduced in this paper to analyze the
performance of heuristics for the problems studied in this paper.

32



References

van den Akker, M., Hurkens, C., Savelsbergh, M., 2000. Time-Indexed
Formulations for Machine Scheduling Problems: Column Generation. IN-
FORMS Journal on Computing 12, 111–124.

Bektur, G., Saraç, T., 2019. A mathematical model and heuristic algorithms
for an unrelated parallel machine scheduling problem with sequence-
dependent setup times, machine eligibility restrictions and a common
server. Computers & Operations Research 103, 46–63.

Bitar, A., Dauzère-Pérès, S., Yugma, C., Roussel, R., 2016. A memetic al-
gorithm to solve an unrelated parallel machine scheduling problem with
auxiliary resources in semiconductor manufacturing. Journal of Schedul-
ing 19, 367–376.

Blazewicz, J., Lenstra, J., Kan, A.R., 1983. Scheduling subject to resource
constraints : Classification and complexity. Discrete Applied Mathematics
5, 11–24.

Brucker, P., Jurisch, B., Kramer, A., 1997. Complexity of scheduling prob-
lems with multi-purpose machines. Annals of Operations Research 70,
57–73.

Bruno, J., Coffman, E., Sethi, M., 1974. Scheduling independent tasks to
reduce mean finishing time. Journal of the ACM 17, 382–387.

Cakici, E., Mason, S., 2007. Parallel machine scheduling subject to auxiliary
resource constraints. Production Planning and Control 18, 217–225.

Cheng, T., Kovalyov, M., 2003. Scheduling a single server in a two-machine
flow shop. Computing 70, 167–180.

Dauzère-Pérès, S., Sevaux, M., 2004. An exact method to minimize the
number of tardy jobs in single machine scheduling. Journal of Scheduling
7, 405–420.

Dyer, M., Wolsey, L., 1990. Formulating the single machine sequencing
problem with release dates as a mixed integer program. Discrete Applied
Mathematics 26, 255–270.

Edis, E.B., Oguz, C., Ozkarahan, I., 2013. Parallel machine scheduling
with additional resources: Notation, classification, models and solution
methods. European Journal of Operational Research 230, 449–463.

33



Ekici, A., Elyasi, M., Örsan Özener, O., Sarıkaya, M., 2019. An application
of unrelated parallel machine scheduling with sequence-dependent setups
at vestel electronics. Computers & Operations Research 111, 130–140.

Fanjul-Peyro, L., 2020. Models and an exact method for the unrelated
parallel machine scheduling problem with setups and resources. Expert
Systems with Applications 5, 15 pages.

Fanjul-Peyro, L., Ruiz, R., Perea, F., 2019. Reformulations and an exact
algorithm for unrelated parallel machine scheduling problems with setup
times. Computers & Operations Research 101, 173–182.

Garey, M., Johnson, D., 1979. Computers and intractability : A Guide to
the Theory of NP-Completeness. volume 1. W.H. Freeman and Company.

Johnson, D., 1974. Approximation Algorithms for Combinatorial Problems.
Journal of Computer Systems Science 9, 256–278.

Kawaguchi, T., Kyan, S., 1986. Worst case bound of an lrf schedule for
the mean weighted flow-time problem. SIAM Journal on Computing 15,
1119–1129.

Lee, C., Uzsoy, R., 1992. A new dynamic programming algorithm for the
parallel machines total weighted completion time problem. Operations
Research Letters 11, 73–75.

Lee, J.H., Kim, H.J., 2020. A heuristic algorithm for identical parallel ma-
chine scheduling: splitting jobs, sequence-dependent setup times, and lim-
ited setup operators. Flexible Services and Manufacturing Journal , 1–35.

Leung, J., Li, C., 2008. Scheduling with processing set restrictions: A survey.
International Journal of Production Economics 116, 251–262.

Lovász, L., 1975. On the ratio of the optimal integral and fractional covers.
Discrete Mathematics 13, 383–390.

M’Hallah, R., Bulfin, R., 2007. Minimizing the weighted number of tardy
jobs on a single machine with release dates. European Journal of Opera-
tional Research 176, 727–744.

Moench, L., Fowler, J., Dauzère-Pérès, S., Mason, S.J., Rose, O., 2011. A
survey of problems, solution techniques, and future challenges in schedul-
ing semiconductor manufacturing operations. Journal of Scheduling 14,
583–599.

34



Monma, C., Potts, C., 1989. On the complexity of scheduling with batch
setup times. Operations Research 37, 798–804.

Nattaf, M., Dauzère-Pérès, S., Yugma, C., Wuc, C., 2019. Parallel machine
scheduling with time constraints on machine qualifications. Computers &
Operations Research 107, 61–76.

Obeid, A., Dauzère-Pérès, S., Yugma, C., 2014. Scheduling job families on
non-identical parallel machines with time constraints. Annals of Opera-
tions Research 213, 221–234.

Perez-Gonzalez, P., Fernandez-Viagas, V., Garćıa, M.Z., Framinan, J.M.,
2019. Constructive heuristics for the unrelated parallel machines schedul-
ing problem with machine eligibility and setup times. Computers & In-
dustrial Engineering 131, 131–145.

Sahney, V.K., 1972. Single-server, two-machine sequencing with switching
time. Operations Research 20, 24–36.

Sahni, S., 1976. Algorithms for scheduling independent tasks. Journal of
the ACM 23, 116–127.

Shchepin, E., Vakhania, N., 2005. An optimal rounding gives a better ap-
proximation for scheduling unrelated machines. Operations Research Let-
ters 33, 127–133.

Skutella, M., 2001. Convex quadratic and semidefinite relaxations in
scheduling. Journal of the ACM 48, 206–242.

Smith, W., 1956. Various optimizers for single-stage production. Naval
Research Logistics Quarterly 3, 59–66.

Sousa, J., Wolsey, L., 1992. A time indexed formulation of non-preemptive
single machine scheduling problems. Mathematical Programming 54, 353–
367.

Vallada, E., Villa, F., Fanjul-Peyro, L., 2019. Enriched metaheuristics for
the resource constrained unrelated parallel machine scheduling problem.
Computers & Operations Research 111, 415–424.

Wang, H., Alidaee, B., 2019. Effective heuristic for large-scale unrelated
parallel machines scheduling problems. Omega 83, 261–274.

35



Webster, S., Azizoglu, M., 2001. Dynamic programming algorithms for
scheduling parallel machines with family setup times. Computers & Op-
erations Research 28, 127–137.

Werner, F., Kravchenko, S., 2010. Scheduling with multiple servers. Au-
tomation and Remote Control 71, 2019–2021.

Woeginger, G., Skutella, M., 2000. A PTAS for minimizing the total
weighted completion time on identical parallel machines. Mathematics
of Operations Research 25, 63–75.

Yepes-Borrero, J.C., Perea, F., Ruiz, R., Villa, F., 2020. Bi-objective parallel
machine scheduling with additional resources during setups. European
Journal of Operational Research .

36




