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Abstract

In this paper, we are concerned with the resolution of a multiobjective complex job-shop scheduling
problem stemming from semiconductor manufacturing. To produce feasible and industrially meaningful
schedules, this paper extends the recently proposed batch-oblivious approach by considering unavailabil-
ity periods and minimum time lags and by simultaneously optimizing multiple criteria that are relevant in
the industrial context. A novel criterion on the satisfaction of production targets decided at a higher level
is also proposed. Because the solution approach must be embedded in a real-time application, decision
makers must express their preferences before the optimization phase. In addition, a preference model is
introduced where trade-off is only allowed between some criteria. Two a priori multiobjective extensions
of Simulated Annealing are proposed, which differ in how the simultaneous use of a lexicographic order
and weights is handled when evaluating the fitness. A known a posteriori approach of the literature is
used as a benchmark. All the metaheuristics are embedded in a Greedy Randomized Adaptive Search
Procedure. The different versions of the archived GRASP approach are compared using large industrial
instances. The numerical results show that the proposed approach provides good solutions regarding the
preferences. Finally, the comparison of the optimized schedules with the actual factory schedules shows
the significant improvements that our approach can bring.

Keywords: Scheduling, Multiobjective optimization, Flexible job-shop scheduling with batching,
Metaheuristics, OR in semiconductor manufacturing




1. Introduction

Integrated circuits present in everyday electrical devices are produced by semiconductor manufac-
turing companies from thin slices of semiconductor material called wafers. The most technologically
complex and capital intensive phase in this industry is wafer fabrication. This phase takes place in fab-
rication facilities called wafer fabs, where a single lot of wafers may go through up to 1,000 steps in
different work areas. To create all the layers, each lot visits each work area many times, leading to reen-
trant flows. In high-mix fabs, where hundreds of products are produced at the same time, production
resources must be shared among lots of different products and among lots that are at different stages. In
this context, scheduling the production operations on the scarce resources is complex and has a critical
impact on the operational performance of factories, such as cycle time and throughput. As scheduling
requires a detailed modeling of the production flows and the production resources, a global scheduling
model of the factory is hard to manage, and its optimization is computationally intractable. The work
areas are thus scheduled locally while making sure that a mechanism ensures some coordination between
the local schedules.

In this work, the proposed approach is applied to the cleaning and diffusion area in semiconductor
manufacturing facilities. The scheduling problem in this area can be modeled as a Flexible Job-Shop
scheduling problem with p-batching, unavailability periods, reentrant flows, sequence-dependent setup
times, minimum time lags and release dates. Because of the large number of constraints considered by
our approach, it can be applied to other workshops such as ion implantation (Horng et al. (2000)) and
other industrial contexts. While satisfying the various constraints, different criteria that are related to
cycle time, throughput and resource utilization must be optimized. In addition to the local performance
of the scheduled area, schedules should contribute to the realization of global objectives at the factory
level. The resulting problem to solve is NP-hard as it generalizes the classical job-shop scheduling
problem. Since our goal to solve an NP-hard scheduling problem with large instances with on average
1,500 operations of 500 jobs on 70 batching machines, a heuristic approach is developed in this paper.

This work aims primarily to design a multiobjective optimization approach that solves the complex
job-shop scheduling problem. Even if there are already several multiobjective approaches in the liter-
ature, two characteristics of the studied context require the design of new multiobjective approaches.
First, the approach to be developed must be embedded in a real-time application where the time available
for decision making is limited, which forces decision makers to express their preferences before the op-
timization phase. Second, in our problem, decision makers allow some criteria to compensate each other
but not others. Therefore, the preferences of decision makers are expressed using both a lexicographic
order and weights. To our knowledge, this generic modeling of preferences has not been considered
in the multiobjective optimization literature. Our modeling is instead similar to the modeling used in
lexicographic goal programming, e.g., Romero (1991) and Jones et al. (2010). Therefore, the paper aims
to explore different ways of taking preferences into account in a multiobjective optimization approach.

The paper is divided into four sections. Section 2 reviews the literature related to the different aspects
of our problem: Constraints, criteria and solution approaches. This section also motivates the different
choices made in this work related to modeling and solution approaches. The industrial scheduling prob-
lem and its related inputs are formally modeled in Section 3. The large set of constraints are formalized
in Section 3.1. Instead of the classical criteria found in the scheduling literature (Mati et al. (2011),
Pinedo (2016) and Garcia-Le6n et al. (2019)), the criteria to optimize are adapted to the rolling horizon
framework found in many manufacturing contexts. In addition to the criteria that translate the perfor-
mance of a local area in the factory, a new flexible criterion is proposed to measure the contribution of a
local schedule to the realization of production targets decided at the factory level. Section 3.2 motivates



and formally defines the relevant criteria. The description of the problem ends with the formal modeling
of the preferences in Section 3.3. The various building blocks of the explored extensions of Simulated
Annealing are introduced in Section 4. First, to construct and evaluate feasible schedules for our complex
job-shop scheduling problem, the approach proposed in Knopp et al. (2017) is extended in Section 4.1 to
include machine availability and minimum time lag constraints. Section 4.2 describes the neighborhood
function, and Section 4.3 defines the concept of archive and highlights the information that can be ex-
tracted and used during the search. After describing the building blocks that are common to the Simulated
Annealing approaches, Section 4.4 presents how each approach evaluates the fitness of solutions. Two
variants of an a priori Simulated Annealing metaheuristic are proposed in this work, depending on how
the preferences are used when computing the acceptance probability. AMOSA of Bandyopadhyay et al.
(2008), presented in Section 4.4.3, is our reference of a posteriori Simulated Annealing based approach.
To diversify the search and to benefit from the parallelism of modern CPUs, these various approaches
are separately applied within a parallelized Greedy Randomized Adaptive Search Procedure (GRASP)
approach, described in Section 5. Numerical results are presented in Section 6, where the three versions
of Simulated Annealing are compared according to the quality of the final solutions. This section ends
with an evaluation of the improvement that our approach can bring by comparing the proposed schedules
to the actual schedules of a factory of an industrial partner. A final summary of the work and some
perspectives are provided in Section 7.

2. Related Works and Motivations

2.1. Complex Job-Shop Scheduling Problem

A tremendous amount of research on scheduling has been conducted in the last decades (Pinedo
(2016)). As a basis of the tackled problem in this work, the classical job-shop scheduling problem is a
hard problem for which exact and approximation approaches are proposed in the literature (Blazewicz
et al. (1996), Jain and Meeran (1999)). Successful solutions methods are often based on the disjunctive
graph representation, introduced by Roy and Sussmann (1964), that models dependencies between op-
erations in a concise way. To represent real scheduling problems, the job-shop scheduling problem is
enriched by considering additional constraints. For example, when considering that an operation may be
processed on more than one machine, this results in the flexible job-shop scheduling problem, another
well-studied problem in the literature (Chaudhry and Khan (2016)). Due to its complexity, semiconduc-
tor manufacturing is an application field where the job-shop scheduling problem must be extended to
include additional constraints. An overview of scheduling challenges in semiconductor manufacturing is
provided in Monch et al. (2011).

The problem tackled in this work is qualified as a complex flexible job-shop scheduling problem
because of the additional constraints that must be considered in a job-shop environment. The pres-
ence of batching machines, capable of processing several jobs at the same time, is the main feature that
characterizes the studied industrial problem. Surveys related to batching in general and to batching for
semiconductor manufacturing can be found in Potts and Kovalyov (2000) and Mathirajan and Sivakumar
(2006), respectively. As observed in these surveys, scheduling on a single or parallel batching machines
received most of the research attention. Most existing solution approaches for complex job-shop schedul-
ing problems with batching machines rely on the disjunctive graph representation (e.g., Monch and Rose
(2004), Mason et al. (2005), Yugma et al. (2012)). The modified disjunctive graph representation of
Ovacik and Uzsoy (2012) introduces dedicated nodes to represent batching decisions explicitly. This
paper uses the approach recently proposed by Knopp et al. (2017) that relies on a novel graph modeling
approach, called batch-oblivious. Instead of inserting additional nodes and arcs, this modeling encodes
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batching decisions in the arc weights. More details about this approach are given in Section 4.1. One
of the advantages of this approach is its capability of considering additional constraints. In addition to
the constraints considered in Knopp et al. (2017), the studied problem requires the integration of two
additional hard constraints: Unavailability periods and minimum time lags. As a generalization of the
classical job-shop scheduling problem, this problem is NP-hard. Since our goal is to solve an NP-hard
scheduling problem with large instances of on average 1,500 operations of 500 jobs on more than 70
batching machines, a heuristic approach is developed in this paper.

2.2. Multiobjective Scheduling Problem

Many real-world scheduling problems are multiobjective in nature, i.e., multiple performance mea-
sures should be optimized simultaneously. Several criteria are commonly used in the scheduling liter-
ature. The makespan is considered to optimize the throughput of resources, while the total weighted
completion time or the total weighted flow time focus on the cycle times of products. Criteria based
on due dates, such as the total tardiness or the number of tardy jobs, aim to meet the customers’ delay
requirements. A general overview of multiobjective optimization for scheduling problems is given in
T’kindt and Billaut (2006). Surveys covering the solution approaches for the multiobjective flexible job-
shop scheduling problem, which is the closest one to our problem, can be found in Genova et al. (2015),
Chaudhry and Khan (2016) and Amjad et al. (2018).

Instead of the conventional criteria in the scheduling literature, such as the makespan or the total
weighted completion time, criteria relevant to the industrial context must be optimized. The approach
must be embedded in an automated scheduling system that runs in a highly dynamic environment. To
cope with this environment, schedules are optimized in a rolling horizon, typically every 30 minutes on
a scheduling horizon of a few hours. When optimizing a schedule with a fixed time horizon, criteria
such as the makespan criterion are not relevant. The criteria, previously defined in Artigues et al. (2006),
Yugma et al. (2012) and Bitar et al. (2016), that optimize the performance in our problem are recalled in
Section 3.2.

Recall that optimizing the schedule of an entire semiconductor manufacturing facility is computa-
tionally intractable. However, it is important to ensure that locally optimized schedules contribute to the
achievement of global objectives at the factory level. Therefore, a critical feature required by the in-
dustrial environment is that solution approaches ensure consistency between local schedules and global
objectives. In semiconductor manufacturing, it is common to set daily production targets by product
type and by production stage. These production targets set a bridge between shop-floor control and the
master production plan. In addition to the objective of guiding shop-floor solutions, different operational
objectives motivate production targets such as ensuring the “linearity” of the production line, reducing
the inventory and cycle times, and maximizing tool utilization. Few works discussing the determination
of production targets can be found in the literature (e.g., Chang et al. (1995), Wu et al. (1998)). Sadeghi
et al. (2015) proposes a general framework that aims at supporting and controlling local decisions by
considering global objectives and information. The general idea is to determine production targets for
local scheduling to achieve. Kao and Chang (2018) proposes an approximation approach for computing
production targets while taking into consideration the induced variation on the wafer flows. While these
papers deal with the determination of production targets, to the best of our knowledge, the objective
of following production targets is not studied within the scheduling literature. This objective must be
considered when it is important to make sure that the produced schedules follow a production plan de-
termined at a higher level. To include production targets, a new criterion is proposed in Section 3.2 to
measure the satisfaction of the targets while allowing the decision maker to balance between the overall
satisfaction and a fair satisfaction of all the targets.



As it is rare to find a solution that simultaneously optimizes all the criteria, multiobjective optimiza-
tion provides instead of a set of solutions. Since only a single schedule can be implemented in the
shop-floor, the decision maker must express his/her preferences at some stage and, in many industrial
contexts, without knowing the shape of the trade-off curve of the problem instance to solve. As stated
above, a schedule must be computed every 30 minutes or less for the next few hours. Due to the high
frequency of the schedule computation and the high level of automation in the semiconductor manufac-
turing industry, it is most often not realistic to let decision makers choose one schedule in the set of good
schedules for the different criteria. One way or another, decision makers must provide their preferences,
and one must consider the fact that these preferences may evolve over time depending on the situation
(factory fully loaded, crisis situation, ...). Therefore, the approach to be proposed for the industrial ap-
plication must be fairly generic, and allow decision makers to provide preferences suited to the current
situation in the shop floor.

Various preference models have been reported in the literature (Wang et al. (2017)). In the studied
context, as the trade-off is allowed between some criteria and forbidden between others, a lexicographic
order and weights are simultaneously used to model the preferences, which is not common in the mul-
tiobjective optimization literature. In the industrial application, there are more features than the ones
presented in this work. For example, industrial characteristics require that some lots, qualified as manda-
tory, be completed within the scheduling horizon. Describing all of these features and how they are
included in our approach would increase the size of this already long paper. However, ultimately, such
constraints are considered as soft and criteria that model their violation are introduced. The lexicographic
order is then introduced to forbid the trade-off between such criteria, along with the criterion modeling
the satisfaction of production targets, with other criteria modeling the local performance of the work
area. Weights are then used to express the preferences of the decision maker between these last criteria,
as the lexicographic order is too extreme. In addition, the lexicographic order differentiates the criteria
which correspond to important operational performance measures from those which model nice-to-have
solution structures.

2.3. Multiobjective Optimization Approaches

In this section, we briefly review the different approaches proposed in the literature for solving mul-
tiobjective optimization problems. We focus on heuristic approaches and we motivate the approach
adopted in this work. In recent years, multiobjective metaheuristics have received considerable atten-
tion. Some of these approaches are adaptations of local search methods such as Simulated Annealing,
Tabu Search and iterated greedy algorithms. Evolutionary algorithms such as Genetic Algorithms are
another class of approaches that are successfully applied to a wide range of applications. Despite this
diversity of choices, the complexity of our problem makes Simulated Annealing the most suitable choice
as motivated below.

When studying the literature dealing with different variants of the job-shop scheduling problem, it
appears that Tabu Search has been the main choice (Dauzere-Péres and Paulli (1997), Mastrolilli and
Gambardella (2000), Nowicki and Smutnicki (2005), Mati et al. (2011), Garcia-Le6n et al. (2019)).
However, the success of Tabu Search is conditioned by the efficiency of the neighborhood function, which
is even more critical for large problem instances such as the ones we want to solve. Without an efficient
neighborhood function, it is necessary to evaluate, on average, 30,000 neighbors for each solution in our
industrial instances. In five minutes, Tabu Search (that we implemented for testing purposes) performs
less than 20 moves, while successful variants of Tabu Search for the job-shop scheduling problem are
allowed to perform hundreds of thousands of moves. Extending the neighborhood functions proposed in
the literature for the flexible job-shop scheduling problem is interesting. However, these neighborhood



functions only take a single criterion into account and strongly depend on the optimized criterion. Only
recently, some studies have proposed approaches that can deal with any regular criterion (e.g., Mati et al.
(2011)) and in the context of multiobjective optimization (e.g., Garcia-Ledn et al. (2019)). As the criteria
to be optimized in our context are different from those classically treated in the literature, the design of
efficient neighborhood functions for our problem is very challenging and requires additional research.

The iterated greedy algorithm has shown state-of-the-art performance for the permutation flow-shop
scheduling problem (e.g.,Ruiz and Sttzle (2008), Ruiz and Sttzle (2008), Ciavotta et al. (2013)). How-
ever, its application to the classical job-shop scheduling problem is not straightforward, and only recent
papers in the literature are exploring this line of research (e.g., Pranzo and Pacciarelli (2016)). Regarding
our problem, applying an iterated greedy algorithm seems very difficult if we consider the fact that its
success depends largely on a good construction heuristic which is not easy to design, even for the flexible
job-shop scheduling problem. It can be argued that it is not worth the effort to develop such heuristics to
solve an industrial problem with some complex criteria. Also, in the references given above, local search
is used within the iterated greedy algorithms to improve the incumbent solution. As for Tabu Search,
the large neighborhood of the solutions makes its use unrealistic. Because they have often been suc-
cessfully applied, evolutionary algorithms such as genetic algorithms can also be seen as an interesting
choice to solve our problem. However, the solution representation is not trivial to define for our complex
flexible job-shop scheduling problem and, more importantly, classical crossover and mutation operators
would lead to many infeasible solutions and also of poor quality. In addition, successful evolutionary
approaches are often hybridized with local search procedures, and thus the arguments given above still
apply.

The approaches described above could be interesting perspectives and are presented as such in the last
section of the paper. However, further research is required to apply them to our problem. In light of the
considerations above, Simulated Annealing seems the most appropriate approach, especially when con-
sidering its effectiveness, as reported in the literature (Van Laarhoven et al. (1992), Loukil et al. (2007),
Knopp et al. (2017)). When considering preferences, most Simulated Annealing approaches in the liter-
ature assume that weights are assigned to criteria and use a weighted sum to transform the multiobjective
optimization problem into a single objective problem. Conversely, few papers (e.g., Aggelogiannaki and
Sarimveis (2007)) have adapted Simulated Annealing to the context where the criteria are prioritized.
Therefore, to our knowledge, there is a need to adapt Simulated Annealing when it is targeted to inte-
grate preferences within the search, and when a lexicographic order and weights must be used at the
same time to reflect preferences correctly.

In the scheduling literature, several extensions of Simulated Annealing are proposed. Serafini (1994)
present a first multiobjective Simulated Annealing approach, where several ways to calculate the ac-
ceptance probabilities are explored. Several other multiobjective Simulated Annealing techniques are
proposed, which can be seen as an evolution of Serafinis early techniques, rather than the development
of radically different approaches (e.g., Czyzzak and Jaszkiewicz (1998) and Ulungu et al. (1999)). In the
following, we first review some of the approaches that were successfully applied to scheduling problems
and motivate why we have not adopted them.

Simulated Annealing approaches are proposed in Lin and Ying (2013) and Varadharajan and Ra-
jendran (2005) to solve bi-objective permutation flow-shop scheduling problems. Extending these ap-
proaches is not possible since finding a unique permutation of jobs for all machines, with all permu-
tations being feasible, is much simpler than solving our complex flexible job-shop scheduling problem
with batching and other characteristics. For instance, in the approach of Varadharajan and Rajendran
(2005), before using Simulated Annealing, each initial solution is sequentially improved using heuris-
tics that are only suitable for the permutation flow-shop scheduling problem. Also, both approaches are



specifically designed for bi-objective optimization problems, whereas our problem by definition needs
to include more than two objectives. For instance, applying the approach in Lin and Ying (2013) to a
multiobjective problem is not straightforward, as different cases are identified to study the acceptance of
a new solution. Not only the number of these cases will increase, but also a new mechanism must be
designed to compute the acceptance probability.

In Loukil et al. (2007), a flexible job-shop scheduling problem with specific constraints is solved
using the Multiobjective Simulated Annealing of Ulungu et al. (1999), which is called UMOSA in the
literature. This method works with a predefined set of diversified weight vectors. By using an aggregation
function, Simulated Annealing is run for each weight vector in order to obtain a good approximation of
the Pareto front. It is an interesting approach, but one that cannot be used to solve our problem because
of the cardinal of the set of vectors which would be too large. For example, when four criteria are
optimized, this cardinal must be at least 20, which means that 20 runs of Simulated Annealing must be
performed. This is impractical in an industrial application where only a few minutes are allowed to return
a solution of good quality. Instead of these approaches, we use AMOSA of Bandyopadhyay et al. (2008)
as a reference, since it is a known adaptation of Simulated Annealing to multiobjective optimization that
has been used in a wide range of applications. Moreover, to determine the acceptance probability of a
new solution, this approach takes into account the domination status of the new solution with the current
solution, as well as those in the archive.

Outside the multiobjective optimization context, the adopted preference modeling in this work is
similar to the one defined in lexicographic goal programming. Despite the similarities in the preference
modeling, preemptive goal programming does not apply to our problem. First, due to the use of the
approach within an automated environment, it is not realistic to imagine having a decision maker setting
the achievement levels for each criterion each time the approach is called to solve the scheduling problem
in the shop floor. Even if this is possible, applying such an approach will require the decision maker to
provide aspiration levels, in addition to the lexicographic ordering and the weights. This leads to more
complexity for the decision maker and the approach designers. Even if we assume that the decision
maker can provide all the necessary information, there are not so many suitable heuristic approaches that
can solve the corresponding preemptive goal programming problem. To our knowledge, the Simulated
Annealing of Baykasoglu (2005) is the only attempt made to adapt Simulated Annealing to solve pre-
emptive goal programming problems. As shown in Section 3, one of the approaches proposed in this
work uses the adaptations proposed in Baykasoglu (2005).

3. Problem Description

This section is devoted to the description of the scheduling problem encountered in semiconductor
manufacturing. In terms of constraints, the problem is described in Section 3.1 as a flexible job-shop
scheduling problem with p-batching, reentrant flows, sequence-dependent setup times, release times,
availability constraints and minimum time lags (complex job-shop scheduling problem). Instead of clas-
sical criteria in the scheduling literature, criteria that are more suitable for industrial contexts and adapted
to a rolling horizon framework are defined in Section 3.2.

3.1. Description of the Constraints
Let us consider a set of jobs _# to be processed on a set of machines .# . Each job j € _# requires
a sequence of operations O; = {01~j,...,0,-_j,...,0‘0_| j}, a release time rj € 7, a size o; € N and a
: ; il

prioriy ®; € R . The disjoint union &' = O Uo,...U o 7| denotes the set of all operations. Batching,
an important feature of our problem, is the capability of machines to process at the same time several



jobs up to a given capacity, i.e., the jobs in a batch have the same start times and completion times.
To model batching constraints, the notion of recipe is used. For a given set of recipes %, each recipe
g € X prescribes a machine m, € .4, a processing time p, € Ng and a batching capacity b, € N~ for
machine m,. Each operation o; ; € ¢ is associated with a subset of recipes R; ; C %. A given mapping s :
X x X — N prescribes sequence-dependent setup times between operations that are scheduled on the
same machine. If ¢ and ¢’ are two recipes in % on the same machine, i.e. m; = mgy, then s(q,q') is
the setup time that is required when an operation with recipe ¢’ is scheduled just after an operation with
recipe g on the machine.

The constraints in Knopp et al. (2017) are extended by considering unavailability periods and mini-
mum time lags. Unavailability periods model periods during which a machine is unavailable to process
operations like those resulting from preventive or curative maintenance operations. Formally, we extend
the problem as follows. For each machine m € .#, let us consider a set of fixed unavailability periods
Un = {tt1m;--- Ut m;---,0|u,| m}- Bach unavailability period u;, € Uy, has a fixed start date S, and a
fixed end date C; ,,. Regarding the possibility for an operation to be interrupted by an unavailability pe-
riod, the non-preemptive case is considered (Aggoune (2004)), i.e., an operation cannot be interrupted by
another operation or by an unavailability period. The second extension of the problem results from the in-
clusion of minimum time lags. A minimum time lag specifies a minimum delay between the execution of
two operations of the same job (Zhang (2010)), not necessarily consecutive. Recall that the set of opera-
tions for a job j € Jis denoted as O; = {01 j,. .. 0| ojy,j}- Formally, let us consider a set of minimum time

lags £ C 7 x Nx % x N x % x N. The components of a time lag A = (j,i,qi,1qi j.,d) € L™"
have the following meaning: j € J identifies the job; i and i’ € N with 1 <i < i < |0;] identify opera-
tions 0; ; and oy ; € Oj; q; j and gy ; € X are the selected recipes for operations o; ; and oy j; d € N5g
identifies the minimum time lag between the start time of o; ; and the start time of oy ;. Time lags are
used to model two features of the scheduling problem: 1) The transportation time to transfer a job from
one machine to another one, and 2) Minimum delays imposed for process considerations, in which case
the time is independent of the assigned machines.

A schedule for this problem is completely characterized by selecting recipes g; ; € R; j and start times
S; j € Z for all operations o; ; € ¢ .Recall that a recipe prescribes a a machine, a processing time and a
batching capacity. Therefore, let us denote the machine, the processing time and the batching capacity
of each operation o; ; in the schedule as m; ;, p; ; and b; ;, respectively. Also, let % denote the set of
all batches formed in a schedule. As only operations with the same recipe can be processed in the same
batch, gp denotes the associated recipe to batch B € %, i.e., gp = q;j Vo;j € B. Let op = Y,.,cBO0j
denote the size of the batch B. To describe a feasible schedule, selected recipes g; j and start times S; ;
of operations o; ; have to respect several constraints that are detailed in the following. Preemption is not
allowed: Once the processing of operation has begun, it cannot be interrupted. Thus, the completion time
of an operation o; ; € O; is given by C; ; = S; j + p;, ;. Also, for each machine m € .#, for each operation
0;,j € O such that m; ; = m and for each unavailability period u; , € Uy, Sij+ pij < Sim or Cppm < Si
must hold. Operations belonging to the same job have to be performed in the order given by the route of
the job. So, C; ; < Si11,; has to be fulfilled for all 0; ; € & with i < !0 j‘. Regarding minimum time lag
constraints, for each minimum time lag A = (j,i,qi ,i’,qs j,d) € £™", Sy ; > S; j+d must hold. The
first operation o1 ; € O; of each job cannot be processed before its release time, so S1 ; > r; must hold
forall j € #. Operations performed on the same machine must not overlap. Hence, for two operations
oij and oy y € O with m; j; = my j, then S; ; = Sy v, S; ; > Cy j or G; j < Sy must hold. Regarding
the batching constraints, only operations with the same recipe can be processed together. So, for two
operations o; ; and oy y € O with g; ; # gy j and m; j = my j, either S; ; > Cy y or C; ; < Sy must hold.




Any batch B € # with arecipe ¢ must respect the batching capacity of the machine to which it is assigned.
Thus, op < b, VB € % is required. To respect sequence-dependent setup times, for all operations o; ; and
oy j € O with m; j = my_y and not in the same batch (i.e., S; j # Sy ), either C; j +s(qi j,qi ) < Sy j or
Cyrjy+ s(q,v’j/,qi,j) < §; j must hold.

3.2. Formal Modeling of the Criteria

While constructing feasible schedules that satisfy all the constraints detailed in the Section 3.1, our
goal is to optimize several criteria simultaneously. Within the context of semiconductor manufacturing,
the used criteria for scheduling problems are derived from performance measures of the entire factory.
The most important measures are cycle time, throughput and on-time delivery (Monch et al. (2011)).
First, let us consider the criteria considered in this work that were already defined in previous works.
The weighted flow factor (WFF), also called average X-Factor, is used in Artigues et al. (2006), Yugma
et al. (2012) and Bitar et al. (2016). This criterion is designed to reduce the cycle time and the work-in-
process in the considered optimization scope. Let us consider €; a minimum possible time to process all
operations of job j € _#. From the schedule, the actual cycle time of each job j € ¢ is computed as
the difference between the completion time of its last operation denoted by C; = C 0.7 and its release
date r;. The flow factor of a job is its actual cycle time divided by its theoretical cycle time. Now, the
weighted flow factor (WFF) to minimize is the weighted average of all flow factors, as shown in (1).

1 @;(Cj—rj)
Yies @iy &

WFF = (1)

Contrary to the weighted flow factor, the remaining criteria defined in this section depend on the
scheduling horizon. We consider, w.l.o.g., the time O as the beginning of the horizon and H its end
time. H is also used as the length of the scheduling horizon. When considering a scheduling horizon, an
operation 0; ; € ¢ in a given schedule may be 1) Completed before the end of the horizon, i.e., C; ; < H,
2) Started after the end of the horizon , i.e., S;j = H or 3) Started before the end of the horizon and
completed after the end of the horizon, i.e., S; ; < H AC;; > H. To consider these cases, a completion
rate 6; ; is defined in (2) for each operation 0; ; € R. Assuming that ¢; denotes the size of job j € J in
number of wafers, the weighted number of moves (WNM) can be computed as in (3).

min(pi H=Sij) g 6. < B

9i7j = Pij N _ ’ (2)
0 otherwise

WNM =} 0,06 i

(),'__,‘ER

A third criterion to optimize is the batching coefficient (BC), which represents the average of the
actual size of each batch divided by its maximal size. This criterion also depends on the scheduling
horizon. Thus, let " denote the set of all batches in .2 for which the start times occur before the end
of the scheduling horizon, i.e. 7 = {B € % |S;; < H,Vo; j € B}. Then, the batching coefficient (BC)
of a schedule can be defined as in (4). Contrary to the other criteria considered in this paper, BC is a
non-regular criterion, i.e., it can be degraded by advancing the start times of operations.

BC — Lpew' O 4)
ZBG@H bp
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In addition to the previous criteria introduced in previous papers, a new criterion is proposed. In
semiconductor manufacturing, production targets, also called daily move targets, are extensively used
as a way to set a bridge between shop-floor control and the master production plan. Their goal is to
smooth the differences between the work-in-process level of a production stage and its fixed production
target. The satisfaction of production targets allows local scheduling decisions to be consistent with
global objectives at the wafer fabrication level. The criterion proposed below is relevant in any situation
where optimized schedules must follow a production plan determined at a higher level.

Formally, let us consider a given set .7 of production targets, where the set 7; ; denotes the set of
production targets to which an operation o; ; € ¢ contributes. Note that it is possible to have T; ; = 0,
which means that operation o; ; does not contribute to any production target. It is also possible that
|T;,j| > 1, which means that operation o; ; contributes to more than one production target. To each
production target T € .7, let us associate a requested volume D; € N and a weight w,. We assume,
without loss of generality, that }'.c > w; = 1. An operation is defined as contributing to its associated
production targets if it starts its processing within the scheduling horizon. Let O be the set of operations
that are started within the horizon. Given a feasible schedule, Pr =Y., con ret; ; 0; defines the produced
volume for each target T € 7.

Given a feasible schedule, R; = l% denotes the completion rate of a production target T € 7. It is
possible to have different levels of satisfaction for the same completion rate of two different production
targets. A production target may define a minimum quantity to produce, but it may also define a quantity
that is desirable to reach but not to exceed. So, instead of only using the completion rate R;, the expected
satisfaction level L; of the decision maker that depends on the completion rate R; can be modeled. In
the industrial application, as targets only define minimal quantities to produce, the satisfaction level can
be computed as L; = min(Ry, 1).

After defining the satisfaction level of a single production target, it is still necessary to model the
overall satisfaction of multiple production targets in a schedule. It should be noted that such a problem
can be formulated as a multiobjective optimization problem by considering the satisfaction of each target
as an independent criterion. However, because there are on average 25 production targets in the industrial
instances, an aggregation function is preferable. Decision makers may require a high level of global
satisfaction and, at the same time, may want to balance the satisfaction levels of the different production
targets. The proposed criterion is called Target Satisfaction Indicator (TSI) and is computed using (5).
When requiring, without loss of generality, that };c , @; = 1, this indicator has the form of what is
called weighted power mean. This aggregation function has several properties that make it practically
attractive. As the weighted power mean always produces values that lie between the smallest and the
largest of the satisfaction levels, and as these levels are in the interval [0, 1], this indicator produces
values that can be easily interpreted by decision makers. More importantly, this criterion is flexible as
it allows the decision maker to prioritize, depending on the context, overall satisfaction or balancing,
without ignoring the other.

1/a
TSI = <Z wa2‘> (5)
€T

The proposed criterion meets this requirement through the flexibility given by parameter &«. When
a =1, the criterion takes the form of a weighted arithmetic mean. Fully compensatory, this particular
form can be used to express the idea of overall satisfaction while disregarding the balancing between
satisfaction levels. When it is relevant to only focus on the balancing, by using a very small value for
a (i.e. when o tends to —oo), the weighted power mean takes the values of the smallest term, i.e.,
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TSI =min{Ly,...,Le,...,L,}. In other words, maximizing the TSI is equivalent to maximizing the least
satisfied target. By varying ¢, it is then possible to move from a focus on overall satisfaction to a focus on
balancing. The decision maker can, by giving intermediate and less extreme values to , choose to focus
more on overall satisfaction or balancing, depending on the context. More importantly, by selecting an
appropriate value for o, TSI can discriminate solutions that are equivalent on overall satisfaction, resp.
balancing, but that are different on balancing, resp. overall satisfaction.

3.3. Formal Modeling of the Preferences

Our goal is to simultaneously optimize n criteria f = (fi,..., fi,...,fa). Let X be the set of feasible
solutions, and ¥ = f(X) C R”" be the image in the criteria space of X by f. Note that we assume,
without loss of generality, that the criteria have to be minimized. It would be exceptional to find a
solution that simultaneously optimizes all the criteria considered in this paper. A more general definition
of optimality is obtained by defining a dominance relation. Different dominance relations are proposed
in the literature, and the most common one, adopted in this work, is the Pareto dominance, formally
recalled in Definition 1. In Definition 2, a point in the criteria space is said to be nondominated if it is
not possible to improve one criterion without degrading others. In Definition 3, a solution x € X is called
an efficient solution if its projection in the criteria space results in a nondominated point. The set of
nondominated points is called Pareto front, denoted as Yy. When the Pareto front is not known because
it is too difficult to determine, which is our case, the obtained set is referred to as the nondominated set
found.

Definition 1 (Pareto dominance). Lety and y' € Y be such that y = f(x),y = f(xX') and x,x' € X. It
is said that y dominates y' and noted y <y if and only if y; <y.,Vi=1,...,nand 3i € {1,...,n} such
that y; < y,. By extension, a solution x € X dominates a solution x' € X, noted x < x', if and only if

[ < f().

Definition 2 (Nondominated point). An objective vector y € Y is nondominated if and only if #y €
Y such thaty <y

Definition 3 (Pareto optimum). A solution x € X is a Pareto optimum, also called an efficient solution
, ifand only if } X' € X such that f(x') < f(x), i.e. f(x) is nondominated

Instead of a set of good quality solutions, many practical contexts require an optimization approach
to provide a single solution. In this case, it becomes mandatory for decision makers to express their
preferences. To make the problem as general as possible and answer the industrial requirements, we
consider that the decision maker is offered two ways of expressing his/her preferences. These preferences
are used during the search process of the heuristics detailed in Section 4.4.1 and 4.4.2, whereas they are
only used to select a final solution among the set of nondominated solutions in the AMOSA heuristic
proposed by Bandyopadhyay et al. (2008) and briefly described in Section 4.4.3. The first way that can
suit the preferences of the decision maker is the use of a lexicographic order. This modeling fits the
situation where no trade-off between the criteria is allowed. In the industrial context, this concerns the
criteria that model constraint satisfaction, such as production targets. These constraints are considered
as soft constraints, not because the decision maker considers their violation as acceptable, but because
the context can make their satisfaction impossible. Regarding these particular criteria, it may be unlikely
for the decision maker to accept a trade-off with pure performance criteria such as the weighted number
of moves or the weighted flow factor. When the trade-off is possible, the decision maker is given the
possibility of prioritizing some criteria over others through weights.
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Formally, n being the number of criteria, a relation < C R” x R" is called a lexicographic order if
A=<B<A<BVA=Bwith (aj,...,ay) < (b1,...,by) & Im<n:Vi<m:a;=b;iNay < by. In the
context of multiobjective optimization, we consider that each criterion i is associated with a lexicographic
rank I; < n. It is assumed that the ranks are contiguous and the smaller the rank, the more important the
criterion. Let us assume without loss of generality that the indices of the criteria are given in the non-
decreasing order of lexicographic rank, i.e., /; </;i;1,Vi < n. Since such relations meet the properties
of antisymmetry, transitivity and totality, lexicographic orders are total orders. This allows pairwise
comparisons of objective vectors. As the lexicographic ranks are required to be contiguous, having [, =n
implies that each criterion is given a distinct rank, i.e., [; = i. In this case, if y! < y*> where y',y> € Y,
then y! <y* vyl =y? with (y1,...,9)) < (3%,....03) & Im<n:Vi<m:y =y} Ayl <y2,.

When [, < n, this means that at least two criteria share the same rank, i.e., 3i < n s.t. [; = [;11. In this
case, it is understood that the trade-off between the concerned criteria is acceptable. It is not enough to
use a lexicographic order to compare two solutions. In this situation, a second way of taking into account
the preferences of the decision maker is to use weights ¢ € R? ). Each criterion i is associated with weight
¢i € R- that translates the priority of the decision maker. It should be noted that weights only allow
discriminating between criteria that share the same lexicographic rank. Weights are used to aggregate
the concerned criteria in a single function. Let P = {(/;,¢;),Vi = 1,...,n} denote all the preferences of
the decision maker. This modeling is general as it encompasses three situations. The first one is when all
the criteria have different ranks. In this case, weights are meaningless. The second situation is when all
the criteria have the same rank, and the priorities are only expressed through weights. The last situation
is a hybrid one where there are at least two lexicographic ranks and at least two criteria that share the
same rank and that are differentiated through weights.

4. Simulated Annealing Approaches

To solve the scheduling problem described in Section 3, Simulated Annealing, whose generic pseudo-
code can be found in Algorithm 1, is adopted. Starting from an initial solution, Simulated Annealing
explores the search space for better solutions that optimize the different criteria. Any nondominated
solution is stored in an archive A that corresponds, at the end of the optimization procedure, to an ap-
proximation of the Pareto front. Within AMOSA, the content of the archive at any iteration contributes
to the decision to accept a new solution, i.e., A is active, while it is passive in the approaches proposed in
this work. To handle the multiobjective aspect of the problem, our approaches use the preferences of the
decision maker P. Within AMOSA, these preferences are only used to select the final solution. In this
work, a geometric cooling schedule is adopted. Therefore, an initial temperature 7" and a cooling rate
P. are required. Finally, “Stop” refers to the stopping criterion chosen by the user, for example a final
temperature, a maximum computational time or a maximum number of non-improving moves.

This section details each iteration of the Simulated Annealing metaheuristic and highlights the dif-
ferences between the compared variants. In Section 4.1, the approach of Knopp et al. (2017) is recalled
and modified so that feasible schedules of our problem can be evaluated within the Simulated Annealing
metaheuristic. Section 4.2 describes the best available neighborhood function for our complex schedul-
ing problem. How the archive is maintained and how it is used in the different approaches are presented
in Section 4.3. Last but not least, Section 4.4 describes the acceptance conditions that each variant of
Simulated Annealing uses to decide whether the new solution x” should be selected or not. Note that,
instead of the objective vectors, the acceptance probability is computed using a function that takes a
solution as input. This is due to the fact that, in some cases with AMOSA, the new solution x’ is replaced
by one of the solutions in archive A.
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Algorithm 1 Generic Multiobjective Simulated Annealing

1: procedure SA(x,A,P T,P.,Stop)

2 while Stop = False do

3 y <+ f(x) > Evaluate current solution x
4: X = N(x),y « f(xX) > Generate neighbor x’ of x
5: ADD(X',A) > If possible, add x’ to archive A
6 if AcCcepT(X,x,P,A,T) then

7 x<+x > Replace x by x’ if acceptance conditions are satisfied
8 T+ P.«T > Apply geometric cooling schedule

4.1. Solution Representation and Evaluation

To solve our complex job-shop scheduling problem, the batch-oblivious approach proposed in Knopp
et al. (2017) is adopted and modified to consider two additional constraints: Unavailabilities and mini-
mum time lags. This approach uses a conjunctive graph to represent solutions where nodes only model
operations and arcs only model precedence constraints on routes and resources. Instead of using ad-
ditional nodes and arcs to model batches as in Ovacik and Uzsoy (2012), batches are coded in the arc
weights in the batch-oblivious approach. This new representation has many advantages. It reduces the
structural complexity of the graph. It allows ideas and techniques for less complex problems to be reused,
such as the move proposed by Dauzere-Péreés and Paulli (1997) and Dauzere-Péres et al. (1998) for the
flexible job-shop scheduling problem. Last but not least, it is possible to propose an integrated algorithm
that computes start times and improves the solution during the graph traversal by filling underutilized
batches through a combined resequencing and reassignment strategy.

Let G = (V,E) be the batch-oblivious conjunctive graph with set of nodes V = ¢’ U{0, x} that corre-
spond to the operations in & plus an artificial start node 0 and an artificial end node *. For anode v € O,
we denote its route successor by r(v) € V\ {0} and its machine successor by m(v) € V '\ {0}. Analo-
gously, its predecessors are denoted by »~!(v) € V\ {*} and m~!(v) € V\ {}. This graph can be used
to determine start times S, of operations v € &. A weight [, , € Ny is assigned to each edge (u,v) € E
in order to ensure a minimum time between the beginning of adjacent operations: S, > S, + 1/, , for each
edge (u,v) € E. Having this, start times of operations correspond to distances of longest paths from the
artificial start node. Let us denote by L(v,w) € Ny the distance of a longest path from node v € V to node
w € V. For each operation v € 0, its start time is determined by S, = L(0,v). To avoid increasing the
complexity of the graph, the minimum time lags and availability constraints are not explicitly modeled
in the graph. Then, it should be ensured that they are taken into consideration during the computation of
the start times. To reflect the other constraints, we define edge weights as follows. For edge (0,01 ;) € E
that connects the artificial start node O with the initial operation oy ; of a job j € _#, the edge weight is
set to the release time r; of job j € #. For edge (0,0,,) € E connecting the artificial start node 0 with
the initial operation o,, scheduled on machine m € .#, the edge weight is set to zero. For route edge
(v,r(v)) € E with v # 0, the edge weight is set to the processing time p,, of operation v. For machine edge
(v,;m(v)) € E with v # 0 of non-batching machines, the edge weight is set to the sum p, + 5(qy, gm())
of the processing time of v and the sequence-dependent setup time between v and m(v) on machine
My = My ().

To compute the start times, the nodes of the graph are traversed in topological order. When dealing
with a classical conjunctive graph, the start time of a node is computed based on the start times of
its predecessors and the weights of its incoming edges. To model batching decisions, the weights of
resource edges (u,v) € E, i.e., such that u = m~!(v), are adapted within the batch-oblivious approach.
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Then, before computing the start time of a node v, the adequate weight of the resource edge (u,v) € E
must be determined. The weight of this edge (u,v) € E is is set to zero if its adjacent operations should
be processed in the same batch. Otherwise, the edge weight is set to p, +s(qu,gy), as in the non-batching
case. However, setting /, , = 0 only guarantees that S, < S, but not that S,, = S,, which must be satisfied
if p-batching constraints are considered. To make sure that batching decisions are feasible, the invariant
(6) must be satisfied when considering the possibility of batching two adjacent operations u and v. This
invariant can be interpreted as follows: An operation v can be batched with its resource predecessor u,
which allows setting the weight [, ,, if v occurs before u, i.e., if the availability time of v is smaller than
the already computed start time of u. Using this invariant, it follows that, for each operation u € V,
computing the longest path leads to scheduling the machine successor operation v = m(u) either at the
same time as u or at a later point in time where processing times and sequence-dependent setup times are
satisfied.

(lu,v =0 A Su2>S8-1() +lr*‘(v).,v> V b,y = pu+5(qus qv)) (6)

When dealing with the problem described in Section 3.1, it is required to reformulate invariant (6)
and to consider minimum time lags and availability constraints when computing the start times. For
each node v and for each A = (j,u,qy,v,q,,d) € £™", S, > S, +d must hold. Then, let r, denote the
job availability time of operation v, which is computed in (7). As invariant (6) relies on the notion of
job availability time of operation v, it must be reformulated to consider minimum time lags. Therefore,
invariant (6) is no longer valid and is generalized in (8). Invariant (8) can then be used to determine the
weight of resource edge (u,v) € E based on the feasibility of batching operations u and v € V together.
After setting the weight of the resource edge incident to v, it becomes possible to compute the start
time S,. In addition to the start times of the predecessors and the edge weights, this computation must
consider the minimum time lags and the unavailability periods. The computation of the job availability
of operation v, denoted above by r,, already considers the minimum time lags. Regarding the availability
constraints, the start times must be adjusted to make sure that there is no overlap between operation v
and unavailability periods of the machine on which the operation is processed. The necessary adjustment
can be performed as proposed in Tamssaouet et al. (2018) and Mati (2010).

ro = max(Sy- O (j-u‘qu.vnc}?z)ezmi"(su +d)) @

(lu,v =0AS,> rv) vV (lu,v = pu‘i‘s((haq‘/)) (8)

Algorithm 2 provides the pseudo-code for a static graph evaluation algorithm. It tracks the used
capacity op for each node and checks if the recipes ¢,,-1(,) and g, or consecutive operations are equal.
The algorithm greedily creates batches while preserving invariant (8). The computation of the start
time takes into consideration the minimum time lags and the availability constraints. In addition to
the algorithm that computes the start times by traversing the batch-oblivious conjunctive graph, another
algorithm that performs the same task while dynamically improving the solution is also proposed in
Knopp et al. (2017). In our implementation, we use the latter algorithm, which is not detailed here,
as several other concepts would have to be introduced. The only changes in the algorithm are that
invariant (6) is replaced by invariant (8), and that the availability constraints are considered as illustrated
in Algorithm 2.
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Algorithm 2 Evaluation of a batch-oblivious conjunctive graph

1: procedure COMPUTESTARTDATESSTATICALLY(G)

2 So+0

3 B,+{v} (VveV)

4 for v € computeTopological Ordering (G \ {0}) do

5: ry < max(S,_l v) + 1 )y MAX( 1y g, v, gy.d) € Lmin (Su —|—d))
6 if r, <S,,-1(,) and g,,-1(,) = ¢y and OB, 1, < b, then

7 S, Sm—l(v), B, «— B, UBm—l(V)

8 else

9 Sy <= max (rv, Sm-1(v) T Pm-1(v) —|—s(m_1(v),V))

10: for Upm = [S,}m,Clvm] e U, do
11: if S, <§;,, then

12: if S, +p, <8, then
13: break

14: S, C17m

15: elseif S, <, then

16: S, C17m

4.2. Neighborhood Function

The batch-oblivious approach described in the previous section requires a neighborhood operator
-/ that modifies a given batch-oblivious conjunctive graph. The move introduced in Dauzere-Péres
and Paulli (1997), which integrates the resequencing and reassignment of single operations, is used. To
obtain a new solution x’ from a solution x, one node of the batch-oblivious conjunctive graph associated
with x is randomly chosen, its feasible insertion positions are computed, and one of them is randomly
selected and performed. As explained in Section 2.3, the large size of the neighborhood motives the use
of such approaches as long as efficient neighborhood functions are not available.

4.3. Archive and Reference Points

The archive stores solutions not yet dominated by any other solutions found so far. This is the set
of solutions finally returned by the optimization algorithm. This archive passively stores nondominated
solutions in the a priori heuristics as it plays no role in the search process. On the opposite, it is actively
used with the search in the AMOSA heuristic. In this work, the update of the archive with the new
solutions found during the search, and which are potentially nondominated, relies on Pareto dominance,
which is recalled in Definition 1. A new solution x’ is added to archive A only if it is not dominated by
any solution already in A. When this is the case, any solution in the archive dominated by x’ must be
removed from the archive.

An important question regarding the size arises when an archive is used to store nondominated so-
lutions found so far. Depending on the answer to this question, different archiving strategies can be
distinguished: Unconstrained archive, constrained archive, and fixed archive size. The unconstrained
archiving is discussed in Fieldsend et al. (2003). An unconstrained archive can be used to store all the
nondominated solutions found during the search process. When this strategy turns out to be compu-
tationally expensive, different strategies can be implemented to reduce the number of stored solutions.
The constrained archiving is discussed in Knowles and Corne (2004). When the archive size exceeds
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an a priori hard bound, different techniques can be used to reduce the size of the archive. A last archiv-
ing strategy is based on a constant storage capacity. This strategy is similar to the bounded archiving
when there are too many nondominated solutions but differs when the archive is not full, in which case
dominated solutions are also added to the archive (Liefooghe (2009)).

Preliminary numerical results show that better results are obtained when constraining the size of the
archive, especially in the case of AMOSA. Therefore, similarly to Bandyopadhyay et al. (2008), we
kept the archive size limited in our implementation. There are two limits on the size of the archive: A
hard limit denoted by HL, and a soft limit denoted by SL such that SL > HL. The size of the archive
is allowed to increase up to SL, after which the solutions are grouped in HL clusters using the single
linkage algorithm (Jain and Dubes (1988)). The member within each cluster whose average distance to
the other members is minimum is considered to be the representative member of the cluster.

If the set of efficient solutions is known, it is possible to define three reference points: The ideal point,
the utopian point and the nadir point. These points are respectively defined in Definitions 4, 5 and 6. The
nadir and ideal points produce important information on a multiobjective optimization problem. For a
decision maker, they show the possible range of all the criteria over the Pareto set: They are respectively
exact upper and lower bounds of the set of nondominated points. As the set of efficient solutions is
unknown in our case, y'¢,y* and y"* denote in the remainder of this paper approximations of the ideal
point, the utopian point, and the nadir point, respectively. Using archive A, the nadir point can be
estimated at any iteration of the search process by replacing the Pareto front Yy in Definition 6 by its
approximation A;. Without knowledge of the Pareto front, we use the utopian point instead of the ideal
point.

Definition 4 (Ideal point). A point y4 = (yid ... yid) € R" is called ideal if and only if, for each i €
{1,...,n}, ¢ = minyey y; holds.

Definition 5 (Utopian point). A point y*' = (y{',...,y*') € R" is called an utopian point if and only if it
dominates the ideal point y, i.e. y* <y . This point does not correspond to any feasible solution.

Definition 6 (Nadir Point). A point y* = (r{“,...,ri%) is called nadir (or anti-ideal point) if and only if
Vi = maxyeyy yi, Vi€ {l,...,n}.

To determine utopian point y* € R”, all the resource constraints in the conjunctive graph are relaxed.
So, the conjunctive graph only consists of the edges related to the routes of the jobs. For each job, the
shortest path is chosen. In other words, the processing time of each operation of a job is its process-
ing time when assigned to its fastest machine. Note that the release dates of jobs are still modeled in
the resulting graph. Then, the computation of the earliest start dates of operations in this graph yields
a schedule without waiting periods. The computation of the criteria for such schedules leads to lower
bounds of the considered regular objective functions to minimize and upper bounds for the regular ob-
jective functions to maximize. By relaxing the resource constraints, the notion of batch disappears. As
it is not trivial to compute the context-dependent upper bound for the batching coefficient criterion, it is
considered equal to 1.

4.4. Fitness Assignment to Solutions

At each iteration of the Simulated Annealing metaheuristic, the decision of keeping or discarding the
new solution x’ must be taken. When a single criterion is optimized, x’ is automatically accepted with
probability equal to one if it is not worse than the current solution x. Otherwise, it is accepted with a
probability lower than one. Because of the difficulty of comparing different solutions and computing the
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acceptance probability, several ways of assigning fitness to candidate solutions during the search can be
found in the literature. The general formulation of the preferences provided in this work, by considering
simultaneously a lexicographic order and weights, requires the Simulated Annealing metaheuristic to be
extended. The acceptance conditions in the two proposed approaches are detailed in Sections 4.4.1 and
4.4.2. These approaches differ in the way the preferences are used. As the different objective functions
have different units and significant different orders of magnitude, they must be normalized. The chosen
normalization, considered as robust (Arora (2017)), uses the approximation of the nadir and utopian
points as shown in (9).

ut
n= L ®
Yio —Yi

Concerning the aggregation function, the weighted sum is adopted in this work. Another known
aggregation function in the context of multiobjective optimization is the weighted Tchebychev metric
(see T’kindt and Billaut (2006)). The advantage of this second aggregation function, when the parameters
are well chosen, is that it makes it possible to reach any efficient solution. This property is not guaranteed
when the weighted sum is used, because efficient solutions (called unsupported solutions) may not be
achievable with a set of coefficients. Despite the absence of this important property, the weighted sum
leads to better results in our numerical experiments. Therefore, only the results obtained using the
the weighted sum are reported. In the approaches described in Sections 4.4.1 and 4.4.2, the aggregation
function is used in two cases: (1) To aggregate criteria with the same lexicographic rank /, i.e., Y7, _ civi,
and (2) To aggregate all the criteria after dropping all the preferences, i.e., ).} y;. '

The approaches we propose are compared to a successful a posteriori approach, AMOSA. To decide
on accepting or not a new solution, AMOSA relies on the dominance status between the new solution and
the current solution, and between the new solution and the solutions in the current archive. Section 4.4.3
briefly summarizes the main features of AMOSA, and the reader can refer to Bandyopadhyay et al.
(2008) for a full description of the approach.

4.4.1. SA-I: Sticking to the Preferences

The general idea of approach SA-I is to stick to the preferences of the decision maker when deciding
if the new solution is not worse than the current solution, and when computing the acceptance probability
when it is not the case. The way the approach uses the preferences P to decide on the acceptance of a new
solution x’ is detailed in Algorithm 3. First, using (9), SA-I starts by normalizing the objective vector f(x)
and f(x') to obtain y and y'. As a total ordering, a lexicographic order allows pairwise comparisons of
objective vectors. However, as some criteria may share the same lexicographic rank, this property can no
longer be used. Therefore, the idea is to use, for each lexicographic rank, the weighted sum to aggregate
the related criteria. By doing this, the obtained vectors y and ¥ can be compared lexicographically. If
y' is not worse than y, the new solution x is accepted. Otherwise, the acceptance probability should be
lower than one. As the general idea of SA-1 is to stick to the preferences, the acceptance probability relies
only on the lexicographic order where y' is worse than y. When analyzing the approach of Baykasoglu
(2005) proposed for lexicographic goal programming, it appears that this approach and SA-I share the
same adaptations of Simulated Annealing.

4.4.2. SA-II: Loosening the Preferences

The assumption behind SA-I is that following the preferences will always lead to final solutions that
are satisfactory, which may be not the case. Instead of the first alternative, it is also plausible to loosen
the way preferences are considered. This second alternative may have the benefit of getting solutions
with satisfying values for the less important criteria, and may also lead the search towards regions where
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Algorithm 3 Acceptance conditions of SA-I with weighted sum

1: procedure ACCEPT(x',x,P,A,T)

2: y+ NORMALIZE(f(x)),y + NORMALIZE(f(x))
3 Y Otseees Vs s ¥y,)s Vi = Lijmi Civi

4: Y Pl Tse0¥,)s 3p  Limi Gy

5: if y/ <y then

6 return True

7 A=Y I | I > I AV =PV <m

8 if exp(=*) < RANDOM(0,1) then

9: return True

10: return False

the most important criteria have better values. The way SA-II uses the preferences P to accept a new
solution x’ is detailed in Algorithm 4. In SA-II, the preferences are still considered when deciding
whether the new solution x’ is not worse than the current solution x. Therefore, SA-II differs from SA-I
in the computation of the acceptance probability. If the lexicographic order is to be ignored, it does not
seem consistent to use the weights either. Therefore, all the criteria of y and y' are aggregated using
the chosen function without considering the weights given by the decision maker. In other words, this
approach considers that all the criteria have the same importance.

Algorithm 4 Acceptance conditions of SA-II with weighted sum

1: procedure ACCEPT(xX,x,P,A,T)

2 y <~ NORMALIZE(f(x)), y - NORMALIZE(f(x"))
3 Y Otsees Voo s ¥y,)s Vi = Lijmi Civi
4: y/F (yllv"wy;a"'ay;n)’ y;%ZZli:lciyg
5: ify <y then

6 return True

7 Xy Y < Xy

8 A=y -3

9: if exp(%A) < RANDOM(0,1) then

10: return True

11: return False

4.4.3. Archived Multiobjective Simulated Annealing: AMOSA

The third alternative explored in this work is the Archived Multiobjective Simulated Annealing
(AMOSA) of Bandyopadhyay et al. (2008). The purpose of this section is to highlight the differences
between AMOSA and the proposed approaches. As an a posteriori heuristic, AMOSA does not require
the preferences of the decision maker during the search process, but relies instead on Pareto dominance.
In addition to the current solution x, the acceptance of the new solution x’ is also based on the solutions
in the archive A. To determine the acceptance probability of a new solution, an elaborate procedure is
followed that considers the dominance status of the new solution with the current solution, as well as
with the solutions in the archive. A measure of the amount of dominance between two solutions is also
used for this purpose. The reader can refer to Bandyopadhyay et al. (2008) for a full description of
AMOSA. All the main building blocks described in the original work are implemented to perform the
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experiments in Section 6, except for the initialization phase. AMOSA begins with the initialization of
a number of solutions. For a number of iterations, each of the solutions is improved by using a simple
hill-climbing technique, which is prohibitive in the case of our complex scheduling problem. Therefore,
our implementation does not include this initialization phase.

5. Multiobjective GRASP Approaches

In this section, we present heuristics that rely on the idea of Greedy Randomized Adaptive Search
Procedure (GRASP) of Feo and Resende (1995), and that is used within this work to diversify the search
and to benefit from the parallelism of modern CPUs. In this multi-start procedure, each iteration consists
basically of two phases: Construction and local search. A feasible solution is built in the construction
phase and improved in the local search phase. Section 5.1 describes our construction heuristic. One of the
Simulated Annealing variants presented in Section 4 is used to improve the initial solutions. Therefore,
Section 5.2 only describes how these improvements heuristics are used within the global approach and
how their parameters are determined.

5.1. Construction Heuristic

The construction heuristic sorts the jobs in decreasing order of their ratio % (weight divided by
due date). When dues dates are not part of the problem definition, as it is the case with the industrial
instances, only weights are used to sort the jobs. Otherwise, jobs are initially sorted in decreasing order
of the sum of the shortest processing times of their operations. As the construction heuristic is used
within a GRASP approach, the construction is randomized by perturbing the sorted list of jobs. A tuning
parameter P, > 1 is used to steer the perturbation intensity. At each iteration of the construction heuristic,
the next job to be inserted is determined by randomly selecting one of the first P; elements in the sorted
list of remaining jobs. The heuristic then iterates over the sorted list of jobs and successively inserts all
operations of the current job. The best insertion position for each operation is the insertion position that
leads to the best values of the criteria for the partial solution. To find the best insertion position, the
operation is inserted in all feasible positions, and the obtained partial solutions are compared. If there
are two or more criteria with the same lexicographic rank, the weighted sum is used to aggregate their
values. The construction is completed when all operations of all jobs have been inserted. The first initial
solution is automatically stored in the empty archive. The next constructed and improved solutions are
added if they are not dominated by solutions already in the archive.

5.2. Improvement Heuristics

As described in Section 5.1, our heuristic creates many different starting solutions by randomizing a
construction algorithm that greedily inserts operations. Then, each constructed solution is independently
improved using one of the Simulated Annealing metaheuristics: SA-I, SA-II and AMOSA. The GRASP
approach ends when the maximum allowed computational time is reached. As this computational time is
short in the industrial setting, The global approach is parallelized as follows. Each solution is constructed
and improved independently and thus can be run in its thread. In the numerical experiments, the same
improvement heuristic is used within all threads. Thus, for example, SA-I refers in the following to the
whole GRASP approach that uses SA-I to improve the initial solution. Communication between threads
is only needed to update the shared information, i.e. procedure ADD(x’,A) in Algorithm 1. A fixed
number of threads is used, and each thread restarts with a new initial solution once its improvement
heuristic has met the stopping criterion.
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Unlike the global approach, the Simulated Annealing metaheuristics are stopped when the maximum
number of non-improving moves P, is reached. On the one hand, a non-improving move within the
proposed a priori approaches might refer to a move that does not improve the global best solution. On
the other hand, as the search of AMOSA relies on the archive, it is more natural to let a non-improving
move refers instead to a move that does not lead to an update of the archive A. Therefore, the value of
parameter P, must be carefully chosen in Section 6 to make sure that the comparison is fair between
these two approach classes. For all the metaheuristics, we use the same geometric cooling schedule
that maintains a temperature 7', which is multiplied by a cooling factor P, < 1 after each iteration. The
initial temperature is determined by sampling a fixed number P, of random moves. When optimizing a
single criterion, we compute the difference A between the criterion of the new solution x” obtained after
performing a selected move and the criterion of the initial solution x, i.e., A =y" —y’. Then, for a tuning
parameter P, the P,-th percentile of these values is selected as the initial value for the temperature 7.
When considering multiple criteria, similarly to the computation of the acceptance probability in SA-II,
the difference is computed after aggregating the criteria using the weighted sum, i.e., A =Y7"y; — Y y..

6. Numerical Results

The batch-oblivious approach and the extensions proposed in Section 4.1 make our approach capable
of tackling the generic industrial scheduling problem found in a work area in semiconductor manufactur-
ing facilities. Thus, this section focuses on the multiobjective aspect of the scheduling problem and relies
on large industrial instances to study the performance of the three GRASP approaches, i.e., SA-I, SA-II
and AMOSA. The global approach with the different blocks described earlier is implemented in C++14.
All computational experiments are conducted on an Intel Core i7-7700 3,60 Ghz machine (4 cores) run-
ning Microsoft Windows 10. The relevant details of the experiments are provided in Section 6.1. The
comparison between the different studied approaches is based on the quality of the final selected solu-
tion. The results are compared and analyzed in Section 6.2. Finally, Section 6.3 aims at estimating the
improvement that our approach can bring by comparing its proposed schedules with the actual factory
schedules.

6.1. Experiment Design

For each instance, each GRASP approach is run only once since several independent runs of Simu-
lated Annealing are performed on different threads. The sampling strategy of our approach avoids the
need to adapt parameters for individual instances. We used the following identical parameter settings
for all experiment: A cooling factor P, = 0.99999, a number of samples P, = 100 and a perturbation
intensity P, = 5. The values of these parameter are the ones used in Knopp et al. (2017), where a large
number of instances is used to tune them.

To conduct a fair comparison between the different approaches, we believe that the maximum number
of non-improving iterations P,, and the temperature percentile £ must be carefully chosen. As indicated
in Section 5.2, different ways of counting the number of non-improving iterations can be considered
for AMOSA and the proposed a priori approaches. Therefore, to make the comparison fair and simple,
we used a large maximum number of non-improving iterations (P, = 10000) to make sure that the
stopping criterion of the individual Simulated Annealing approaches is actually the maximum allowed
computational time. The initial temperature is another critical parameter that has a significant impact on
the performance of any Simulated Annealing approach. In our GRASP approach, the sampling strategy
helps setting reasonably good values for the initial temperature. Nevertheless, it should be ensured
that the value selected for the temperature percentile F; that controls the sampling strategy does not
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favor one approach over others. The experiments are therefore conducted by using different values of
P, € {5%,10%,20%,30%,40%,50%}. The results show that using P, = 5% leads to the best results for
AMOSA and most of the proposed approaches, and this corresponds to the value chosen in Knopp et al.
(2017). Finally, the hard limit on the size of the archive is HL = 100 and the soft limit is SL = 150.

Two instance sets are used to conduct the numerical experiments. The first set of instances, called
LI, contains 15 large industrial instances. Each instance captures the situation of the work area at a
given point in time, where the number of jobs to schedule ranges from 350 to 550. These instances
correspond to the scheduling problem to be solved each time the proposed approach is used to control
the shop floor. Thus, the comparison between the different GRASP approaches in Section 6.2 uses the LI
instances. The second set of instances, called VLI, contains ten very large instances where the number
of jobs ranges from 1,500 to 1,800. Each instance describes the scheduling problem of the studied work
area within a period of one day. These instances are described in more detail and used in Section 6.3
to evaluate the potential impact of the approach developed in this work by comparing its results to the
actual industrial results. For each job in these two sets of instances, between one and five operations
have to be performed, with three operations on average. On average, the jobs must be scheduled on 68
machines, all capable of batching, and the batching capacity is between 2 and 7 jobs. As defined in
Section 3.1, the scheduling problem includes the following constraints: Release dates, minimum time
lags, sequence-dependent setup times, availability constraints and batching constraints.

The criteria described in Section 3.2 are considered in the experiments: Target Satisfaction Indicator
(TSI), Weighted Number of Moves (WNM), Weighted Flow Factor (WFF) and Batching Coefficient
(BC). To study the influence of the chosen preferences on the a priori approaches search, the experiments
are conducted using three realistic sets of preferences shown in Table 1. Each criterion is respectively
given a lexicographic rank and a weight as a pair (/, ¢) to reflect the preferences of the industrial partner.

TSI WNM WFF BC

P, @D 2D @31
P (1,1) 2D (25 @31
P (1,1) 25 (2,1 @31

Table 1: Used preferences

Besides the preferences, the values of additional criteria related parameters must be fixed. First,
through the parameter ¢, the proposed criterion TSI allows the decision maker to prioritize, depending
on the context, the overall satisfaction or the balancing, without ignoring the other. For the sake of space,
a =1 is used in the experiments. Another important parameter that must be determined before solving
the scheduling problem is the horizon that is required to compute the values of TSI, WNM, and BC.
When solving the LI instances, this horizon is equal to 8 hours, which corresponds to a shift. Regarding
the VLI instances, 24 hours is the chosen horizon, which corresponds to the period fully described by
the instance data.

Finally, Another industrially critical parameter is the allowed computational time. Because of the
dynamic aspect of the industrial setting, the scheduling approach must be run frequently on instances that
are similar to the LI instances for a computational time that does not exceed 5 minutes. The experiments
using the VLI instances in Section 6.3 are conducted by allowing a computational time of 30 minutes.
The choice of this computational time is motivated by the fact that the average number of explored
solutions in 30 minutes for the VLI instances (approximately 650,000) is equal to the average number of
explored solutions for the LI instances in 5 minutes.
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6.2. Comparison Based on Preferences

The objective of this section is to compare the different GRASP approaches through the quality of the
final solution which is selected using the preferences provided by the decision maker. In the preferences
shown in Table 1, only WNM and WFF share the same lexicographic order. After the aggregation of
these two criteria, the lexicographic order makes it possible to select a unique solution. Table 2 presents
a summary of the obtained results. For each instance and approach, the relative deviation of the value
of each criterion of each final solution from the best value is computed. To facilitate the analysis, the
relative deviations of WNM and WFF are aggregated using the related preferences, as they share the
same lexicographic rank in the three vectors of preferences. Due to the limited space of the paper, only
the mean and maximum of the resulting relative deviations are reported in Table 2. The results are
grouped by the preferences P;, and each row corresponds to the aggregated results of each approach.
Columns 1, 2 and 3 correspond respectively to the average or to the maximum of the relative difference
for lexicographic ranks 1, 2 and 3. The best values within the results of each of the preferences vector
are in bold.

Mean Max
1 2 3 1 2 3

AMOSA 47 53 59 94 121 103
SA-I 0.8 83 73 29 242 12.1
P1 SA-II 08 46 11 29 124 43

AMOSA 44 68 55 83 182 9.1
SA-I 0.7 80 6.7 29 151 109
P> SA-II 09 49 13 29 121 4.0

AMOSA 46 56 64 88 84 11.1
SA-1 07 70 7.0 29 188 11.7
P3 SA-II 09 30 1.0 35 93 3.0

Preferences Approach

Table 2: Quality of the final solutions.

Let us first analyze the results by considering each lexicographic rank separately. Regarding the
first lexicographic rank that corresponds to the criterion TSI, SA-I provides the best results in terms of
mean and maximum relative deviation. For this rank, AMOSA obtains results of poor quality because
its average and maximum relative deviations are respectively larger by at least 3% and 5% than those of
SA-I. On the contrary, whatever the preferences, the difference between the SA-II and SA-I approaches
is quite insignificant. More precisely, a difference of at most 0.2% from the mean and not more than
0.4% from the maximum relative deviation can be observed. The results of SA-I can be explained by
its design, since the preferences are used when deciding whether the new solution is not worse than the
current one and when computing the acceptance probability. However, this choice to stick closely to the
preferences during the search comes at the cost of poor results for the higher lexicographic ranks. Note
that AMOSA obtains better results than SA-I at lexicographic ranks 2 and 3. For example, the mean
relative deviation of SA-I at lexicographic rank 2 is worse than the deviation of AMOSA by 3% when
using preferences P;.

The superiority of SA-II can be observed when we focus on the two higher lexicographic ranks be-
cause it always obtains the best results. By design, this approach uses preferences only to decide whether
the new solution is not worse than the current one. When calculating the acceptance probability, the pref-
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erences are not taken into account, leading to the equal consideration of all criteria. This explains the
insignificant difference with SA-I regarding lexicographic rank 1 and the best results for the remaining
ranks. Considering all the results presented so far, it can be concluded that SA-II is the most appropriate
approach in the industrial context.

Beyond the industrial application, the results in Table 2 can be used to analyze the impact of the
fitness assignment to solutions during the search process and the way the preferences are considered.
In the studied context, where decision makers have to express their preferences before the optimization,
the results show that using the preferences during the search (our approaches) generally leads to better
results than when only using the preferences to select the final solution from the archives produced by an
a posteriori approach (AMOSA). However, special attention should be paid to the way the preferences
are taken into account into the search process. For example, except for TSI, SA-I shows poor results
compared to AMOSA. In case of extreme preferences such as a lexicographic order, strictly following
the preferences during the search usually leads to poor results for the least important criteria without
necessarily ensuring better results regarding the most important criteria. This is illustrated in the com-
parison between SA-I and SA-II. Relaxing the preferences when computing the acceptance probability
leads to better results for the least important criteria without any significant negative impact on the most
important criterion.

6.3. Potential Impacts of the Proposed Approach on Industrial Instances

This section aims at validating our approach by comparing its schedules to the actual schedules of
the studied work area. To conduct the comparison, all relevant data for ten different days over six months
have been extracted from the Manufacturing Execution System. The obtained instances are VLI in-
stances. To perform a fair comparison, all the constraints and events that can affect the schedule quality
must be reflected in the instances. After some manufacturing operations, some jobs are measured on
inspections machines to monitor the process stability of machines and the quality of products (see, for
example, Dauzere-Péres and Hassoun (2019)). Measurement operations are not explicitly considered in
our instances. To make the model realistic, the transport times between machines are overestimated to
one hour to take into consideration the waiting times of jobs that are measured in front of the inspec-
tion machines and the corresponding measurement times. Minimum time lags are used to model the
transport times, i.e., a minimum time lag constraint of one hour is systematically added between any
two consecutive operations of any job. As explained above, the experiments are conducted by allowing
a computational time of 30 minutes. The results of the GRASP approach are reported as a relative de-
viation to the actual results instead of the best values. The detailed results per instance are reported in
Table 3.

The numerical results show that our approach can bring significant improvements in the operational
performance. Indeed, there are eight instances out of ten for which the proposed solutions are dominating
the actual solutions on all criteria. For the two remaining instances (3 and 5), the actual solutions are only
better for the weighted flow factor (WFF). Because of the decision-maker preferences, all the solutions
obtained by our approach are better than the actual ones. The satisfaction of the production targets and
the utilization of the batching capacity are approximately increased by 10% and 5%, respectively. The
weighted flow factor and the weighted number of moves are improved by more than 5%. These results
demonstrate that there is room for improving the operational performance of the studied work area, and
that the proposed approach efficiently solves the industrial scheduling problem while taking the rich set
of constraints and criteria into account.
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Instances TSI WWF WNM BC

1 7.7% -9.4% 9.2% 4.8%
2 221%  -5.9% 2.7% 5.0%
3 10.6%  11.4% 2.3% 5.2%
4 93% -199% 11.2% 4.2%
5 8.3% 4.6% 9.7% 4.8%
6 128%  -5.1% 3.4% 2.8%
7 9.6% -5.8% 2.1% 7.0%
8 7.7% -7.0% 3.6% 8.4%
9 79%  -154%  7.4% 7.5%
10 10.1% 4.3% 11.1% 6.6%

Mean 10.6%  -4.8% 6.3% 5.6%
Median  9.6% -5.8% 6.3% 52%

Table 3: Detailed results comparing the schedules determined by our approach and the actual schedules

7. Conclusions

In this paper, we proposed an approach to solve a multiobjective complex job-shop scheduling prob-
lem stemming from semiconductor manufacturing. To construct feasible schedules, the recently pro-
posed batch-oblivious approach (Knopp et al. (2017)) is adopted and first extended by considering un-
availability periods and minimum time lags. Different criteria, suitable to optimize the local performance
of the work area, are optimized. Besides, a novel criterion is proposed to model the contribution of the
produced schedule to the realization of production targets defined at the factory level. Having a multi-
objective problem where a trade-off is only allowed among some criteria, the preferences of the decision
maker are modeled through a lexicographic order and weights. As this approach must be embedded in
a real-time application where the available time for decision making is limited, the decision maker is
constrained to express his/her preferences before the optimization phase.

To solve our multiobjective complex scheduling problem, Simulated Annealing appears to be one
of the most suitable approaches. To our knowledge, the simultaneous use of a lexicographic order and
weights to model the preferences of decision makers has not been studied in the multiobjective opti-
mization literature, although it is relevant in real-world applications. Due to this generic modeling of the
preferences, Simulated Annealing must be extended if the preferences have to be used during the search.
Two extensions of Simulated Annealing are investigated, depending on how the preferences are exploited
during the search. To study if a new solution is not worse than the current one, the chosen aggregation
function is applied to all criteria sharing the same lexicographic rank within all proposed approaches.
Therefore, the lexicographic relation can be used to compare the resulting vectors. If the new solution is
worse than the current one, an acceptance probability must be computed. The first approach (SA-I) con-
sists of sticking to the preferences by aggregating only the criteria on the most important lexicographic
rank where the two solutions differ. In the second approach (SA-II), all the criteria are aggregated by
ignoring the lexicographic ranks and weights. To represent a posteriori approaches, AMOSA proposed
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in Bandyopadhyay et al. (2008) is adopted.

The numerical results show that the proposed approaches, by taking the preferences into account,
provide good quality solutions regarding these preferences. Another important lesson learned from the
analysis of the computational experiments is that relaxing the preferences during the search (e.g., com-
putation of the acceptance probability) may lead to solutions that are of high quality regarding the most
important criteria as well as the least important ones. By relaxing the preferences, optimizing the least
important criteria becomes possible while the most important ones benefit from the diversification of the
search.

Despite the encouraging results obtained by our approaches, several research perspectives can be
explored. As shown in Section 2.3, the choice of the solution approach is highly constrained by the large
size of the neighborhood. To overcome this obstacle and make it possible to use other heuristics relying
on local search, the design of efficient neighborhood functions is a necessary step. Also, due to the
successful application of Genetic Algorithms to a broad range of multiobjective optimization problems,
a potential future research direction is to define a solution representation for our complex scheduling
problem that can be coupled with an efficient decoding algorithm.
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