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Abstract

In complex systems that can be found in semiconductor manufacturing, linear programming production
planning models must consider many products with hundreds of production steps to be performed on
hundreds of machines. To deal with this complexity and solve problems with flexible lead times in a
reasonable CPU time, the new concept of timed route is introduced. In a timed route, each production
step of a product is associated with a specific time period. A new formulation relying on timed routes is
then proposed. Because the number of feasible timed routes can grow exponentially, a column generation
approach is presented. Algorithms to generate relevant timed routes are given, and their complexity
analyzed. Computational experiments on industrial data with different lead time profiles, fixed lead
times and flexible lead times, show that computational times are very significantly reduced when using
our approaches, by 92% on average and even divided by more than 1,000 in some cases. The advantages
of timed routes are also discussed.

Keywords: Manufacturing, production planning, multiple steps, timed route, column generation

1. Introduction

In many industries, products have to go through a series of production steps (called a route) to be
completed. When machines are partially flexible, i.e. can process steps of different products or different
steps of the same product (reentrant flows), controlling the production flows is difficult. When the cycle
times of the routes are long (several weeks), production planning is needed to determine when and how
many products should be released, and how they should be processed in order to meet demands on
time. This is particularly true in semiconductor manufacturing facilities. In the integrated circuit supply
chain, raw wafers need between two and three months to be completed. There might be hundreds of
products and each requires hundreds of production steps to be completed, which must be processed on
hundreds of partially flexible machines. Machines are grouped in a limited number of workcenters, and
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products have to pass many times through the same workcenters. Hence, it is often critical for production
planning models to consider internal production flows to deliver products on time with reasonable cycle
times while satisfying the capacity of machines.

One of the classical ways of modeling congestion in front of machines is to consider both fixed
lead times and limited capacity. The limited capacity models the amount of time a machine can be
used in a period, while lead times model more exogenous parameters such as the waiting time and the
scheduling of products on the machines, see Section 2.3. A fixed lead time is the number of periods that
are needed to entirely process a given quantity in a production step in the route of a product. Several
assumptions are considered in the literature: (1) The value of the lead time does not depend on the
production quantity, (2) The capacity consumption is only considered in the last period of the lead time,
and (3) The processing time of a production step is assumed to be smaller than one period. For example,
let us consider the products in a production step with batching (e.g. heating in a oven) that will often
wait for a complete batch before starting. Hence, the fixed lead time of the production step will be equal
to one or more periods although its processing time is smaller than one period. Note that fixed lead times
can be equal to zero, in particular for production steps that are short and need to be grouped with other
production steps to exceed one period. In this paper, we also consider flexible lead times which, although
they require much more complex constraints to be modeled, help to determine more efficient production
plans, which better use the machine capacity by allowing some products to wait more than the fixed lead
time in a step if necessary. However, the resulting linear program may require very long computational
times, up to several hundred hours, as shown in the numerical results of Section 6. Another drawback of
allowing flexible lead times is that, because lead times have no maximum limits, products may remain
too long in the manufacturing system and have very long cycle times. To solve the problem in reasonable
computational times, we propose the concept of timed routes to address the multi-product multi-step
capacitated production planning problem. In the timed route of a product, each production step of the
route of the product is assigned to a period in the planning horizon. A major advantage of timed routes is
that the cycle time of products can be limited, by only considering timed routes with a maximum number
of periods between the period assigned to the first step of the route and the period assigned to the last
step of the route. Note that setup costs and times are not explicitly considered in this paper.

This paper is structured as follows. Section 2 proposes a literature review on related problems such as
multi-level lot sizing, integrated lot sizing and scheduling and semiconductor manufacturing production
planning, together with an overview on column generation approaches. Then, in Section 3, mathematical
models for production planning with fixed lead times and flexible lead times are presented. In Section
4, a reformulation based on the new concept of timed routes is proposed. When modeling flexible lead
times instead of fixed lead times, the number of timed routes becomes exponential. Hence, a column
generation approach is presented in Section 5 to solve the problem with flexible lead times. Computa-
tional experiments on industrial data are conducted in Section 6, which shows the efficiency of the timed
route reformulation. Conclusions are drawn and future research directions are provided in Section 7.

2. Literature Review

In this section, lot-sizing problems that show similarities with the multi-product multi-step produc-
tion planning problem are first discussed. However, one main difference is that setup costs and times
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are not considered in the multi-product multi-step production planning problem. Still, the classical for-
mulation of the problem is really close to a multi-level dynamic lot-sizing problem. Due to the detailed
production steps, it is also somehow related to integrated lot-sizing and scheduling problems, although it
cannot be considered as an integrated problem. Because it considers multi-product multi-step production
planning problems, a review on the semiconductor manufacturing literature on production planning is
then given. Anticipating the need to deal with a large number of variables, a short summary on column
generation approaches in production planning completes this section.

2.1. Multi-level dynamic lot-sizing

Dynamic lot-sizing problems are classical problems in production management, introduced by Wag-
ner & Whitin (1958). Dynamic lot-sizing aims at determining the production quantities to start on a
planning horizon discretized in periods to meet the demand while minimizing inventory, setup and other
possible costs. A generalization of this family of problems is the multi-level capacitated lot-sizing prob-
lem (MLCLSP), proposed by Billington et al. (1983). Multi-level lot sizing is generally separated in
three branches depending on the Bill of Materials (BOM) structure (note that other specific BOMs may
occur). If each product has at most one predecessor product and at most one successor product, it is
called production in series. In an assembly structure, each product has at most one successor, whereas,
each product has at most one predecessor in a divergent structure. Lead times can be used at every level,
not only to model capacity (which is already considered in the capacitated case), but also to consider
various exogenous phenomena. The MLCLSP was solved using various heuristics, from Lagrangian
heuristics to metaheuristics. The reader is referred to Buschkühl et al. (2010) for a literature review on
dynamic capacitated lot-sizing problems.

The problem we want to address is in the family of serial multi-level capacitated lot-sizing problems
with lead times without setup costs or times. Not only fixed lead times but also flexible lead times will
be considered. Another characteristic of our problem is the shared capacity between levels.

2.2. Integrated lot sizing and scheduling

Because multi-step production planning seeks to grasp the full complexity of internal production
flows rather than approximating the cycle times for each product, it can be compared to models that
integrate two decision levels such as integrated lot-sizing and scheduling models. Although our multi-
product multi-step production planning problems do not explicitly integrate sequencing decisions on
machines, routing constraints are partly taken into account by considering lead times for the production
steps. Lead times ensure that two consecutive steps in the route of a product are performed in the same
period or in two different periods.

Integrated lot-sizing and scheduling problems have often been studied, according to the review of
Copil et al. (2017). While lot sizing aims at meeting the demand at the lowest cost, scheduling cor-
responds to assigning and scheduling products on machines while minimizing the makespan or other
objective functions. Such a junction between operational and tactical problems can lead to high com-
plexity. Solving the full integrated mathematical model with multiple machines and multiple steps is
often unrealistic. For this reason, solution methods can be separated in three kinds: Heuristics which
solve the full problem (e.g. Gómez Urrutia et al., 2014), hierarchical methods which solve the problems
sequentially (e.g. Liberatore & Miller, 1985), and iterative methods (e.g. Dauzère-Pérès & Lasserre,
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1994). In the literature, focus may vary between scheduling oriented modeling and lot sizing oriented
modeling. Furthermore, various types of heuristics are proposed depending on the problem to solve.

In a sense, multi-product multi-step production planning problems can be seen as production plan-
ning problems that integrate intermediate production decisions. Contrary to the integrated lot-sizing and
scheduling problems, the uniformity of the decision variables avoid adversarial decisions between the
two levels.

2.3. Production planning in semiconductor manufacturing

As discussed in Section 1, our multi-product multi-step production planning problem is particularly
relevant in semiconductor manufacturing. Hence, the literature on production planning in semiconductor
manufacturing is the most related to our problem. Note that most research papers in this context only
use linear programming. Integer variables are not considered due to the dimension and complexity of
the industrial problem. A critical issue in production planning in semiconductor manufacturing is the
modeling of the complex reentrant production flows and of the congestion on machines. Congestion is
modeled in three main ways.

1. The first and most straightforward way to model congestion is to use fixed lead times, which
are equivalent to the ones used in multi-level lot sizing. Although lead times fail to seize the
dynamic of congestion, they can model frequent delays happening due to fixed bottlenecks in the
production step. This is for example the case in a workcenter that is central in the production
flows and regularly overloaded, or in production steps that require auxiliary resources not always
available in the period. The dynamics of the congestion, that can fluctuate due to the workloads
in each workcenter, is taken into account by the capacity constraints that limit the quantities to be
processed in one period in a workcenter. Lead times are usually determined based on historical
data. Fixed Lead Times are easy to model and introduce low complexity but they have several
drawbacks. In particular, the workload is not balanced on all periods of the lead time but is only
counted in the last period. In addition, production flows are not flexible and the values of the
lead times are critical. If the lead times are too short, production flows must be strongly reduced
in order to satisfy capacity constraints. Nevertheless, fixed lead times are convenient and can be
improved by using non-integer fixed lead times as shown in Kacar et al. (2016).

2. An important fact is that lead times are not exogenous parameters. In fact, they directly depend
on the production flows of products which compete for the same resource in a period. In short,
lead times depend on the production plan. To address this circularity between production planning
and operational level execution, Hung & Leachman (1996) propose an iterative procedure using
both linear programming and discrete event simulation. The linear programming model is used
to find a production plan that takes into account the lead times given by the simulation model,
while the simulation model takes as inputs the production plan and evaluate it. These two steps are
repeated until convergence. However, as stated by Missbauer (2020), processes that iterate only
on the lead times, do not meet the theoretical requirements to insure a convergence. Furthermore,
the experiments of Bang & Kim (2010) show that iterative procedures are affected by the choice of
the simulation model. In addition, a major drawback of iterative procedures is their computational
burden.
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3. The last main way to tackle congestion is the use of so-called Clearing Functions (CFs). Initially
introduced by Graves (1986), Clearing Functions give the expected output of machines (or work-
centers) as a function of the workload. In their current shape (since the paper of Asmundsson
et al. (2006)), CFs are non-linear functions that are estimated using simulation or historical data.
CF constraints are generally linearized and included in a single linear programming model. In
a recent work, Albey et al. (2017) study a CF that can deal with multiple products and multiple
stages. One of the main advantages of using CFs is the short computational times compared to us-
ing iterative procedures, because the burden is moved to the pre-processing phase (i.e. establishing
CFs). But when the structure of the facility changes, e.g. new machines are added, CFs need to be
re-evaluated.

We will not consider CFs in this paper, because they do not specify lead times and capture the delays
in a very different way. We first consider fixed lead times which are widely used and easy to implement.
Then we use a more flexible definition of lead times by considering additional constraints.

Within the semiconductor manufacturing literature, the classical formulation of a multi-step produc-
tion planning problem can be tracked back to the step separated formulation of Leachman & Carmon
(1992). This paper is also interesting because it might be the first one to discuss a route based formula-
tion of the problem. Unfortunately, the authors discarded the idea due to the large number of decision
variables required by the model.

2.4. Column generation for production planning

Column generation approaches are known to efficiently deal with mathematical programs with a large
number of decision variables. Column generation has been successfully applied to various optimization
problems such as vehicle routing problems (e.g. Azi et al., 2010), airplane crew scheduling problems
(e.g. Gamache et al., 1999) or machine scheduling problems (e.g. Lopes & de Carvalho, 2007). Column
generation was introduced by Dantzig & Wolfe (1960), and consists in separating the original problem
into a master problem and a pricing problem that generates useful columns for the master problem. At
first, a Restricted Master Problem (RPM) with a limited number of columns is solved. Then, using
reduced costs, the pricing problem is solved to find one or several columns to add to the RPM. The
process is iterated until no new column is found. To better understand column generation, the reader
can refer to Barnhart et al. (1998) where different strategies of generation are discussed (in a branch and
price framework) or the extensive tutorial of Desrosiers & Lübbecke (2005).

In production planning and lot sizing, the first work on column generation was published by Manne
(1958), two years prior to the seminal paper of Dantzig & Wolfe (1960). Manne’s paper is partially de-
ficient and was corrected and implemented in Degraeve & Jans (2007). Column generation was applied
to solve lot-sizing problems in several kinds of industries such as the tire industry (Jans & Degraeve,
2004), the paper industry (Bredström et al., 2004) and the steel industry (Yi et al., 2019). The most com-
monly used column type is a production plan column which specifies the production periods. However,
in terms of production planning without setup costs, the production periods are not critical. That is why
the formulation proposed in our study is significantly different. As far as we know, column generation
was never applied to solve a multi-product multi-step lot-sizing problem.

In semiconductor manufacturing, to the best of our knowledge, column generation was never used
to solve production planning problems. Even in the entire semiconductor manufacturing literature, only
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four articles using column generation were spotted: On lot allocation to customer (Ng et al., 2010), on
cutting wafers (Nisted et al., 2011), on capacity expansion (Kim & Uzsoy, 2008) and on scheduling
(Jampani & Mason, 2010).

3. Mathematical models with fixed and flexible lead times

In this section, a compact formulation based on the literature is presented for planning the production
of P products over a discrete time horizon. The time horizon is decomposed into T periods (usually one
period is one day), and demands Dpt are given per product p and period t. Each product p needs a
sequence of steps Lp to be processed on K workcenters. Each workcenter k can process a finite set of
steps L k

p for each product p and has a finite capacity Ck.
The plan is determined by optimizing internal production flows. The goal is to optimize the quantities

Xplt of product p to be processed, at step l and period t. The set of steps of product p and their resource
consumption αpl provide the timing of steps. In order to trace production flows, a variable Wplt that
models the work in process (WIP) of product p, at step l and period t is introduced. A unitary work in
process cost wpl is associated with product p and step l.

The goal is to satisfy demands while minimizing inventory, backlogging and work in process costs.
Note that the WIP cost is the intermediate inventory cost in a multi-level lot-sizing problem. We introduce
a unitary inventory cost hpt and a unitary backlogging cost bpt for product p and period t. Let us also
introduce two decision variables Ipt and Bpt , that respectively model the inventory and the backlog of
product p at time period t. In this model, we assume that the transportation times and costs between two
workcenters are negligible or constant. Products that complete a given production step are placed in a
waiting queue for the next step (the queue is supposed to be uncapacitated).

Capacity congestion is first modeled with a fixed lead time LTpl for product p at step l. Note that LTpl

can be larger than 1 but, as in the models of the literature, we assume that the capacity is consumed in the
last period of the lead time, and that the processing time of a production step never exceeds one period
(and that it does not overlap two different periods). More precisely, the capacity required to produce Xplt

is consumed in period t when LTpl = 0, in period t + 1 when LTpl = 1, in period t + 2 when LTpl = 2,
etc. This means that products are waiting in period t if LTpl = 1, in periods t and t + 1 if LTpl = 2, etc.
Production capacity is consumed in the same way when flexible lead times are considered.

3.1. Model with fixed lead times

The parameters and decisions variables are summarized below.

• P: Number of products;

• K: Number of workcenters;

• Lp: Sorted list of steps of product p;

• L k
p : Set of steps for product p processed in workcenter k;

• T : Number of periods in the planning horizon for production;

• αpl: Unitary resource consumption of step l of product p;
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• Ck: Daily available resource capacity of workcenter k;

• LTpl: Lead time of step l ∈L(p) of product p;

• Dpt : Demand of product p at the end of period t;

• hpt : Unitary inventory cost of product p at the end of period t;

• bpt : Unitary backlogging cost of product p at the end of period t;

• wpl: Unitary work in process cost of product p at step l;

• Bp0: Initial backlog of product p;

• Ip0: Initial inventory of product p;

• Wpl0: Initial work in process of product p at step l.

There are two types of variables: Variables related to the internal production flow (Xplt /Yplt /Wplt),
and variables related to the demand (Ipt /Bpt). Y out

pt is a variable linking both sets of variables.

• Xplt : Quantity of product p to be released in period t at step l ∈Lp;

• X in
pt = Xp1t : Quantity of product p released in period t;

• Yplt : Quantity of product p completing step l ∈Lp in period t;

• Y out
pt = Yp|Lp|t : Output quantity of product p in period t;

• Wplt : Quantity in the Work in process (WIP) of product p, at step l ∈Lp at the end of period t;

• Ipt : Inventory level of product p at the end of period t;

• Bpt : Backlogging level of product p at the end of period t.

The mathematical model with fixed lead times is written below.

min
P

∑
p=1

∑
l∈Lp

T

∑
t=1

wplWplt +
P

∑
p=1

T

∑
t=1

(hptIpt +bptBpt) (1)

s.t. Yplt = Xp(l+1)(t) ∀p ∈ {1, . . . ,P} ∀l ∈Lp ∀t ∈ {1, . . . ,T} (2)

Wplt =Wpl(t−1)+Xplt −Yplt ∀p ∈ {1, . . . ,P} ∀l ∈Lp ∀t ∈ {1, . . . ,T} (3)

Xplt = Ypl(t+LTpl) ∀p ∈ {1, . . . ,P} ∀l ∈Lp ∀t ∈ {1, ...,T −LTpl} (4)

Dpt +Bp(t−1) = Y out
pt + Ip(t−1)− Ipt +Bpt ∀p ∈ {1, . . . ,P} ∀t ∈ {1, . . . ,T} (5)

P

∑
p=1

∑
l∈L k

p

αplYplt ≤Ck ∀k ∈ {1, . . . ,K} ∀t ∈ {1, . . . ,T} (6)

Xplt ,Yplt ,Wplt , Ipt ,Bpt ≥ 0 ∀p ∈ {1, . . . ,P} ∀l ∈Lp ∀t ∈ {1, . . . ,T} (7)
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The objective function (1) minimizes the total inventory, backlogging and work in process cost.
Constraints (2)-(5) model flow conservation. Constraints (2) link the output of step l, Yplt , to the input of
the next step, Xpl+1t . Constraints (3) balance the work in process over the planning horizon for each step.
Constraints (4) guarantee that the fixed lead time for each step of each product is satisfied. Constraints (5)
are the flow conservation constraints for the final products, ensuring the satisfaction of demands through
the inventory and the production at the current period or their backlogging to subsequent periods. The
capacity constraints in each workcenter are modeled through Constraints (6). Constraints (7) ensure the
non-negativity of decision variables. Note that, due to Constraints (2), (3) and (4), the decision variables
Xplt , Yplt and Wplt are correlated and could be replaced by a single family of variables. However, in this
case, the flexible lead times constraints in the following section cannot be written.

3.2. Model with flexible lead times

Fixed lead times are certainly the most common and easy way to model lead times, but there are
other ways to model lead times which allow more flexibility. One possibility is to fix minimum lead
times, i.e. that, at each step, products have to wait at least a given minimum lead time but can wait
more. To the best of our knowledge, only two papers (Hwang & Chang, 2003; Chen et al., 2010) used
similar constraints called WIP penetration constraints. These constraints are expressed in order to limit
the number of steps a product can perform in a single period. Used with the right parameters, WIP
penetration constraints can model the minimum lead times discussed earlier, but can also model lead
times on several consecutive steps. The first aim of WIP penetration constraints is to limit the flow of a
product, by limiting the number of steps in a single period. In the following, these constraints are called
"flexible lead time constraints". Let us introduce omax(l) which represents the maximum number of steps
after l (l included) which can be processed in the same period as l. If there is no such limit, omax(l) is
set to +∞. Flexible lead time constraints are expressed by constraints (8). In the model with fixed lead
times (1)-(7), Constraints (4) are replaced by Constraints (8).

Ypl+omax(l)t ≤
l+omax(l)

∑
k=l

Wpk(t−1) ∀t ∈ {1, ...,T} ∀p ∈ {1, ...,P} ∀l ∈Lp (8)

s.t. omax(l) 6=+∞

Constraints (8) bind the output of step l + omax(l) with the work in process of previous steps, i.e.
products which have not yet completed step l−1 cannot be processed in step l +omax(l).

If omax(l) = 0, Constraints (8) ensure that only products already in the WIP of step l can be produced,
i.e., products will have to wait at least one period in the WIP of l, which is a relaxation of the fixed lead
time when LT = 1. Note that flexible lead times, as shown later in this article, significantly increase
the complexity of our problem and the computational time needed to solve it. However, flexible lead
times allow internal production flows to be better modeled, and some of the issues related to the fixed
lead times to be fixed (e.g. the lack of decisions on the quantities to process in intermediate steps). In
particular, the use of machine capacity can be smoothed. However, this smoothing could be at the cost
of products waiting a long time in the same step, and could potentially lead to large cycle times.
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4. A novel formulation using timed routes

In this section, a reformulation of the mathematical models in Section 3 is proposed. The new model
is based on the new concept of "timed route" which is formalized in Section 4.1. Timed routes allow
production flows to be fully modeled. The mathematical model using timed routes is introduced in
Section 4.2. In Section 4.3, a polynomial time algorithm to generate all possible timed routes with fixed
lead times is presented.

4.1. Concept of timed route

A production route is the sequence of steps that a product needs to follow to be completed (see Figure
1). A timed route is a production route for which a processing period is assigned to each step (see Figure
2). More formally, in a timed route r, a period t(p,r, l) is assigned to each step l in the route of product
p. For example, in Figure 2, the timed route starts at period t and is completed at period t(p,r, |Lp|).
Note also that step l + 1 is processed at period t + 3 and has a lead time of 2 periods. Furthermore, the
cycle time of a timed route r of product p is:

CT (p,r) = t(p,r, |Lp|)− t(p,r,1)+1

A timed route is a complete representation of one production flow, with the exact timing of each step.
With timed routes, it is possible to exhaustively detail the productions flows, and to know exactly where
and when capacity is consumed. The cycle time related to a timed route is explicit, contrary to the classi-
cal lead time formulations of Section 3 where, although the cycle time is also fixed, determining it means
looking at the set of lead time constraints on the step of the route to extract the total cycle time. With the
full view of possible production flows, inconsistent or useless timed routes can be discarded. The timed
routes could be validated based on industrial knowledge. Moreover, new constraints on production flows
could be introduced such as minimal and maximal cycle times.

step 1 step l-1 step l step l+1 step |Lp|

Figure 1: A production route

t(p,r,1) = t t(p,r, l-1) = t
t t +1 t +3 t(p,r, |Lp|)

Periods

step 1 step l-1 step l step l+1 step |Lp|

Figure 2: A timed route

9



4.2. Mathematical model

In the following, the timed route model is formalized. Let us denote Rp the set of timed routes of
product p. With each timed route r ∈Rp, a WIP management unitary cost wpr is associated. The WIP
cost of a timed route is equivalent to the sum of the WIP costs of the different steps on the time horizon.
Only the first step of each period (except for the first period) carries a WIP cost. This WIP cost can be
counted several times if no step takes place in the subsequent periods. Let us write the total WIP cost of
a given timed route r, ∑

l∈Lp

bpr
l wpl , where bpr

l is the number of periods between the processing periods of

step l−1 and step l in timed route r, i.e. bpr
l = t(p,r, l)− t(p,r, l−1). Note that waiting before the first

step of a route is not allowed, i.e. bpr
1 = 0. Let apr

lt a binary parameter which is equal to 1 if, in timed
route r ∈Rp of product p, step l is processed in period t, and is equal to 0 otherwise. Zpr is the decision
variable that corresponds to the quantity released on timed route r. The timed route formulation is given
below.

min
P

∑
p=1

∑
r∈Rp

wprZpr +
P

∑
p=1

T

∑
t=1

(hptIpt +bptBpt) (9)

s.t.
P

∑
p=1

∑
r∈Rp

∑
l∈L k

apr
lt αplZpr ≤Ck ∀k ∈ {1, . . . ,K} ∀t ∈ {1, . . . ,T} (10)

Ipt ≥ ∑
r∈Rp

t

∑
τ=1

apr
|Lp|τZpr−

t

∑
τ=1

Dpτ ∀p ∈ {1, . . . ,P} ∀t ∈ {1, . . . ,T} (11)

Bpt ≥− ∑
r∈Rp

t

∑
τ=1

apr
|Lp|τZpr +

t

∑
τ=1

Dpτ ∀p ∈ {1, . . . ,P} ∀t ∈ {1, . . . ,T} (12)

Zpr, Ipt ,Bpt ≥ 0 ∀p ∈ {1, . . . ,P} ∀r ∈R(p) ∀t ∈ {1, . . . ,T} (13)

The objective function (9) minimizes the total backlog, inventory and WIP management cost induced
by the selected timed routes, which is equivalent to the objective function (1). Constraints (10) model
the limit on capacity consumption in each workcenter at every period, and correspond to Constraints (6).
Constraints (11) and (12) ensure the inventory balance. They are equivalent to Constraints (5) but are
written separately to simplify the writing of the dual problem. This formulation can be seen as a covering
problem.

4.3. Generation of timed routes associated with fixed lead times

Let us show how the set of timed routes is determined when fixed lead times are considered. Due to
Constraints (2) and (4) in the model with fixed lead times, all production flows on a route follow the same
pattern. If t is the first period of the route and |Lp| the number of steps of product p, then the pattern can
be designed as the timed route in Figure 3. The pattern is used for every period t with t ≤ T −∑

|Lp|
l=2 LTl .

The algorithm generates one timed route per period for each product p. Since we need to assign a period
to each of the |Lp| steps, the complexity of generating all the timed routes with fixed lead times for a
product p is equal to O(|Lp|T ). Thus, the complexity of the algorithm that creates all the timed routes
is equal to O(∑P

p=1 |Lp|T ). This complexity can be written as follows: O(P|L |T ), where |L | is the
average number of steps in a route.
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step 1

t

step 2

t +LT2

step λ

t +∑
λ
l=2 LTl

step |Lp|

t +∑
|Lp|
l=2 LTl

Periods

Figure 3: Pattern of timed routes with Fixed Lead Times

5. A column generation approach for flexible lead times

Because, as shown in this section, the number of timed routes with flexible lead times is exponential,
we propose a column generation approach to solve the timed route formulation. In Section 5.1, a dy-
namic programming algorithm that generates all the timed routes when considering flexible lead times is
described. The column generation approach is introduced in Section 5.2, where reduced costs associated
with timed routes are evaluated and used to implement a dominance rule to strengthen the algorithm of
Section 5.1.

5.1. Exhaustive generation of timed routes for flexible lead times

Using timed routes, all production flows can be described and traced. Thus, we can consider other
production flows than the ones generated using fixed lead times. Considering several timed routes with
different lead times for one step leads to more flexibility. This is the case with the flexible lead times
presented in Section 3.2. Furthermore, when using the timed route formulation with flexible lead times,
it is possible to avoid products with too large cycle times.

To establish a timed route, each step needs to be assigned to a period in the horizon. Representing
this assignment by a graph, nodes are labeled (s,c,t,l) where s is the index of the current partial route,
c the current partial cost, t the period and l the last step that is completed in the partial timed route s.
The directed edges are the possible sequences of nodes. Due to the structure of a route, the graph can be
seen as a tree with a level structure. Note that, when two or more steps ({l′+ 1, . . . , l′′}) are completed
within the same period t (where l′ is the last step completed before t), we do not create a node for each
step l ∈ {l′+1, . . . , l′′}. Instead, we contract the steps {l′+1, . . . , l′′} within a single node and we create
a direct arc to the final step l′′. This means that for a timed route r, apr

lt = 1, ∀l ∈ {l′+ 1, . . . , l′′} if
(s1,c1,l′,t−1) and (s2,c2,l′′,t) are successive nodes of the timed route. Figure 4 provides an example of
such graph, with 2 steps and 3 periods. Using this kind of graphs, an algorithm generating dynamically
the edges and new vertices level by level will work well.

Rather than exploring the total space of possible states, the number of vertices is reduced by using
omax(l), the maximal number of steps that can be processed after step l in the same period than l. The
vertices and edges which can be used when omax(l) = 1 for every step are traced with plain arrows and
in blue in Figure 4. Even with this reduction, the total number of timed routes for product p is still in
O(|Lp|T ) because, at each step of the route, a period between 1 and T can be assigned.

The exhaustive generation (which becomes a dynamic program in Section 5.2) can be implemented
as described in Algorithms 1 and 2. The main algorithm (Algorithm 1) generates all timed routes. It
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(s00,0,0,0)

End

Non reachable nodes when omax(l) = 1

Period 1 Period 2 Period 3

(s01,0,1,0) (s02,0,2,0) (s03,0,3,0)

(s1,c1,1,1)

(s2,c2,1,2)

(s3,c3,2,1)

(s4,c4,2,1)

(s5,c5,2,2)

(s6,c6,2,2)

(s7,c7,3,1)

(s8,c8,3,1)

(s9,c9,3,1)

(s10,c10,3,2)

(s11,c11,3,2)

(s12,c12,3,2)

Figure 4: Graph of states: Example with 2 steps and 3 periods
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starts with a set of partial timed routes only containing the partial timed route with no period assigned,
labeled (s0,0,0,0). For each period, the algorithm tries to extend the set of partial timed routes by looking
for the children nodes of each partial timed route and the initial partial timed route. This procedure is
developed in Algorithm 2. Note that the generated partial timed routes are not removed in Algorithm 2.
Each partial timed routes can be extended to a subsequent period and the lead time to complete the next
step increases accordingly.

In Algorithm 2, the partial time routes are returned, which extend the input partial timed route in
period t. Extending a partial timed route means looking for each outgoing edge from the last node in the
graph depicted earlier. The number of partial timed routes generated is omax(l) where l is the last step
assigned in the input partial timed route. The information on the last step is updated in the new partial
timed routes.

The program explores all possibilities, which leads to an exponential number of routes. At each
period t, for a product p, omax(l) states are evaluated. Note that in the worst case omax(l) is equal to the
total number of steps |Lp|. The complexity of evaluating each state is constant. If no dominance rule is
used, the total complexity increases exponentially and is equal in the worst case to O(|Lp|T ).

Note also that it is possible to generate patterns of timed routes as in Section 4.3 for fixed lead times.
However, this column generation approach is not the most relevant approach because, for a pattern, the
timed routes starting at different periods may have different costs. Moreover, if all the timed routes of a
selection of patterns are used, the associated useless decision variables may burden the linear program.

Algorithm 1 Generation of timed routes
CT R = /0 // CT R: Set of complete timed routes
PT R = /0 // PT R: Set of current partial timed routes
for t = 1 to T do

ir // ir: Initial partial timed route
laststep(ir)= 0 // No step assigned to ir
PT R = PT R∪{ir}
for all s ∈ PT R do

CreateExtensions(s,t)
end for
PT R = PT R−{ir}

end for
return CT R
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Algorithm 2 CreateExtensions(s,t)

l = laststep(s)+1
for e = 0 to omax(l) do

sr = s
for i = 0 to e do

step(sr, l + i) = t
end for
laststep(sr)= l + e
if l + e = |Lp| then

CT R =CT R∪{sr}
else

PT R = PT R∪{sr}
end if

end for

5.2. Column generation approach

The set of timed routes for flexible lead times is exponential, as shown by the complexity of the
exhaustive generation algorithm. To handle this issue, we propose a column generation approach, in
which timed routes are generated dynamically. The framework of the approach can be found in Figure 5.

Initial set of timed routes

Solve RMP
(Restricted Mas-

ter Problem)

Solve Pricing Problem
Dynamic generation

of timed routes

New timed
route(s)? Problem solved

Add new column(s)

Dual variables
Yes

No

Figure 5: Framework of column generation approach for production planning

The master problem corresponds to the model in Section 4.2. Thus, the Restricted Master Problem
(RMP) is written with a restricted set of timed routes for each product. The restricted set of timed routes
is initialized with the timed routes generated with fixed lead times. A fast resolution of the pricing
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problem, that generates new improving timed routes, is critical to the success of the column generation
approach. An efficient algorithm is proposed in the following section.

5.2.1. Solving the pricing problem
To determine the timed routes to insert in the RMP, we consider the reduced costs associated with

timed routes. The dual problem associated with the timed route formulation corresponds to (14)-(17),
where λkt denote the dual variables associated with Constraints (10), and β

+
pt (resp. β

−
pt ) denote the dual

variables associated with Constraints (11) (resp. Constraints (12)).

max −
T

∑
t=1

K

∑
k=1

Ckλkt −
P

∑
p=1

T

∑
t=1

(
t

∑
τ=1

Dpτ)β
+
pt +

P

∑
p=1

T

∑
t=1

(
t

∑
τ=1

Dpτ)β
−
pt (14)

s.t. −
K

∑
k=1

T

∑
t=1

∑
l∈L k

apr
lt αplλkt −

T

∑
t=1

t

∑
τ=1

apr
|Lp|τβ

+
pt +

T

∑
t=1

t

∑
τ=1

apr
|Lp|τβ

−
pt ≤ wpr ∀p ∈ {1, . . . ,P}, ∀r ∈Rp

(15)

β
+
pt ≤ hpt ∀p ∈ {1, . . . ,P}, ∀t ∈ {1, . . . ,T} (16)

β
−
pt ≤ bpt ∀p ∈ {1, . . . ,P}, ∀t ∈ {1, . . . ,T} (17)

λkt ,β
+
pt ,β

−
pt ≥ 0 ∀t ∈ {1, . . . ,T}, ∀p ∈ {1, . . . ,P}, ∀k ∈ {1, . . . ,K} (18)

In the dual problem, only Constraints (15) are related to timed routes. Thus, in the column generation
approach, we only need to look for timed routes which violate the most Constraints (15), i.e. timed

routes with reduced cost wpr +
K

∑
k=1

T

∑
t=1

∑
l∈L k

apr
lt αplλkt +

T

∑
t=1

t

∑
τ=1

apr
|Lp|τβ

+
pt −

T

∑
t=1

t

∑
τ=1

apr
|Lp|τβ

−
pt ≤ 0. Note that

since there is no constraint linking the products in the pricing problem, timed routes can be generated
separately for each product.

In order to define a route, we need to assign each step l to a period t, i.e. to determine apr
lt . The

reduced cost can be decomposed into three parts.

1. A period assignment cost which is denoted αplλkt ,
2. The WIP cost of the route, which can be decomposed into the WIP cost at each period,
3. Inventory and backlog costs. If the period of the last step (i.e. when the product is completed) is

t∗, then the inventory and backlog costs are equal to
T

∑
t=t∗

(β+
pt −β

−
pt ).

5.2.2. Dominance rule
With such a complexity, the dynamic program can hardly be used in practice. In order to keep the

computational times under control, we consider a dominance rule that relies on Property 1.

Property 1. For product p at a period t, if two partial timed routes s1 and s2 have achieved the same
number of steps l, then the route with the lowest partial reduced cost dominates the other. In other words,
for s1=(1,rc1,t,l) and s2 =(2,rc2,t,l), then s1 dominates s2 if and only if rc1 ≤ rc2.

Proof. It can be shown by contradiction that, if the periods or the last steps are different, then an arbitrary
large negative reduced cost can be introduced in the complete and dominated timed route. Thus, we can
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introduce s3, the optimal part to complete s1 and s2 to form a complete timed route. We denote rc3 the
reduced cost associated with s3 and s1⊕ s3 (respectively s2⊕ s3) the complete timed route associated
with s1 (resp. s2) and its total reduced cost rc1⊕3 (resp. rc2⊕3). Because rc1⊕3 = rc1 + rc3 and rc2⊕3 =

rc2+rc3, comparing the total reduced cost rc1⊕3 and rc2⊕3 is equivalent to comparing the partial reduced
cost rc1 and rc2.

Note that, if constraints on the duration of cycle times are introduced, some conditions on the start
period of partial timed routes are needed to apply this dominance rule.

By applying this dominance rule in the dynamic program, the number of new partial timed routes at
the end of each iteration/period is at most equal to the number of steps for a product. Thus, at iteration t of
the algorithm for a given product p, the number of partial timed routes before dominance is smaller than
|Lp|2. It reduces the complexity of Algorithms 1 and 2 to O(|Lp|2T ) for each product. To implement
the dominance rule, we use an array that contains the dominant partial timed routes (at the currently ex-
plored period) for each step of the route (except for the final step). The size of this array, denoted ND[], is
|Lp|, and thus it does not add any spatial complexity. Thus, the overall complexity is in O(T ∑

P
p=1 |Lp|2).

Algorithm 3 CreateNonDominatedExtension(s,t,ND[])

// ND[]: Array (of size |Lp| for product p) of dominant partial timed routes up to period t-1 indexed
by the last step reached.
l = laststep(s)+1
for e = 0 to omax(l) do

sr = s // Extend timed route s by e steps to perform at period t
for i = 0 to e do

step(sr, l + i) = t
UpdateReducedCost(sr)

end for
laststep(sr)= l + e
if l + e = |Lp| then

CT R =CT R∪{sr}
else

// Dominance check
if ReduceCost(sr) > ReducedCost(ND[l + e]) then

// sr dominates the former dominant partial timed route, which ends at period t with step l + e
PT R = PT R∪{sr}
PT R = PT R\{ND[l + e]}
ND[l + e] = sr

end if
end if

end for
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6. Computational Experiments

Computational experiment have been conducted on industrial data to show the efficiency of the timed
route formulation and our column generation approach. In Section 6.1, the design of the computational
experiments is detailed. In Section 6.2, the compact formulation (1)-(7) and the timed route reformulation
(9)-(13) are compared for fixed lead times. Section 6.3 compares the column generation approach with
flexible lead times and the compact formulation. The advantages of using flexible lead times compared
to fixed lead times are not analyzed in this paper.

6.1. Design of experiments

Experiments are conducted on industrial data of a semiconductor manufacturing facility in France.
Data cannot be made public for confidentiality reasons, but can be provided on request after validation
by the company and certification by the researchers that they will not disclose the data to others. We
would also want to recall that the main contribution of the paper is not related to the quality of the results
obtained by the proposed approach but rather to the significant reduction of the computational times to
solve the problem and to the genericity of the approach. The main characteristics of the instances can be
found in Table 1. Crossing all choices of the characteristics, 27 scenarios are considered.

Instances are characterized by a number of steps per product that varies between 100 and 500 and
cumulative processing times of products that vary between 7 and 11 periods. Note that the planning hori-
zon should be long because products have cycle times between 40 and 80 periods. To generate demands,
the historical output over 6 months was considered. With these historical data, the order frequency, the
average demand and the standard deviation for each product were estimated. Then, demand scenarios
were randomly generated based on these characteristics. We only consider the most produced products.
For example, products with very low demands or with less than 50 steps are not considered since they are
generally related to R&D and engineering projects and not customer demands. To study the influence of
the number of products, we consider 3 sets of products. Each demand scenario, related to the number of
products, is then adjusted with a factor on the generated demand to produce 3 scenarios where, respec-
tively, demand is low and feasible, demand is medium but stresses the facility capacity and demand is
high and cannot be fully met. The unitary costs used in our experiments can be found in Table 2.

Horizon length {91, 119, 147}
Number of workcenters 10 (aggregating about 500 machines)

Number of products {15, 40, 75}
Demand scenario {Low, Medium, High}

Number of steps per route Between 100 and 500

Table 1: Characteristics of the industrial instances

Furthermore, three profiles of lead times are studied by solving the compact models and using the
column generation approach.

1. The first profile, Pfixed
LT , corresponds to the classical fixed lead times.
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Backlog 50
Inventory 15

WIP management 0.001

Table 2: Unitary costs used in the experiments

2. The second profile, Pflex
LT , corresponds to flexible lead times and is based on Pfixed

LT , but products
can wait in every step as many periods as necessary. This implies that the minimal lead times to be
respected are the fixed lead times. This lead time profile reduces the backlog and inventory costs
by allowing more flexible production flows.

3. The third profile, Pflex
PT , also corresponds to flexible lead times but is based on the actual processing

times, i.e. it is not related to the two other lead time profiles. With profile Pflex
PT , production flows

are only limited by the maximum number of steps for a product that can be completed in a period,
according to the cumulative process times of these steps. In a sense, it is a relaxation of the previous
model where delays are not induced by exogenous parameters. Note that, contrary to Pflex

LT where
Constraint (8) is not written, when LT (l) = 0 for a step l, with Pflex

PT Constraint (8) is written for
every step.

As show in the computational results of section 6.3.3, Pflex
PT leads to the most difficult problems in

terms of computational time. For example, with the compact formulation, on scenarios with medium or
large dimensions, there is at least a factor of ten between the computational times for Pflex

LT and Pflex
PT .

All numerical experiments were executed on a computer with a processor Intel(R) Xeon(R) CPU
W3550 and 16 GB of RAM Memory, using a JAVA program (JRE 1.8) and IBM ILOG CPLEX (version
12.6) with default settings.

6.2. Comparison between the compact formulation and the timed route reformulation with fixed lead
times

Due to the polynomial number of timed routes with fixed lead times, all timed routes are generated
and included in the model. Table 3 shows the computational times spent by IBM ILOG CPLEX for
several scenarios. First, note that the computational times do not seem to change much with the demand
level. Thus, only looking at the medium scenarios, it can be seen that the timed route model performs
better than the compact one. On average, the computational time is decreased by 94%, with a minimum
decrease of 88%. When considering the impact of the horizon length, the results show that the timed
route formulation is more sensitive to the horizon length than the compact model. The gap between the
computational times of both models reduces as the horizon length increases. For all these scenarios, the
computational times of the timed route formulation are always smaller than the smallest computational
time with the compact formulation. For fixed lead times, the timed route formulation is efficient when all
the timed routes are generated. One of the reasons behind the decrease of the computational times may
be that IBM ILOG CPLEX needs to eliminate much fewer columns to determine the reduced LP with
the timed route formulation than with the compact formulation. We may hypothesize that the reduced
LP is close to the timed route model.

18



Number of
products

Horizon
length

Low demand Medium demand High Demand
C TR C TR C TR

Low (15)
91 15 0 15 0 14 0
119 20 1 20 1 19 1
147 25 5 25 3 25 4

Medium (40)
91 40 1 41 1 40 1
119 58 3 57 4 58 4
147 68 7 70 7 71 7

Large (75)
91 84 1 83 1 83 2
119 113 4 114 8 114 5
147 145 16 147 15 145 16

Table 3: Computational times (in seconds) for profile Pfixed
LT (C: Compact formulation; TR: Timed Route formulation)

6.3. Column generation approach for flexible lead times

In this section, the compact formulation and the timed route formulation with flexible lead time
profiles are compared. The first flexible lead time profile studied is Pflex

LT . The associated compact model
has a lower number of lead time constraints compared to the compact model with fixed lead times. This
is due to the fact that lead time constraints are only introduced for positive lead times. The second
flexible lead time profile is Pflex

PT . Its compact formulation has about the same number of constraints as
the compact formulation with fixed lead times, but production flows are less constrained. The associated
flexible lead time constraints are based on the actual processing times of steps.

As shown in Section 5.1, the timed route formulation with flexible lead times requires an exponential
number of timed routes. To get a feeling of the resulting complexity, we generate all the timed routes for
a reduced data set with 3 products with at most 23 steps and 11 machines. With 8 GB of RAM and when
the horizon is larger than 15 periods, it is not possible to generate all timed routes for profile Pflex

LT and a
memory error arises.

Note that, in this paper, the computational time is defined as the difference between the time at which
the optimization process starts and the time at which the optimal solution is found and extracted. Only
the time to load the data and to create the first mathematical model is omitted.

In Section 6.3.1, the parameters and strategies used in the column generation approach are detailed.
The experimental results for profile Pflex

LT are presented in Section 6.3.2 while the results for profile Pflex
PT

are analyzed in Section 6.3.3.

6.3.1. Column generation strategy
Dominance rules are used to reduce computational times. To warm up the column generation ap-

proach, all timed routes from Pfixed
LT are included in the model. Due to light use of processor during the

timed route generation, parallelism is enabled while generating timed routes for each product.
The last parameter to choose is how many timed routes are selected for each product at each iteration.

This parameter is tuned with the case of Medium demand, with profile Pflex
LT . Figure 6 shows the average

decrease of the computational time over all scenarios compared to the case in which only one timed route
is generated by product. This case is used as a reference because it corresponds to the case with the
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smallest number of timed routes. This figure is completed with the maximal and minimal decrease of the
computational time obtained among the 27 scenarios. Note that the average time spent to solve the timed
route formulation limited to one new timed route by product at each iteration is 239 seconds. It can be
seen that, when the parameter varies between 4 and 10, the decrease of the computational time is quite
stable and the lowest. With up to 150 timed routes by product (which is an upper bound to the number
of non dominated timed routes generated by the dynamic program when T < 150), it can be seen that
the decrease of the computational time is similar to when the parameter is set to 2. This figure shows the
trade-off between generating numerous columns to converge with fewer iterations and generating only
the best columns to accelerate the resolution of the restricted master problem.

Avg decrease
Min decrease
Max decrease

1 2 3 4 5 6 7 8 9 10 150
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Number of generated timed routes by product by iteration

Figure 6: Number of timed routes by product at each iteration vs. ratio of CPU time

In the following experiments, the number of timed routes by product at each iteration is set to 5.
This choice might not be the best in every scenario, but is relevant enough to show the strength of our
approach.

6.3.2. Comparison of computational times for profile Pflex
LT

Contrary to fixed lead times, the computational times for flexible lead time profiles depend on the
demand scenario. Table 4 shows the computational times to solve Pflex

LT . No simple rule can be deduced
(for both formulations) from the different scenarios because the complexity of the problem depends on
several parameters. Computational times to solve the timed route model are quite close with medium
and high demands, and are always larger than the computational times with low demands.

The main result of the experiment is that the column generation approach always significantly per-
forms better. On average, the computational time is reduced by 87.5% while the solution time for the
compact model ranges from 2 minutes to 79 minutes. The least impressive case is 73.3% when the
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Number of
products

Horizon
length

Low demand Medium demand High Demand
C TR C TR C TR

Low (15)
91 192 14 142 31 120 32
119 409 59 266 67 284 66
147 580 95 595 121 580 124

Medium (40)
91 648 34 469 66 563 63
119 1,190 109 1,086 134 1,254 153
147 1,674 180 2,034 218 2,174 218

Large (75)
91 1,620 23 1,578 107 1,363 109
119 3,693 74 3,000 236 2,145 242
147 4,277 316 3,797 401 4,619 395

Table 4: Computational times (in seconds) for profile Pflex
LT (C: Compact formulation; TR: Timed Route formulation)

time spent by the compact formulation is the lowest (120 seconds). Unlike fixed lead times, we can-
not conclude anything on the behavior of the compact model when the horizon increases, only that the
computational times increase with the length of the horizon (which is expected due to the algorithm
complexity).

6.3.3. Comparison of computational times for profile Pflex
PT

Considering profile Pflex
PT whose computational results can be found in Table 5, some conclusions are

shared with Pflex
LT . For example, the computational times vary depending on the demand scenario, but in

the case of Pflex
PT , it can also be noted that the larger the demand, the larger the CPU time to solve the

problem, and the increase depends on the scenario. The computational times are again highly reduced
by the column generation approach on the timed route formulation. On average, they are reduced by
95.8%. The computational time for the compact model ranges from 3 minutes to more than 6 days (with
a median of 2.5 hours).

Number of
products

Horizon
length

Low demand Medium demand High Demand
C TR C TR C TR

Low (15)
91 183 33 1,549 37 1,760 51

119 272 48 2,677 83 2,836 120
147 4,100 161 4,211 255 4,962 407

Medium (40)
91 5,587 84 6,254 156 6,486 233

119 8,939 167 10,092 298 10,277 429
147 13,014 291 14,407 587 16,152 793

Large (75)
91 979 95 10,516 179 11,902 246

119 18,862 193 18,498 346 20,472 460
147 599,443 404 323,891 678 546,596 1,273

Table 5: Computational times (in seconds) for profile Pflex
PT (C: Compact formulation; TR: Timed Route formulation)

With the compact formulation, there is a huge gap on the computational times for the three lead time
profiles. Due to the extreme computational time in the scenarios with a large number of products and
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a long horizon, the average computational time is a biased indicator. Therefore, we prefer to analyze
the median computational time. Over all the scenarios, the median computational time is 58 seconds for
Pfixed

LT , 1,190 seconds for Pflex
LT and 8,939 seconds for Pflex

PT . When using the timed route formulation and
the column generation approach, the computational times also increase as the lead time profile becomes
more complex, but the increase is much more limited. The overall median of the computational times
for the compact formulation is equal to 3 seconds for Pfixed

LT , 109 seconds for Pflex
LT and 233 seconds

for Pflex
PT . One reason which can explain why computational times for the timed route formulation with

Pflex
PT is close to Pflex

LT , might be the difference of these two lead time profiles. It can be seen in Table
6 that, in most scenarios (except when the demand is high and the horizon is long), Pflex

PT needs fewer
iterations of the column generation approach to converge to the optimal solution.

The reason is probably that, while the compact formulation struggles with a huge number of con-
straints, many useful timed routes are quickly generated in the column generation approach, thus fewer
iterations are needed before converging. It could be interesting to tune the maximum number of timed
routes by product at each iteration.

Low demand Medium demand High DemandNumber of
products

Horizon
length Pflex

LT Pflex
PT Pflex

LT Pflex
PT Pflex

LT Pflex
PT

91 25 11 46 12 47 17
119 57 12 61 21 60 31Low (15)
147 60 31 72 50 71 * 80 *

91 22 12 37 23 36 35
119 38 16 43 30 48 46Medium (40)
147 47 23 46 45 47 * 66 *

91 8 7 32 14 35 19
119 16 11 40 18 43 25Large (75)
147 42 17 46 25 46 * 54 *

Table 6: Number of iterations in the column generation approach with flexible lead time profiles

Additionally, the mean computational times to generate timed routes at each iteration for both flexible
lead time profiles are given in Table 7. Note that the first iterations of the column generation approach
usually take longer computational times but, for most iterations, the computational times are close to
the average. Table 7 shows that the generation of timed routes is almost independent of the demand
scenario. The computational times to generate timed routes for profile Pflex

PT are about 6 times larger
than the computational times to generate the timed routes for profile Pflex

LT , and this ratio is stable in all
demand scenarios.

7. Conclusions and Perspectives

In this paper, we introduced the novel concept of timed route that enables a new model for multi-
product multi-step production planning problems to be introduced. The timed route approach was val-

*scenarios where the number of iterations for Pflex
PT is higher than for Pflex

LT
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Low demand Medium demand High DemandNumber of
products

Horizon
length Pflex

LT Pflex
PT Pflex

LT Pflex
PT Pflex

LT Pflex
PT

91 0.4 2.6 0.4 2.7 0.4 2.6
119 0.5 3.4 0.5 3.4 0.5 3.4Low (15)
147 0.7 4.3 0.7 4.2 0.7 4.2
91 0.9 6.0 0.9 5.9 0.9 5.8
119 1.2 8.3 1.2 8.0 1.3 7.7Medium (40)
147 1.7 9.9 1.6 10.1 1.6 9.6
91 1.7 10.2 1.6 10.2 1.5 10.3
119 2.3 13.9 2.3 14.1 2.3 13.8Large (75)
147 3.0 17.7 3.0 18.3 3.1 17.5

Table 7: Mean computational time to generate timed routes by iteration, with flexible lead time profiles

idated on industrial data, and experimental results show that the new formulation significantly outper-
forms compact formulations for various lead time profiles. To achieve such performance and because
considering flexible lead times induces an exponential number of columns, a column generation ap-
proach was presented with a polynomial dynamic program that generates the timed routes in the pricing
problem.

Many research opportunities are offered by using timed routes and timed route formulations. An in-
teresting point to investigate is the various industrial rules that could only be developed for mathematical
models based on timed routes. As already discussed and by definition, timed routes allow production
flows and their cycle times to be explicitly modeled. On the opposite, flexible lead time constraints in
a compact mathematical model do not easily allow cycle times to be limited and production flows to be
explicitly managed. Hence, many relevant industrial constraints can be taken into account through timed
routes. For example, timed routes could be generated by considering minimum or maximum cycle times
of products, or minimum or maximum lead times between two non-consecutive production steps. Also,
a cycle time for each product could be targeted in the objective function, by introducing new costs on
timed routes instead of the somehow artificial WIP management costs. These costs could be associated
with the deviation to the target cycle time. In addition, costs based on the duration of the lead time in a
production step could be proposed, that would be non-linear in compact models but linear in timed route
models.

Moreover, the computational times of the column generation approach could be accelerated by using
smart column generation heuristics. Another research perspective is to consider initial inventories in the
product routes. Shorter timed routes will be required to flush the initial inventories. Finally, we would
like to study whether timed routes could be used in other contexts, e.g. when modeling product flows in
supply chains where the notion of "route" is also relevant.
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