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ABSTRACT
Geographic entities from the vertical aerial images can be viewed
as discrete objects and represented as nodes in a graph, linked to
each other by edges capturing their spatial relationships. Over time,
the natural and man made landscape may evolve and thus also their
graph representations.

This paper addresses the challenging problem of the retrieval and
fuzzy matching of graphs to localize near-identical geographical
areas across time. Several use-case scenarios are proposed for the
end-to-end learning of a graph embedding using Graph Neural
Networks (GNN), along with an effective baseline without learning.

The results demonstrate the efficiency of our approach, that
enables efficient similarity reasoning for novel hand-engineered
cross-time graph data. Code and data processing scripts are avail-
able online 1.
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1 INTRODUCTION
The cross-time aerial image matching problem is very challenging
as landscape and appearance changes through time can be dra-
matic. However, the structural and spatial information about the
man-made and natural objects and there spatial relations derived
from images can be more persistent than the appearance-based
one. Topographic databases are an incredible source of informa-
tion, from which semantic cues may be distilled. Recently with the
progress of CNN architectures for segmentation the task of fully
automated scene segmentation became possible [21, 40]. Semantic
maps are an additional source of information that can potentially
improve geo-localisation, cross-view and cross-time retrieval [22].
Among these, there are numerous detailed maps available for the
French territory, from the earlier dates up until today. In this work,
we follow the intuition that this rich source of semantic informa-
tion can be leveraged to improve geographic areas matching and
retrieval through time. In order to test this hypothesis, we pro-
pose to use already existing topographic databases as sources of
semantic annotations. The aimed task requires many steps shown
schematically in Figure 1, which can be considered as independent
research questions, and in the current work we thus concentrate
on the problem of graph matching and retrieval across time. We
start from already existing topographical databases captured in the
same year as the aerial photograph that we want to match, and that
are geometrically consistent with their corresponding photographs,
represent these data as graphs and propose a Graph Learning CNN
model to match the areas across years.

By using mainly the structural and spatial information about
the scene, we aim to propose a new approach which has a po-
tential to be more robust than image-based similarity search. By
explicitly modeling relationships between geographic entities of
several categories from topographic databases as the graph enti-
ties, we demonstrate how the well-known image-based retrieval
task can be addressed in a new manner, benefiting from the lat-
est advances in graph learning. Graph-based data structures are
commonly used in many application domains, as diverse as social
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media, biology, natural language processing, etc. Common types of
graphs in graph learning are social networks, knowledge graphs
representing different types of data, graphs representing molecular
data, graph-structured parses for natural language understanding,
and finally 3Dmeshes. Recent works [24, 25, 30] have demonstrated
the efficiency of graph learning on various tasks.

One of the main concerns in this work is to develop an accurate,
robust to noise, and time-efficient learning process for the embed-
ding of geographic information. We start from already existing
topographical databases captured in the same year as the aerial
photograph that we want to match, and that are geometrically con-
sistent with their corresponding photographs. Then the geographic
features are engineered manually as detailed in Section 4. The geo-
metric features are used in both the unsupervised baseline methods
and our proposed Graph Convolutional Network (GCN) based algo-
rithm. The first unsupervised method is based on an approximate
nearest neighbour similarity search tool [20]. In the second step,
the commonly used graph kernels [39] were evaluated on our new
dataset to complete the baseline study. We further demonstrate
how to use GCN architectures to embed geographic entities graphs
into a vector space, and learn this embedding model to make same
geographic area graphs close to each other in the vector space, and
different geographic area graphs far apart. One important property
of our model is that it maps each graph independently to a global
embedding vector, and then all the similarity computation happens
in the vector space, which can reduce the search time.

To summarize, the contributions of this paper are: (1) we propose
a new hand-engineered cross-temporal dataset for geographic areas
matching; (2) we demonstrate how using the geometrical attributes
of the scene landmarks we can retrieve the same geographic areas
across time; (3) we propose a siamese-like GCN model to learn
graph embeddings for two cross-time retrieval scenarios and estab-
lished several hand-engineered baselines for future works; (4) we
do an extensive evaluation of the parameters and model through
an ablation study and perform a statistical analysis of the dataset.

2 RELATEDWORK
2.1 Structured Data Learning
The similarity between a pair of graphs representing a geographic
area can be calculated in multiple ways: graph kernels, graph em-
beddings, graph distances [8], and lately by graph neural networks
trained for this task.

Graph Kernels. Similarity search based on graph kernels is a
well-known research subject with a great number of various kernels
proposed for the various specific cases and data types, many are
available in Grakel library [39]. The similarity is typically defined
by either exact matches (full-graph or sub-graph isomorphism)
[26], random walks or paths on graphs [44], propagation of the
information in the graph structure [34] or others. A recent survey
on graph kernels can be found in [27]. It should be noticed that
the kernels themselves are hand-designed and motivated by graph
theory, and only some of them are designed to handle continuous
attributes on edges and nodes of a graph. Graph kernels can be
formulated as first computing the feature vectors for each graph,
and then taking the inner product between these vectors to compute
the kernel value, no learning involved with an exception of [49].

Graph kernels have shown themselves as very efficient tools for
graph comparison but often take a significant time to compute.

Graph Distances. Learning a distance metric between graph
nodes is the key focus of the area of metric learning. Common
choices include spectral distances and distances based on node
affinities. [45] compares commonly used graph metrics and distance
measures, and demonstrate their ability to discern between common
topological features found in both random graph models and real-
world networks. Many of the classical graph kernels are also based
on the graph distances [5, 39].

Graph Embeddings.Only relatively recently different Machine
Learning and Deep learning algorithms were proposed for graph
data. The data mining community has a strong interest in (knowl-
edge) graph summarization because graph structure is ubiquitous:
all kinds of data from social networks and up to research publi-
cations can be represented as graphs. A popular idea is to learn
the embeddings for nodes [16] or even the whole graphs [2, 33]
based on their features and structure. However, all these algorithms
are based on the models coming from the text processing, so they
were designed to produce the embeddings such that nodes with
similar network neighbourhoods are embedded close together: the
nodes are handled as words taken from a pre-defined vocabulary.
Moreover, these methods can handle structure or label info but
not both in the same time, which limits their application for our
scenario.

GeographicData.Graph-based representations of the geographic
territory are traditionally used for networks representation and
their associated computations such as routing applications. But
graph based representation of places and landscapes can also reveal
important insights in certain scenarios such as scene geolocaliza-
tion, or geographic information retrieval.

Recently, geographic knowledge graphs have gained attention
as they link geographic entities with entities from life sciences, lin-
guistic domain, media, social networks, and various user-generated
contents on the Web. [35] proposes a set of metrically refined ap-
proximate topological relations to enrich a geographic knowledge
graph and improve its questions answering capabilities. Geographic
knowledge graphs summarization is largely covered in [47]. The
work covers topics such as understanding, representing, and rea-
soning about Points Of Interest (POI) but does not propose the ways
to learn geographic area descriptors. Yan et al. [48] learn Points
of Interests (places) semantic similarity from a topographic data-
base. However, the authors try to capture the similarity between
general pre-defined object types, when we aim to distinguish them
to geolocalize the area. They also use the neighbourhood of the
POIs based on the distance and not specifically the graph structure.
Finally, Trisedya et al. [41] propose an entity alignment model for
knowledge graphs based on the earlier Trans-E approach [4] which
models relationships by interpreting them as translations operating
on the low-dimensional embeddings of the entities. However, the
method requires common unique geographical objects between
two graph databases and a fixed set of relations between the nodes,
so it cannot be used in our scenario.

The idea of using different distinct geographic objects to auto-
matically geolocalize and match image is not novel. Early research
in Computer Vision envisaged this long time ago [17], and there
are recent works for image-based localisation [12, 19]. However,
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Figure 1: The proposed approach consists of several steps: 1) manual labeling of the aerial images before this work; 2) selection
of the POI and surrounding areas for cross-time data; 3) representation of these geographic entities as connected graphs; 4)
GCN-based embedding learning with shared weights; 5) research and retrieval of geographic areas across time.
these works, don’t explicitly use the graph structure and do not
aim for cross-time matching as we do in this research.

Convolutional Graph Networks. In the past few years graph
neural networks (GNNs) have emerged as an effective class of mod-
els for learning representations of structured data and for solving
various supervised prediction problems on graphs. Such models are
invariant by design to permutations of graph elements and com-
pute graph node representations through a propagation process
which iteratively aggregates local structural information. Nodes
on isomorphic graphs (with the same node and edge features) will
have the same representations regardless of the ordering. GNNs
have different architectures and can be roughly classified into sev-
eral categories. Spectral methods [7] perform graph convolution
by employing the eigen vectors of the graph Laplacian as the trans-
formation matrix, methods that work in the spatial domain [24]
and methods complementary to GNNs and agnostic to the choice
of a GNN itself (i.e. pooling, attention) [42]. GNNs have been suc-
cessfully used in many domains from drug discovery [43] to social
network classifications [29]. Independently on the network na-
ture, the common task accomplished by them is the supervised
learning of the node embeddings. These node representations are
then used directly for node classification, or pooled into a graph
vector for graph classification. Problems beyond supervised clas-
sification or regression are relatively less well-studied for GNNs.
Xu et al.[46] proved that with CNNs we can measure the graph’s
similarity similar to Weisfeiler-Lehman similarity test. However,
as it is shown in the next section of our work, graph isomorphism
problem is not very relevant for our type of data. More general
graph similarity learning approaches were recently proposed by
[3, 30]. These learned models can adapt to the desired metric and
are potentially interesting for our target scenario. However, Li et
al. demonstrate the performance of the method on graphs with no
attributes and only minor structural changes. In this paper, we fo-
cus on representation and similarity metric learning for attributed
graphs representing the near-identical geographic area across time.

2.2 Siamese Networks.
Siamese network architectures aim to construct an embedding,
where two extracted features corresponding to the same identity
are more likely to be closer than features from different identi-
ties [6]. They are a popular choice for scenarios dealing with so-
called one-shot learning problems when a single training sample
is available for each class. The efficiency of Siamese networks was
previously demonstrated for visual object tracking [28], person re-
identification [10], cross-view image matching [18] and other tasks.
Siamese networks can also be used for graph similarity learning
as it was demonstrated in [30]. The closest to ours is the recent
work of [8] where the authors successfully use a Siamese Graph
Convolutional architecture for research and retrieval of remote
sensing (RS) images represented as region adjacency graphs (RAG).

We follow a similar idea to use the descriptive power of graph rep-
resentation along with a Siamese-based GCN, however, the graph
creation process differs from RAG approach, and the architecture
we propose is conceived for our type of data and corresponding
features. The final scenario also differs: we want to retrieve the
exact location and not the similar classes, hence we deal with a
more challenging problem with many classes and a few examples
per class (mostly, a single correspondence). Moreover, our end goal
is to make an image to vector data 2 correspondence.

3 PROBLEM DEFINITION.
The semantic information available in the topographic data and
their geometries can be leveraged to create scene relational graphs
𝐺 (𝑉 , 𝐸), where 𝑉 is the graph’s set of nodes and 𝐸 its set of edges.
In the graph representing a given geographic area, each geographic
entity can be represented as a node 𝑣 with attributes 𝑋 describing
its properties (e.g. its geographic entity type, its name, its area,
etc.). Edges represent spatial relationships between nodes; they
may also have attributes, although we do not use this possibility
in this work. For a given geographic area, the graph representing

2Structured geographic data representing the location and shape of geographic entities
with vector geometries.
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its spatial configuration can thus be summed up by the following
equation:

𝐺𝑒 = (𝑅𝑒 , 𝑋,𝐴) (1)

where 𝑅𝑒 is the reference area,𝑋 is the set of values associated with
all nodes, so-called node features and 𝐴 ∈IR𝑁×𝑁 is the Adjacency
matrix to encode the relational information between all nodes. The
reference area 𝑅𝑒 is a generic term that defines the geographic area
covered by the graph.

Given the subsets of graphs representing parts of the territory
through the years, we want to do the cross-time aerial image match-
ing based on the structural and spatial information about the scene.
Hence we want to learn an embedding of the graph structure, which
can take into account the node attributes and structure relation-
ships between the nodes, be robust to the noise and changes in the
data, and be compact so it can be later used for the fast search and
retrieval in a large database of thousands of graphs.

4 DATASET
The dataset originates from the French Mapping Agency (IGN) [1]
and contains graphs derived from semantic annotations of vertical
aerial images taken from three French regions (Moselle, Bas-Rhin,
and Meurthe-and-Moselle) in four different years: 2004, 2010, 2014
and 2019. We provide the code designed for the graph creation from
the vector data3 and the data 4.

Graph formation. We selected the geographic areas for the
database so that each graph contains at least one so-called point of
interest (POI) - a building from the following categories: a building
of religious nature, historical objects and monuments, castles or
forts, local governmental buildings, buildings with the sport func-
tions, railway stations, airports. In our geographic dataset, each
central POI entity 𝑒 has a geospatial context 𝐺𝐶𝑒 represented as
a graph : Each node in 𝑉 represents a single geographical entity.
The relational information is represented by the edges 𝐸 of the
graph, which are determined by building a Delaunay triangulation
[13] between the centroids of nodes geometry. This method was
selected to guarantee the formation of connected graphs.

Graph nodes have geometric attributes 𝑋 (normalized perimeter,
𝑥1 and eccentricity, 𝑥2) and a discreet label, 𝑙𝑛 , representing the
node’s nature (fifteen in total: river, road, railroad, religious build-
ing, castle, fort, tower, arc, monument, cemetery, sports ground,
normal building,cemetery, public building, airport). Many other
geometrical attributes are commonly used in geo-spatial studies
such as general orientation, mean axes of the geometric forms,
surface descriptors, various shape descriptors [32]. However, we
limited this research to the simplest ones which do not require any
orientation information nor a high level of details to compensate
for the different levels of details in the annotations across time
and to not make any assumptions on the orientation of the scene.
Eccentricity in our case is simply 𝐸 = 𝐿

𝑊
, where 𝐿 and𝑊 are the

length and width of the minimal geometry’s bounding box. Nor-
malized perimeter is simply 𝑃𝑛 = 𝑃

𝐻×𝑊 Note that we do not use
the edge attributes because we wanted our graphs to be rotation
and scale-invariant: hence, the angles between objects cannot be

3https://github.com/margokhokhlova/geomaps_with_pandas
4http://alegoria.ign.fr/benchmarks

# nodes # edges node degree
year av, st, min, max av, st, min, max av, st, min, max
2004 29.51, 15.16, 3, 91 76.78,43.40,3,256 5.20,1.25,2, 12
2010 30.18,15.39,3,92 78.73,44.09,3,260 5.22,1.25,2,11
2014 65.83,53.25,3,150 183.99,156.97,3,280 5.59,1.43,2,22
2019 37.70,19.59,3,125 100.62,56.54,3,356 5.34,1.26,2,14

Table 1: Single department statistics example
department # graphs # unique areas years
Moselle 2768 2298 2004,10,14,19
M-et-Moselle 1968 1571 2004,10,14,19
Bas-Rhin 2268 1863 2004,10,14,19
Côtes-d’Armor 5029 5029 2004
total 12033 10761 4 time frames

Table 2: The characteristics of the proposed dataset for cross-
time geographic area retrieval. Note that we mostly deal
with single geographic area correspondence across years.

used as the edge weights in our scenario. The graphs in our dataset
are therefore undirected and unweighted.

An example of the resulting graph representing the near-identical
area across time is shown in Figure 2. Note the difference in the
corresponding landscape and graph structure within the two corre-
sponding dates with a 15 years gap, especially in terms of the roads.
We observed that in some cases the changes are very significant.

Apart from using the three departments with matching geo-
graphic areas, we also added some clutter data without correspon-
dences from a fourth French department, namely the Côtes-d’Armor,
to make the research and retrieval scenario more challenging. Table
2 presents the data in the graph database we developed for the geo-
graphic area retrieval across time. Note that the maximum number
of nodes in the graph is 150. This was done intentionally, we just
removed several geo areas with a bigger number of vertices present
in the data to limit the final graph size. Similarly, we removed all
the graphs with less than 3 nodes. This choice is explained by the
selection of the GCN model later in this work.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi.
Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis
vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan biben-
dum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi
ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante.
Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis
parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna.
Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus
mauris.

Data statistics. An example of final graph data characteristics
and distribution for Moselle department is summarized in Table 1.
It is interesting to see the difference between the data distribution
across the years. Note also that there is a particular change in the
number of nodes and edges in 2014 - this is probably due to the
change in the manual annotation process since we use the same
code to convert the vector data to graph representations for all the
years. We used the same procedure to create graphs for all the years.

As explained above, our dataset does not always contain the
exact same geographic areas (i.e the bounding boxes are shifted for a
more realistic scenario) each year, we provide the statistical analysis
of the similarity of the attributes between matching graph data.

https://github.com/margokhokhlova/geomaps_with_pandas
http://alegoria.ign.fr/benchmarks
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(a) 2004 graph

(b) 2019 graph

Figure 2: Graphs (in blue) representing a geographical area
in two time points. The detailed geometries are shown for
the reference, their categories are color-coded: red = build-
ing, orange = road segment, yellow = building from a special
category (such as church, monument, castle, etc).

Intersection over Union (IOU) between two graphs representing
the same geographic area across time is used:

𝐼𝑂𝑈𝑔1,𝑔2 =
2 ∗∑ 𝑒𝑋𝑔1 == 𝑒𝑋𝑔2∑

𝑒𝑋𝑔1 + 𝑒𝑋𝑔2
(2)

where𝑋𝑥1, 𝑥2 are geometric attributes of the nodes representing ge-
ographical entities 𝑒 . The resulting distribution of the IOU between
matching graphs are shown in Figure 3. The obtained distribution
is not always normal, however, analyzing the resulting histograms,
we can see that there the number of graphs with a smaller values
of IOU is bigger when the difference in time is bigger, which seems
to be logical.

5 BASELINES
We propose several baselines to evaluate the scenario at hand and
the performance of the existing graph matching approaches. To

query year db year map@5 t per q (sec)
2019 2004 0.827 0.05
2014 2004 0.835 0.05
2010 2004 0.924 0.04

Table 3:map@5 Faiss similarity search results, database con-
tains clutter graphs.

form our no-learning baseline, we selected two approaches: (1)
local-based descriptors retrieval and (2) graph kernels.

For all experiments unless stated otherwise, we use the graphs
from 3 departments as queries to retrieve corresponding data from
the database dated another year and containing the 4th department
clutter data. We employ the K Nearest Neighbours (KNN) to retrieve
top 5 matching results and report map average precision value

(map@5):𝑚𝑎𝑝@𝐾 =

∑𝑁
𝑛=1 𝑃𝑎𝑣@𝐾

𝑁
, where 𝑁 is number of queries,

𝑃𝑎𝑣 is the average precision for a single query, 𝐾=5.
No learning similarity search. The first set of experiments

is configured to find out whether sole geometric attributes of the
scene objects are enough for the graph matching task, without
using any relational information (i.e. graph representation) and any
learning.

We use Facebook AI Similarity Search (Faiss) library [20] to
retrieve the geographic areas across time. Faiss is designed to search
for multimedia documents that are similar to each other using the
KNN algorithm.We use the 𝐿2 distancemeasure to retrieve themost
similar geographic areas across years based on the local geometric
features and semantics of each object present in the scene. Other
similarity metrics available in Faiss proved to be less performant
experimentally.

The results of the Faiss-based similarity search are summarised
in Table 3. Obtained map@5 scores are quite high, which means
that the geometrical attributes are representative enough to de-
scribe the geographical areas. Nevertheless, there is still room for
an improvement that can potentially be gained by using the rela-
tional information between the nodes, i.e the graph representation.
It is interesting to see when the returned data are wrong. Figure 4
demonstrates the retrieval results for non-correct matches. Note
that even if the actual correspondence geographic area from 2004
contains many entities present in 2019, the other areas were re-
turned instead. This example shows the limitation of the attributes-
only search when no relational information about the scene is used.
At the same moment, we can see that there are also significant
graph structure modifications across years which we ideally want
to be robust to in the graph matching scenario.

Graph Kernels. We selected several popular graph kernels
which were designed for graphs with discrete and continuous at-
tributes to evaluate their performance on our geographical data.
We tested numerous kernels, but here we provide only the results
for the most interesting ones. All graph kernels we used are imple-
mented in Grakel library [39]. The subgraphmatching kernel counts
the number of matchings between subgraphs of bounded size in
two graphs [26]. The neighbourhood subgraph pairwise distance
kernel extracts pairs of rooted subgraphs from each graph whose
roots are located at a certain distance from each other, and which
contains vertices up to a certain distance from the root [11]. It then
compares graphs based on these pairs of rooted subgraphs. To avoid
isomorphism checking, graph invariants are employed to encode
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Figure 3: IOU histograms for matching graph geographic areas obtained for Moselle department. If all the nodes attributes
match exactly (injective matching) across graphs, the IOU value will be 1.

Figure 4: An example of the wrong top 5 similar graphs in 2004 returned for the query from 2019. The node colors represent
the semantics of geographic entities.

each rooted subgraph [38]. The graphlet sampling kernel decom-
poses graphs into graphlets (i.e. small connected non-isomorphic
subgraphs) and counts matching graphlets in the input graphs. The
Weisfeiler-Lehman kernel [37] is based on Weisfeiler-Lehman algo-
rithm, which core idea is to replace the discrete label of each vertex
with a multiset label consisting of the original label of the vertex
and the sorted set of labels of its neighbours. The resultant multiset
is compressed into a new label. This relabeling procedure is then
repeated for a pre-defined number of iterations. The final score is
defined based on the number of nodes with the same labels across
two graphs. Graph kernels do not use the ground truth correspond-
ing labels to fit the kernel to the data, but the hyper-parameters
should be tuned for the optimal performance. It leads to the selec-
tion of the time/accuracy ratio desired for the application at hand.
We limited the graph kernel tests to the data with the biggest time
gap, using graphs dated 2004 as a database and graphs dated 2019
as queries. The results are summarized in Table 4.

The obtained results show that the graph kernels perform rather
well for the cross-time graph matching task, outperforming the
Faiss which was based solely on the attributes and did not use the
graph structure. The results allow us to say that the kernels which
use the node attributes perform the best in our application scenario.
It is interesting to see that the Weisfeiler-Lehman and Graphlet
Sampling Kernels, which are both structure-based and use discrete
node labels, do not show good results. The former is commonly
used to check the graphs for the isomorphism, so it signifies that the
structure of the graphs in our dataset differs significantly through
the years, while many attributes stay the same.

Node attributes robustness in the presence of the noise. In
our database, we have very precise node attributes with the preci-
sion of the six decimals thanks to access to the manually labeled
and designed vector data. If the same information should have been
extracted from the images automatically, the precision would have
dropped due to the errors in the segmentation and vectorization
stages. To simulate this realistic scenario, we made a group of tests
by decreasing the number of decimals in the node attributes up to
one, two, and three decimals, and by adding normally distributed
noise with 𝜇=0 and 𝜎 = [0.1, 0.01, 0.001] to the queries attributes.
Faiss method results with added Gaussian noise and less precise
query features are summarised in Table 5.

We performed a similar tests for the two best performing graph
Kernels. The results can be found in Table 4.

Conclusion onbaselinemethods.Our experiments have shown
that the entity’s attributes are extremely important for research
retrieval. The map@5 average precision results based on geometric
attributes are rather good both for the Faiss search and graph ker-
nels. However, the presence of noise or less precise attributes leads
to a significant decrease in the performance in terms of map@5
retrieval. Structure-similarity based kernels do not work on our
data. The fact that local attribute-based methods are not robust to
noise severely limits the application of these methods. Moreover,
for some graphs, the retrieval results purely based on the node
attributes are not correct, which leaves room for further improve-
ment. The main reason for the mistakes is the objects with similar
geometrical attributes and significant landscape changes in time. In
practice, in the Computer Vision domain, this problem is commonly
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query
year

year
db kernel parameters map@5 t per query, sec map@5, noise 𝜎 = 0, 01 t per query, sec

2019 2004 neighbourhood Subgraph Pairwise Dist
[11] norm, r=3,d=2 0.887 0.5 0.000143 24.36

2019 2004 Subgraph Matching [26] norm, k = 5 0.886 3.73 0.000163 31.45

2019 2004 Weisfeiler-Lehman [37]
norm, i=2, Vertex-
Histogram kernel 0.060 0.01 n/a n/a

2019 2004 Graphlet sampling [38] norm, k=5, n = 10 0.002 0.01 n/a n/a
Table 4: map@5 for graph kernels. 𝑘 is the upper bound for the maximum size of subgraphs/graphlets, 𝑟 is the maximum
considered radius between vertices, 𝑑 is neighbourhood depth, 𝑛 the number of randomly drawn random samples, 𝑖 is the
number of iterations. Note that attribute-based kernels give good results but stop working in the presence of noise.

map@5 precision, decimals map@5 with noise, 𝜎
query
year

db
year 1 2 3 0.1 0.01 0.001

2019 2004 0.007 0.254 0.825 0.009 0.126 0.647
2014 2004 0.007 0.261 0.835 0.010 0.170 0.778
2010 2004 0.011 0.455 0.924 0.011 0.224 0.902

Table 5: No learning retrieval baseline using Faiss similarity
search and modified node attributes.

solved by doing a geometric verification between the matched key-
points of two images, the golden standard pipeline being SIFT [31]
+ RANSAC [15]. In [14] the authors replaced the SIFT keypoints
with the CNN-based descriptors. Recently, researchers proposed
more advanced fully trainable neural network that matches two sets
of local features by jointly finding correspondences and rejecting
non-matchable points called SuperGlue [36].

However, all these methods require additional steps and process-
ing time, which may be significant for large databases, even with
adequate index structures. Therefore, in the next part, we pursue
research of a learning-based model that would be able to provide
a compact and effective graph matching across time. A successful
model for this problem should, therefore (1) exploit the graph struc-
tures but be robust to the appearance and disappearance of new
entities and noise, and (2) be able to reason about the similarity
of graphs both from the graph structures as well as from learned
semantics and attributes.

6 PROPOSED SIAMESE MODEL
We suggest that the relational information encoded in a graph struc-
ture can be very important when we need to distinguish between
two different geographic areas with a similar set of objects and sim-
ilar geometric attributes. Therefore, we propose a novel learning
pipeline using a GCN [24] network to learn to match geographic
areas represented as graphs across time. In the original work, GCN
model was proposed to perform a node classification task for the
big sparse graphs. Our model aims to learn an embedding space
for variable size geographic graphs by exploring the notion of deep
graph matching.

Model architecture. Given the graphs G1 = (V1, E1) and G2
= (V2, E2), we want a model that produces the learning function
𝑓 : 𝐺 → 𝐷 through the GCN with learnable parameters 𝑤 , to
compare them next with the similarity score 𝑠 (𝐷1, 𝐷2) between
them in a new vector space. The encoding function 𝑓 takes the 𝐴
and 𝑋 values of a current entity and all geographic entities within
the reference area 𝑅 as inputs and outputs the embedded geospatial
contextual information.

Ourmodel allows to convert graphs to descriptors, which enables
efficient retrieval with fast nearest neighbour search data structures.
In our experiments, we adapt Siamese networks to handle graphs to
learn their embeddings. We propose the following graph matching
embedding model inspired by GNN [24], which comprises 3 main
parts: (1) a GCN based feature aggregation layers (with added fully-
connected layers, see the detailed explanation in Annex ??), (2) a
pooling layer, and (3) a final fully-connected layer. The architecture
is schematically shown in Figure 5. The aggregation layers 𝑙 follow
the formulation of the GCN by [24] and are defined as:

𝑋𝐿+1 = 𝜎 (𝐴𝑋 𝑙𝑊 ) (3)

Where𝐴 is the normalized and modified as in [24] adjacency matrix
and𝑊 are weights to be trained and 𝜎 is a ReLu activation function.
As in the original work by [24] we use two layers of propagation, so
that the representation for each node will accumulate information
in its local 2-hop neighbourhood.

After we obtained the final node representations, we aggregate
across them to get graph-level representations. This could be im-
plemented by a simple maxpooling followed by a MLP operation
that reduces the node representations into a single vector and then
transforms it:

𝐷 = 𝑀𝐿𝑃𝐺 (𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔𝑥 ∈𝑛 (𝑋 𝑙𝑖 )) (4)

Where 𝑋 are the learned graph nodes 𝑛 features.
The proposed architecture mainly differs from [24] in the point

(3) where we don’t calculate the node-level features, but compute
a graph level representation instead by performing a maxpooling
operation over the nodes in a graph to obtain the whole graph
descriptors 𝐷𝐺 similar to [25]. The pooling layer maps the input
graph of any structure and size to a fixed size-structured output.

The Siamese network consists of two identical networks (with
shareable weight parameters). In our case,each of the networks
is essentially a GCN with maxpooling depicted in Figure 5. Dur-
ing training, the embedding model will jointly reason about the
graph structure as well as the graph features to come up with an
embedding that reflects the notion of similarity described by the
training examples. The proposed Siamese GCN model is endowed
with the contrastive loss to train on the data with the ground truth
correspondence. The NT-Xent [9] loss function for a positive pair
of examples of the matching geographic areas through time (𝑖 , 𝑗 ) is
defined as:

𝑙𝑠 = −𝑙𝑜𝑔 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝐷1, 𝐷2)/𝜏)∑2𝑁
𝑘=1 1𝑘≠𝑖𝑒𝑥𝑝 (𝑠𝑖𝑚(𝐷1, 𝐷2)/𝜏)

(5)

Where: 𝜏 is the temperature, sim(𝐷𝑖 ,𝐷 𝑗 ) - cosine similarity, 𝑖 , 𝑗 -
two graphs in batch of size 𝑁 . The final loss is computed as an
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Figure 5: Schematic architecture of the model proposed to train the graph embeddings.

arithmetic mean across all positive pairs, both (𝑖 , 𝑗 and ( 𝑗 , 𝑖), in a
mini-batch.

𝐿𝑓 =
1
2𝑁

[𝑙𝑠 (2𝑘 − 1, 2𝑘) + 𝑙𝑠 (2𝑘, 2𝑘 − 1)] (6)

Following the idea of [9], we created the batches of random
graphs to train the model. However, instead of altering them to use
as an input for a second branch of the Siamese GCN, we take the
graphs representing the same geographic area but from a different
time frame to form positive samples. Then the loss encourages the
embeddings for the same geographic area to be closer in the em-
bedding space in terms of the cosine distance; and the embeddings
of different areas to be farther apart.

7 EXPERIMENTS
We consider two following scenarios of the graph similarity learning
problem:

• Learning and testing on the data coming from the same
departments across time but separating them by date

• A general across-time retrieval learning pipeline, where we
separate the departments for training and testing

The first scenario aims to learn the embedding using the data with
a temporal gap but using the same regions for training, validating,
and testing. The second scenario aims to learn the embeddings for
temporally misaligned data using different departments for training,
testing, and validation.

We compute the similarity between the final descriptors using a
similarity metric in the vector space from Faiss library as described
above and evaluate the results using map@K metric. We also report
the average retrieval time for a single query as previously.

Throughout the experiments we fixed the dimensionality of
graphs embeddings to 512, trying the following commonly used
values: 128, 256, 512. Our experiments have shown that when the fi-
nal descriptor size is lower than 512, it’s learning capacities stay the
same, but generalization capacities are much lower. We can obtain
the same map@5 values on the training set with all the descrip-
tor sizes. However, the validation map@5 reaches the plateau and
stop increasing on the lower map@5 values in case of the smaller
descriptor size. The weights in the GCN layers are equal to 512.

In the graph pre-processing step, the discrete labels of the nodes
were one-hot encoded, and the continuous attributes were left intact
and concatenated with the one-hot encoded ones. Since the graphs
have a different number of nodes, we use padding to create the

graphs of the same size as an input to the network. The number of
nodes in a single graph is then equal to 150.

The training graph pairs are selected during the run time and are
shuffled randomly at the end of each epoch. The network is trained
for approximately 200 epochs until the moment the validation
map@5 accuracy reaches the plateau and starts to decrease. Further
training leads to overfitting on the training set, so we take the model
which shows the best validation score and report its results.We used
the batch size of 64 graphs through all the experiments. Batches of
a bigger size led to a decrease in overall model performance.

We do not use any data augmentation techniques and NT-Xent
loss allows us to avoid hard samples mining. The temperature
parameter in the contrastive loss is equal to 0.5. Adam [23] optimizer
is chosen for the optimization of the learning weights. The learning
rate is equal to 0.13, with a decay 0.15 and a multi-step learning
rate scheduler. All the training is performed on a CPU and does not
require excessive calculating power, mainly thanks to the small size
of our graphs. It takes about a day to train the model end-to-end on
our dataset, along with calculating map@5 precision for training
and validation data after each epoch. A single branch of the model
is used in the inference step.

Cross-time matching learning.We use all three departments
for training, validation, and testing, separating the dataset by the
year. We train on 2019-2010, validate on 2019-2014, and finally, the
pairs 2019-2004 and 2010-2004 form the test set. The idea of this ex-
periment is that we want to use known cross-time correspondences
to later retrieve older data.

Generalized learning approach. In this scenario, we evaluate
the generalization capabilities of our model, by using different sets
of data for training and testing. We use 2 departments for learning
and one for testing. The most difficult data with the biggest time
gap are selected. This allows to demonstrate whether the proposed
models can be used for completely new, unseen data.

7.1 Results
Table 6 summarises the results for the across-year learning scenario
for our GCN-based descriptors. We report the performance of the
global descriptors which corresponds to our training objective, and
also the local descriptors, taking the resulting node embeddings
before the maxpooling layer. We observed that the latter take much
longer to compute and perform less good than the global ones,
which corresponds to our learning objective. On average, the re-
trieval time for the query represented as a single descriptor is twice
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global local
query
year

db
year role map@5 t per q map@5 t per q

2019 2010 training 0.660 0.017 0.303 0.880
2019 2014 validation 0.554 0.017 0.317 0.412
2019 2004 testing 0.552 0.017 0.371 1.140
2010 2004 testing 0.684 0.019 0.638 0.970

Table 6: The map@5 results for the global and local descrip-
tors. Note that training and validation data do not contain
clutter, but the testing data does. Time is indicated in sec.

global local
query
year

db
year role map@5 t per q map@5 t per q

2019 2010 training 0.577 0.011 0.247 0.421
2019 2014 validation 0.483 0.011 0.314 0.517
2019 2004 testing 0.487 0.014 0.305 0.521
2010 2004 testing 0.628 0.014 0.578 0.314

Table 7: The map@5 results for the global and local descrip-
tors with noise 𝜎 = 0.01.

global local
query
year

db
year role map@5 t per q map@5 t per q

2019 2004 training 0.538 0.01 0.399 0.6
2019 2004 testing 0.576 0.003 0.371 0.2

Table 8: The map@5 results for the global and local descrip-
tors, cross-department learning.

smaller than the one obtained with Faiss local features earlier. The
obtained map@5 values are lower than the ones we got earlier with
the no learning baselines.

Table 7 shows how the noise added to query graphs attributes
is affecting the results in the inference stage. Here we can see that
in contrast to the baseline methods, the GCN-based descriptor is
relatively robust to noise, with map@5 values decreasing up to
10% in contrast with the 70% decrease of Faiss noisy local features
search.

Table 8 shows the generalizability of our GCN-based descriptors.
Note that the map@5 is for the similarity search in two (training)
and one (testing) regions correspondingly. We kept the hyperparam-
eters tuned for the cross-time learning scenario previously, and can
see that the network is capable to create a meaningful descriptor
for the new region it did not see during training, so it generalizes
rather well.

Although the overall obtained map@5 results are lower than
the ones from the baselines, we insist that the GCN-based network
works better in the case of less precise attributes and hence has
more potential for the real-case geographical graph matching task
we aim at. Table 7 proves that the resulting descriptors are robust
to the noise and return the correct geographic area in the 50% of
the queries. Note that with the no learning baselines noise was
dramatically affecting the map@5 results and GCN model is robust
to noise. This property is the key property that allows the model
to be used in a real-world scenario, where it is yet impossible to
obtain ideal segmentation results fully automatically, and even
human annotation might vary from person to person and database
to database. Saying that, we assume, that although the first results
obtained are not yet on the point with classical methods, it is a path
to a new research direction.

8 CONCLUSION
With the availability of large volumes of geographic data, devel-
oping neural models for geographic area similarity learning is a
relevant research direction and graph representation is a very pow-
erful and intuitive way to encode geoinformation.

This paper proposes approaches for the problem of vertical image
research and retrieval from a new side: we transform the semantic
information into a connected graph. We create an original dataset
associated with a novel deep learning-based method to learn geo
graph representations across time. The proposed algorithm is cur-
rently outperformed by the classical methods, but in contrast to
them, it is robust to the presence of the noise in the attributes,
which makes it useful in a real-world scenario, such as research and
retrieval of automatically segmented and vectorized aerial images
or even a correspondence search in different databases. Besides, the
proposed method can be directly used to learn the embeddings for
any attributed graph similarity problem.

There are still many interesting challenges to resolve, for exam-
ple, to improve the efficiency of the matching models to achieve
the graph kernels accuracy, study different matching architectures,
adapt the GCN capacity to graphs of different sizes, and applying
these models to new application domains. The graph models with
attention can intuitively work well in the aimed application and
we plan to adopt an attention mechanism in the future. Another
possible direction is the creation of the optimal graph representa-
tions which can lead to the best retrieval results. Finally, on the
experimental part, we plan to experiment further with different
splitting schemes to estimate the bias introduced by splitting train,
validate, and test sets according to the year. This work can spur
further research in geographical graph matching and provides the
first benchmark.
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