Learning embeddings for cross-time geographic areas represented as graphs
Margarita Khokhlova, Nathalie Abadie, Valérie Gouet-Brunet, Liming Chen

To cite this version:

HAL Id: emse-03548148
https://hal-emse.ccsd.cnrs.fr/emse-03548148
Submitted on 29 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Learning embeddings for cross-time geographic areas represented as graphs

Full Research Paper

Margarita Khokhlova
LASTIG, Univ Gustave Eiffel, ENSG, IGN, France
LIRIS/Lyon Centrale
Saint-Mande, France
margarita.khokhlova@ign.fr

Nathalie Abadie
LASTIG, Univ Gustave Eiffel, ENSG, IGN
Saint-Mande, France
nathalie-f.abadie@ign.fr

Valérie Gouet-Brunet
LASTIG, Univ Gustave Eiffel, ENSG, IGN
Saint-Mande, France
valerie.gouet@ign.fr

Liming Chen
LIRIS/Lyon Centrale
Ecully, France

ABSTRACT
Geographic entities from the vertical aerial images can be viewed as discrete objects and represented as nodes in a graph, linked to each other by edges capturing their spatial relationships. Over time, the natural and man made landscape may evolve and thus also their graph representations.

This paper addresses the challenging problem of the retrieval and fuzzy matching of graphs to localize near-identical geographical areas across time. Several use-case scenarios are proposed for the end-to-end learning of a graph embedding using Graph Neural Networks (GNN), along with an effective baseline without learning.

The results demonstrate the efficiency of our approach, that enables efficient similarity reasoning for novel hand-engineered cross-time graph data. Code and data processing scripts are available online.

CCS CONCEPTS
• Computing methodologies → Feature selection; Image representations; • Information systems → Image search;

KEYWORDS
Geospatial descriptors, research and retrieval of historical data, graph embedding, contrastive learning, GCN

1 INTRODUCTION
The cross-time aerial image matching problem is very challenging as landscape and appearance changes through time can be dramatic. However, the structural and spatial information about the man-made and natural objects and their spatial relations derived from images can be more persistent than the appearance-based one. Topographic databases are an incredible source of information, from which semantic cues may be distilled. Recently with the progress of CNN architectures for segmentation the task of fully automated scene segmentation became possible [21, 40]. Semantic maps are an additional source of information that can potentially improve geo-localisation, cross-view and cross-time retrieval [22].

Among these, there are numerous detailed maps available for the French territory, from the earlier dates up until today. In this work, we follow the intuition that this rich source of semantic information can be leveraged to improve geographic areas matching and retrieval through time. In order to test this hypothesis, we propose to use already existing topographic databases as sources of semantic annotations. The aimed task requires many steps shown schematically in Figure 1, which can be considered as independent research questions, and in the current work we thus concentrate on the problem of graph matching and retrieval across time. We start from already existing topographical databases captured in the same year as the aerial photograph that we want to match, and that are geometrically consistent with their corresponding photographs, represent these data as graphs and propose a Graph Learning CNN model to match the areas across years.

By using mainly the structural and spatial information about the scene, we aim to propose a new approach which has a potential to be more robust than image-based similarity search. By explicitly modeling relationships between geographic entities of several categories from topographic databases as the graph entities, we demonstrate how the well-known image-based retrieval task can be addressed in a new manner, benefiting from the latest advances in graph learning. Graph-based data structures are commonly used in many application domains, as diverse as social...
Graph kernels have shown themselves as very efficient tools for graph comparison but often take a significant time to compute.

Graph Distances. Learning a distance metric between graph nodes is the key focus of the area of metric learning. Common choices include spectral distances and distances based on node affinities. [45] compares commonly used graph metrics and distance measures, and demonstrate their ability to discern between common topological features found in both random graph models and real-world networks. Many of the classical graph kernels are also based on the graph distances [5, 39].

Graph Embeddings. Only relatively recently different Machine Learning and Deep learning algorithms were proposed for graph data. The data mining community has a strong interest in (knowledge) graph summarization because graph structure is ubiquitous: all kinds of data from social networks and up to research publications can be represented as graphs. A popular idea is to learn the embeddings for nodes [16] or even the whole graphs [2, 33] based on their features and structure. However, all these algorithms are based on the models coming from the text processing, so they were designed to produce the embeddings such that nodes with similar network neighbourhoods are embedded close together: the nodes are handled as words taken from a pre-defined vocabulary. Moreover, these methods can handle structure or label info but not both in the same time, which limits their application for our scenario.

Geographic Data. Graph-based representations of the geographic territory are traditionally used for networks representation and their associated computations such as routing applications. But graph based representation of places and landscapes can also reveal important insights in certain scenarios such as scene geolocalization, or geographic information retrieval.

Recently, geographic knowledge graphs have gained attention as they link geographic entities with entities from life sciences, linguistic domain, media, social networks, and various user-generated contents on the Web. [35] proposes a set of metrically refined approximate topological relations to enrich a geographic knowledge graph and improve its questions answering capabilities. Geographic knowledge graphs summarization is largely covered in [47]. The work covers topics such as understanding, representing, and reasoning about Points Of Interest (POI) but does not propose the ways to learn geographic area descriptors. Yan et al. [48] learn Points of Interests (places) semantic similarity from a topographic database. However, the authors try to capture the similarity between general pre-defined object types, when we aim to distinguish them to geolocalize the area. They also use the neighbourhood of the POIs based on the distance and not specifically the graph structure. Finally, Trisedya et al. [41] propose an entity alignment model for knowledge graphs based on the earlier Trans-E approach [4] which models relationships by interpreting them as translations operating on the low-dimensional embeddings of the entities. However, the method requires common unique geographical objects between two graph databases and a fixed set of relations between the nodes, so it cannot be used in our scenario.

The idea of using different distinct geographic objects to automatically geolocalize and match image is not novel. Early research in Computer Vision envisaged this long time ago [17], and there are recent works for image-based localisation [12, 19]. However,
Learning embeddings for cross-time geographic areas represented as graphs

These works, don’t explicitly use the graph structure and do not aim for cross-time matching as we do in this research.

Convolutional Graph Networks. In the past few years graph neural networks (GNNs) have emerged as an effective class of models for learning representations of structured data and for solving various supervised prediction problems on graphs. Such models are invariant by design to permutations of graph elements and compute graph node representations through a propagation process which iteratively aggregates local structural information. Nodes on isomorphic graphs (with the same node and edge features) will have the same representations regardless of the ordering. GNNs have different architectures and can be roughly classified into several categories. Spectral methods [7] perform graph convolution by employing the eigen vectors of the graph Laplacian as the transformation matrix, methods that work in the spatial domain [24] and methods complementary to GNNs and agnostic to the choice of a GNN itself (i.e. pooling, attention) [42]. GNNs have been successfully used in many domains from drug discovery [43] to social network classifications [29]. Independently on the network nature, the common task accomplished by them is the supervised learning of the node embeddings. These node representations are then used directly for node classification, or pooled into a graph vector for graph classification. Problems beyond supervised classification or regression are relatively less well-studied for GNNs. Xu et al. [46] proved that with CNNs we can measure the graph’s similarity similar to Weisfeiler-Lehman similarity test. However, as it is shown in the next section of our work, graph isomorphism problem is not very relevant for our type of data. More general graph similarity learning approaches were recently proposed by [3, 30]. These learned models can adapt to the desired metric and are potentially interesting for our target scenarios. However, Li et al. demonstrate the performance of the method on graphs with no attributes and only minor structural changes. In this paper, we focus on representation and similarity metric learning for attributed graphs representing the near-identical geographic area across time.

2.2 Siamese Networks.

Siamese network architectures aim to construct an embedding, where two extracted features corresponding to the same identity are more likely to be closer than features from different identities [6]. They are a popular choice for scenarios dealing with so-called one-shot learning problems when a single training sample is available for each class. The efficiency of Siamese networks was previously demonstrated for visual object tracking [28], person re-identification [10], cross-view image matching [18] and other tasks. Siamese networks can also be used for graph similarity learning as it was demonstrated in [30]. The closest to ours is the recent work of [8] where the authors successfully use a Siamese Graph Convolutional architecture for research and retrieval of remote sensing (RS) images represented as region adjacency graphs (RAG).

We follow a similar idea to use the descriptive power of graph representation along with a Siamese-based GCN, however, the graph creation process differs from RAG approach, and the architecture we propose is conceived for our type of data and corresponding features. The final scenario also differs: we want to retrieve the exact location and not the similar classes, hence we deal with a more challenging problem with many classes and a few examples per class (mostly, a single correspondence). Moreover, our end goal is to make an image to vector data correspondence.

3 PROBLEM DEFINITION.

The semantic information available in the topographic data and their geometries can be leveraged to create scene relational graphs G(V, E), where V is the graph’s set of nodes and E its set of edges. In the graph representing a given geographic area, each geographic entity can be represented as a node v with attributes X describing its properties (e.g. its geographic entity type, its name, its area, etc.). Edges represent spatial relationships between nodes; they may also have attributes, although we do not use this possibility in this work. For a given geographic area, the graph representing

Structured geographic data representing the location and shape of geographic entities with vector geometries.
its spatial configuration can thus be summed up by the following equation:
\[G_e = (R_e, X, A) \]
where \(R_e \) is the reference area, \(X \) is the set of values associated with all nodes, so-called node features and \(A \in \mathbb{R}^{N \times N} \) is the Adjacency matrix to encode the relational information between all nodes. The reference area \(R_e \) is a generic term that defines the geographic area covered by the graph.

Given the subsets of graphs representing parts of the territory through the years, we want to do the cross-time aerial image matching based on the structural and spatial information about the scene. Hence we want to learn an embedding of the graph structure, which can take into account the node attributes and structure relationships between the nodes, be robust to the noise and changes in the data, and be compact so it can be later used for the fast search and retrieval in a large database of thousands of graphs.

4 DATASET

The dataset originates from the French Mapping Agency (IGN) [1] and contains graphs derived from semantic annotations of vertical aerial images taken from three French regions (Moselle, Bas-Rhin, and Meurthe-and-Moselle) in four different years: 2004, 2010, 2014 and 2019. We provide the code designed for the graph creation from the vector data1 and the data 4.

Graph formation. We selected the geographic areas for the database so that each graph contains at least one so-called point of interest (POI) - a building from the following categories: a building of religious nature, historical objects and monuments, castles or forts, local governmental buildings, buildings with the sport functions, railway stations, airports. In our geographic dataset, each central POI entity \(e \) has a geospatial context \(G_C e \) represented as a graph: Each node in \(V \) represents a single geographical entity. The relational information is represented by the edges \(E \) of the graph, which are determined by building a Delaunay triangulation [13] between the centroids of nodes geometry. This method was selected to guarantee the formation of connected graphs.

Graph nodes have geometric attributes \(X \) (normalized perimeter, \(x_1 \) and eccentricity, \(x_2 \)) and a discreet label, \(l_n \), representing the node’s nature (fifteen in total: river, road, railroad, religious building, castle, fort, tower, arc, monument, cemetery, sports ground, normal building,cemetery, public building, airport). Many other geometrical attributes are commonly used in geo-spatial studies such as general orientation, mean axes of the geometric forms, surface descriptors, various shape descriptors [32]. However, we limited this research to the simplest ones which do not require any orientation information nor a high level of details to compensate for the different levels of details in the annotations across time and to not make any assumptions on the orientation of the scene. Eccentricity in our case is simply \(E = \frac{P}{4\pi A} \), where \(L \) and \(W \) are the length and width of the minimal geometry’s bounding box. Normalized perimeter is simply \(P_n = \frac{P}{max(A)} \). Note that we do not use the edge attributes because we wanted our graphs to be rotation and scale-invariant: hence, the angles between objects cannot be

1 https://github.com/margokhokhlova/geomaps_with_pandas

4 http://alegoria.ign.fr/benchmarks

used as the edge weights in our scenario. The graphs in our dataset are therefore undirected and unweighted.

Table 2: The characteristics of the proposed dataset for cross-time geographic area retrieval. Note that we mostly deal with single geographic area correspondence across years.

<table>
<thead>
<tr>
<th>Year</th>
<th># nodes</th>
<th># edges</th>
<th>Node degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>29.51, 15.16, 3, 91</td>
<td>76.78,43.40,3,236</td>
<td>5.20,12.52,2,12</td>
</tr>
<tr>
<td>2010</td>
<td>30.18,15.39,3,92</td>
<td>78.73,44.09,3,260</td>
<td>5.22,12.52,11</td>
</tr>
<tr>
<td>2014</td>
<td>65.83,53.25,3,150</td>
<td>183.99,156.97,3,280</td>
<td>5.59,14.32,22</td>
</tr>
<tr>
<td>2019</td>
<td>37.70,19.59,3,125</td>
<td>100.62,56.54,3,356</td>
<td>5.34,12.62,14</td>
</tr>
</tbody>
</table>

Data statistics. An example of final graph data characteristics and distribution for Moselle department is summarized in Table 1. It is interesting to see the difference between the data distribution across the years. Note also that there is a particular change in the number of nodes and edges in 2014 - this is probably due to the change in the manual annotation process since we use the same code to convert the vector data to graph representations for all the years. We used the same procedure to create graphs for all the years.

As explained above, our dataset does not always contain the exact same geographic areas (i.e. the bounding boxes are shifted for a more realistic scenario) each year, we provide the statistical analysis of the similarity of the attributes between matching graph data.
Intersection over Union (IOU) between two graphs representing the same geographical area across time is used:

\[
\text{IOU}_{g_1, g_2} = \frac{2 \sum \epsilon_{X_{g_1} \equiv X_{g_2}}}{\sum \epsilon_{X_{g_1}} + \epsilon_{X_{g_2}}} \tag{2}
\]

where \(X_1, X_2\) are geometric attributes of the nodes representing geographical entities \(\epsilon\). The resulting distribution of the IOU between matching graphs are shown in Figure 3. The obtained distribution is not always normal, however, analyzing the resulting histograms, we can see that the number of graphs with a smaller values of IOU is bigger when the difference in time is bigger, which seems to be logical.

5 BASELINES

We propose several baselines to evaluate the scenario at hand and the performance of the existing graph matching approaches. To form our no-learning baseline, we selected two approaches: (1) local-based descriptors retrieval and (2) graph kernels.

For all experiments unless stated otherwise, we used the graphs from 3 departments as queries to retrieve corresponding data from the database dated another year and containing the 4th department clutter data. We employ the K Nearest Neighbours (KNN) to retrieve top 5 matching results and report map average precision value (map@5): \(\text{map} = \frac{\sum_{n=1}^{N} P_{n} @ K}{N}\), where \(N\) is number of queries, \(P_{n}\) is the average precision for a single query, \(K=5\).

No learning similarity search. The first set of experiments is configured to find out whether sole geometric attributes of the scene objects are enough for the graph matching task, without using any relational information (i.e. graph representation) and any learning.

We use Facebook AI Similarity Search (Faiss) library [20] to retrieve the geographic areas across time. Faiss is designed to search for multimedia documents that are similar to each other using the KNN algorithm. We use the \(L_2\) distance measure to retrieve the most similar geographic areas across years based on the local geometric features and semantics of each object present in the scene. Other similarity metrics available in Faiss proved to be less performant experimentally.

The results of the Faiss-based similarity search are summarised in Table 3. Obtained map@5 scores are quite high, which means that the geometrical attributes are representative enough to describe the geographical areas. Nevertheless, there is still room for an improvement that can potentially be gained by using the relational information between the nodes, i.e the graph representation.

At the same moment, we can see that there are also significant graph structure modifications across years which we ideally want to be robust to in the graph matching scenario.

Graph Kernels. We selected several popular graph kernels which were designed for graphs with discrete and continuous attributes to evaluate their performance on our geographical data. We tested numerous kernels, but here we provide only the results for the most interesting ones. All graph kernels we used are implemented in Grakel library [39]. The subgraph matching kernel counts the number of matchings between subgraphs of bounded size in two graphs [26]. The neighbourhood subgraph pairwise distance kernel extracts pairs of rooted subgraphs from each graph whose roots are located at a certain distance from each other, and which contains vertices up to a certain distance from the root [11]. It then compares graphs based on these pairs of rooted subgraphs. To avoid isomorphism checking, graph invariants are employed to encode
Figure 3: IOU histograms for matching graph geographic areas obtained for Moselle department. If all the nodes attributes match exactly (injective matching) across graphs, the IOU value will be 1.

Figure 4: An example of the wrong top 5 similar graphs in 2004 returned for the query from 2019. The node colors represent the semantics of geographic entities.

each rooted subgraph [38]. The graphlet sampling kernel decomposes graphs into graphlets (i.e. small connected non-isomorphic subgraphs) and counts matching graphlets in the input graphs. The Weisfeiler-Lehman kernel [37] is based on Weisfeiler-Lehman algorithm, which core idea is to replace the discrete label of each vertex with a multiset label consisting of the original label of the vertex and the sorted set of labels of its neighbours. The resultant multiset is compressed into a new label. This relabeling procedure is then repeated for a pre-defined number of iterations. The final score is defined based on the number of nodes with the same labels across two graphs. Graph kernels do not use the ground truth corresponding labels to fit the kernel to the data, but the hyper-parameters should be tuned for the optimal performance. It leads to the selection of the time/accuracy ratio desired for the application at hand. We limited the graph kernel tests to the data with the biggest time gap, using graphs dated 2004 as a database and graphs dated 2019 as queries. The results are summarized in Table 4.

The obtained results show that the graph kernels perform rather well for the cross-time graph matching task, outperforming the Faiss which was based solely on the attributes and did not use the graph structure. The results allow us to say that the kernels which use the node attributes perform the best in our application scenario. It is interesting to see that the Weisfeiler-Lehman and Graphlet Sampling Kernels, which are both structure-based and use discrete node labels, do not show good results. The former is commonly used to check the graphs for the isomorphism, so it signifies that the structure of the graphs in our dataset differs significantly through the years, while many attributes stay the same.

Node attributes robustness in the presence of the noise. In our database, we have very precise node attributes with the precision of the six decimals thanks to access to the manually labeled and designed vector data. If the same information should have been extracted from the images automatically, the precision would have dropped due to the errors in the segmentation and vectorization stages. To simulate this realistic scenario, we made a group of tests by decreasing the number of decimals in the node attributes up to one, two, and three decimals, and by adding normally distributed noise with $\mu=0$ and $\sigma=[0.1, 0.01, 0.001]$ to the queries attributes. Faiss method results with added Gaussian noise and less precise query features are summarised in Table 5.

We performed a similar tests for the two best performing graph Kernels. The results can be found in Table 4.

Conclusion on baseline methods. Our experiments have shown that the entity’s attributes are extremely important for research retrieval. The map@5 average precision results based on geometric attributes are rather good both for the Faiss search and graph kernels. However, the presence of noise or less precise attributes leads to a significant decrease in the performance in terms of map@5 retrieval. Structure-similarity based kernels do not work on our data. The fact that local attribute-based methods are not robust to noise severely limits the application of these methods. Moreover, for some graphs, the retrieval results purely based on the node attributes are not correct, which leaves room for further improvement. The main reason for the mistakes is the objects with similar geometrical attributes and significant landscape changes in time. In practice, in the Computer Vision domain, this problem is commonly
RANSAC [15]. In [14] the authors replaced the SIFT keypoints with the contrastive loss to train on the data with the ground truth correspondence. The NT-Xent [9] loss function for a positive pair of examples of the matching geographic areas through time (\(i, j\)) is defined as:

\[
D = \text{MLP}_C(\text{maxpooling}_{\text{en}}(X_i^{l+1}))
\]

Where \(X\) are the learned graph nodes \(n\) features. The proposed architecture mainly differs from [24] in the point (3) where we don’t calculate the node-level features, but compute a graph level representation instead by performing a maxpooling operation over the nodes in a graph to obtain the whole graph descriptors \(D_G\) similar to [25]. The pooling layer maps the input graph of any structure and size to a fixed size-structured output.

The Siamese network consists of two identical networks (with shareable weight parameters). In our case, each of the networks is essentially a GCN with maxpooling depicted in Figure 5. During training, the embedding model will jointly reason about the graph structure as well as the graph features to come up with an embedding that reflects the notion of similarity described by the training examples. The proposed Siamese GCN model is endowed with the contrastive loss to train on the data with the ground truth correspondence. The NT-Xent [9] loss function for a positive pair of examples of the matching geographic areas through time (\(i, j\)) is defined as:

\[
l_k = -\log \frac{\exp(\text{sim}(D_1, D_2)/r)}{\sum_{k \neq i} \exp(\text{sim}(D_1, D_k)/r)}
\]

Where: \(r\) is the temperature, \(\text{sim}(D_i, D_j)\) - cosine similarity, \(i,j\) - two graphs in batch of size \(N\). The final loss is computed as an average loss over the whole batch.

Table 4: map@5 for graph kernels.

<table>
<thead>
<tr>
<th>year</th>
<th>db</th>
<th>kernel</th>
<th>parameters</th>
<th>map@5 t per query, sec</th>
<th>map@5, noise (\sigma = 0.01) t per query, sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>2004</td>
<td>neighbour Subgraph Pairwise Dist [11]</td>
<td>norm, (r=3, d=2)</td>
<td>0.887 0.5 0.00143 24.36</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>2004</td>
<td>Subgraph Matching [26]</td>
<td>norm, (k = 5)</td>
<td>0.886 3.73 0.00163 31.45</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>2004</td>
<td>Weisfeiler-Lehman [37]</td>
<td>norm, (i=2), Vertex-Histogram kernel</td>
<td>0.060 0.01 n/a n/a</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>2004</td>
<td>Graphlet sampling [38]</td>
<td>norm, (k=5, n = 10)</td>
<td>0.002 0.01 n/a n/a</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: No learning retrieval baseline using Faiss similarity search and modified node attributes.

<table>
<thead>
<tr>
<th>query year</th>
<th>db</th>
<th>map@5 precision, decimals</th>
<th>map@5 with noise, (\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td></td>
<td>1 2 3</td>
<td>0.1 0.01 0.001</td>
</tr>
<tr>
<td>2019</td>
<td>2004</td>
<td>0.007 0.254 0.825</td>
<td>0.009 0.126 0.647</td>
</tr>
<tr>
<td>2014</td>
<td>2004</td>
<td>0.007 0.261 0.835</td>
<td>0.010 0.170 0.778</td>
</tr>
<tr>
<td>2010</td>
<td>2004</td>
<td>0.011 0.455 0.924</td>
<td>0.011 0.224 0.902</td>
</tr>
</tbody>
</table>

Our model allows to convert graphs to descriptors, which enables efficient retrieval with fast nearest neighbour search data structures. In our experiments, we adapt Siamese networks to handle graphs to learn their embeddings. We propose the following graph matching embedding model inspired by GNN [24], which comprises 3 main parts: (1) a GCN based feature aggregation layers with added fully-connected layers, see the detailed explanation in Annex ?? (2) a pooling layer, and (3) a final fully-connected layer. The architecture is schematically shown in Figure 5. The aggregation layers \(i\) follow the formulation of the GCN by [24] and are defined as:

\[
X_i^{l+1} = \sigma(AX_i^{l}W)
\]

Where \(A\) is the normalized and modified as in [24] adjacency matrix and \(W\) are weights to be trained and \(\sigma\) is a ReLu activation function. As in the original work by [24] we use two layers of propagation, so that the representation for each node will accumulate information in its local 2-hop neighbourhood.

After we obtained the final node representations, we aggregate them to get graph-level representations. This could be implemented by a simple maxpooling followed by a MLP operation that reduces the node representations into a single vector and then transforms it:

\[
D = \text{MLP}_C(\text{maxpooling}_{\text{en}}(X_i^{l}))
\]

Where \(X\) are the learned graph nodes \(n\) features.
We consider two following scenarios of the graph similarity learning where the discrete labels of the nodes are one-hot encoded, and the continuous attributes were left intact. The first scenario aims to learn the embedding using the data with values: 128, 256, 512. Our experiments have shown that when the final descriptor size is lower than 512, it’s learning capacities stay the same, but generalization capacities are much lower. We can obtain the same map@5 values on the training set with all the descriptor sizes. However, the validation map@5 reaches the plateau and stop increasing on the lower map@5 values in case of the smaller descriptor size. The weights in the GCN layers are equal to 512.

In the graph pre-processing step, the discrete labels of the nodes were one-hot encoded, and the continuous attributes were left intact and concatenated with the one-hot encoded ones. Since the graphs have a different number of nodes, we use padding to create the graphs of the same size as an input to the network. The number of nodes in a single graph is then equal to 150.

The training graph pairs are selected during the run time and are shuffled randomly at the end of each epoch. The network is trained for approximately 200 epochs until the moment the validation map@5 accuracy reaches the plateau and starts to decrease. Further training leads to overfitting on the training set, so we take the model which shows the best validation score and report its results. We used the batch size of 64 graphs through all the experiments. Batches of a bigger size led to a decrease in overall model performance.

We do not use any data augmentation techniques and NT-Xent loss allows us to avoid hard samples mining. The temperature parameter in the contrastive loss is equal to 0.5. Adam [23] optimizer is chosen for the optimization of the learning weights. The learning rate is equal to 0.1^3, with a decay 0.1^5 and a multi-step learning rate scheduler. All the training is performed on a CPU and does not require excessive calculating power, mainly thanks to the small size of our graphs. It takes about a day to train the model end-to-end on our dataset, along with calculating map@5 precision for training and validation data after each epoch. A single branch of the model is used in the inference step.

Cross-time matching learning. We use all three departments for training, validation, and testing, separating the dataset by the year. We train on 2019-2010, validate on 2019-2014, and finally, the pairs 2019-2004 and 2010-2004 form the test set. The idea of this experiment is that we want to use known cross-time correspondences to later retrieve older data.

Generalized learning approach. In this scenario, we evaluate the generalization capabilities of our model, by using different sets of data for training and testing. We use 2 departments for learning and one for testing. The most difficult data with the biggest time gap are selected. This allows to demonstrate whether the proposed models can be used for completely new, unseen data.

7.1 Results
Table 6 summarises the results for the across-year learning scenario for our GCN-based descriptors. We report the performance of the global descriptors which corresponds to our training objective, and also the local descriptors, taking the resulting node embeddings before the maxpooling layer. We observed that the latter take much longer to compute and perform less good than the global ones, which corresponds to our learning objective. On average, the retrieval time for the query represented as a single descriptor is twice
Learning embeddings for cross-time geographic areas represented as graphs

Table 6: The map@5 results for the global and local descriptors. Note that training and validation data do not contain clutter, but the testing data does. Time is indicated in sec.

<table>
<thead>
<tr>
<th>query year</th>
<th>db year</th>
<th>role</th>
<th>map@5</th>
<th>t per q</th>
<th>map@5</th>
<th>t per q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>2010</td>
<td>training</td>
<td>0.660</td>
<td>0.017</td>
<td>0.303</td>
<td>0.880</td>
</tr>
<tr>
<td>2019</td>
<td>2014</td>
<td>validation</td>
<td>0.554</td>
<td>0.017</td>
<td>0.317</td>
<td>0.412</td>
</tr>
<tr>
<td>2019</td>
<td>2004</td>
<td>testing</td>
<td>0.552</td>
<td>0.017</td>
<td>0.371</td>
<td>1.140</td>
</tr>
<tr>
<td>2010</td>
<td>2004</td>
<td>testing</td>
<td>0.684</td>
<td>0.019</td>
<td>0.638</td>
<td>0.970</td>
</tr>
</tbody>
</table>

Table 7: The map@5 results for the global and local descriptors with noise $\sigma = 0.01$.

<table>
<thead>
<tr>
<th>query year</th>
<th>db year</th>
<th>role</th>
<th>map@5</th>
<th>t per q</th>
<th>map@5</th>
<th>t per q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>2010</td>
<td>training</td>
<td>0.577</td>
<td>0.011</td>
<td>0.247</td>
<td>0.421</td>
</tr>
<tr>
<td>2019</td>
<td>2014</td>
<td>validation</td>
<td>0.483</td>
<td>0.011</td>
<td>0.314</td>
<td>0.517</td>
</tr>
<tr>
<td>2019</td>
<td>2004</td>
<td>testing</td>
<td>0.487</td>
<td>0.014</td>
<td>0.305</td>
<td>0.521</td>
</tr>
<tr>
<td>2010</td>
<td>2004</td>
<td>testing</td>
<td>0.628</td>
<td>0.014</td>
<td>0.578</td>
<td>0.314</td>
</tr>
</tbody>
</table>

Table 8: The map@5 results for the global and local descriptors, cross-department learning.

<table>
<thead>
<tr>
<th>query year</th>
<th>db year</th>
<th>role</th>
<th>map@5</th>
<th>t per q</th>
<th>map@5</th>
<th>t per q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>2004</td>
<td>training</td>
<td>0.538</td>
<td>0.01</td>
<td>0.399</td>
<td>0.6</td>
</tr>
<tr>
<td>2019</td>
<td>2004</td>
<td>testing</td>
<td>0.576</td>
<td>0.003</td>
<td>0.371</td>
<td>0.2</td>
</tr>
</tbody>
</table>

smaller than the one obtained with Faiss local features earlier. The obtained map@5 values are lower than the ones we got earlier with the no learning baselines.

Table 7 shows how the noise added to query graphs attributes is affecting the results in the inference stage. Here we can see that in contrast to the baseline methods, the GCN-based descriptor is relatively robust to noise, with map@5 values decreasing up to 10% in contrast with the 70% decrease of Faiss noisy local features search.

Table 8 shows the generalizability of our GCN-based descriptors. Note that the map@5 is for the similarity search in two (training) and one (testing) regions correspondingly. We kept the hyperparameters tuned for the cross-time learning scenario previously, and can see that the network is capable to create a meaningful descriptor for the new region it did not see during training, so it generalizes rather well.

Although the overall obtained map@5 results are lower than the ones from the baselines, we insist that the GCN-based network works better in the case of less precise attributes and hence has more potential for the real-case geographical graph matching task we aim at. Table 7 proves that the resulting descriptors are robust to the noise and return the correct geographic area in the 50% of the queries. Note that with the no learning baselines noise was dramatically affecting the map@5 results and GCN model is robust to noise. This property is the key property that allows the model to be used in a real-world scenario, where it is yet impossible to obtain ideal segmentation results fully automatically, and even human annotation might vary from person to person and database to database. Saying that, we assume, that although the first results obtained are not yet on the point with classical methods, it is a path to a new research direction.

8 CONCLUSION

With the availability of large volumes of geographic data, developing neural models for geographic area similarity learning is a relevant research direction and graph representation is a very powerful and intuitive way to encode geoinformation.

This paper proposes approaches for the problem of vertical image research and retrieval from a new side: we transform the semantic information into a connected graph. We create an original dataset associated with a novel deep learning-based method to learn geo graph representations across time. The proposed algorithm is currently outperformed by the classical methods, but in contrast to them, it is robust to the presence of the noise in the attributes, which makes it useful in a real-world scenario, such as research and retrieval of automatically segmented and vectorized aerial images or even a correspondence search in different databases. Besides, the proposed method can be directly used to learn the embeddings for any attributed graph similarity problem.

There are still many interesting challenges to resolve, for example, to improve the efficiency of the matching models to achieve the graph kernels accuracy, study different matching architectures, adapt the GCN capacity to graphs of different sizes, and applying these models to new application domains. The graph models with attention can intuitively work well in the aimed application and we plan to adopt an attention mechanism in the future. Another possible direction is the creation of the optimal graph representations which can lead to the best retrieval results. Finally, on the experimental part, we plan to experiment further with different splitting schemes to estimate the bias introduced by splitting train, validate, and test sets according to the year. This work can spur further research in geographical graph matching and provides the first benchmark.

ACKNOWLEDGMENTS

This work is supported by ANR, the French National Research Agency, within the ALEGORIA project, under Grant ANR-17-CE38-0014-01.

REFERENCES

