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Abstract

In this paper, a new density formulation for free surface simulations using

SPH is presented. This new approach is applicable to surface-tension driven

free surface flows with strong topological changes. The density is corrected

for each particle by analytically calculating the missing volume of the support

domain. This calculation depends on two parameters: the local curvature

and the distance of each particle to the free surface. This method was val-

idated and compared with the density evolution method for two test cases:

the square droplet and the Rayleigh-Plateau instability. It shows more stable

results and a better representation of the free surface.
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Nomenclature

a Acceleration (m/s2)

C Correction coefficient

cs Speed of sound (m/s)

F ν Viscous force (N/m3)

F s Surface tension force (N/m3)

g External body acceleration (m/s2)

h Smoothing length (m)

k Curvature (1/m)

m Mass (kg)

n Number of time steps

~n Normal vector

P Pressure (Pa)

r Position (m)

Rc Cut-off distance (m)

t Time (s)

T Dimensionless time

v Velocity (m/s)

V Volume (m3)

δs Surface delta function

δt Time step (s)

γ EOS coefficient

ν Dynamic viscosity (Pa.s)

ρ Density (kg/m3)

ρ0 Reference density (kg/m3)

σ Surface tension coefficient (N/m)

3



1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a mesh-free Lagrangian nu-

merical method that was first introduced independently in 1977 by Lucy [1]

and Gingold and Monaghan [2] to solve astrophysical problems. Since 1977,

the SPH method has been developed and improved significantly to model a

wide range of problems, especially in fluid dynamics. This method models a

continuous fluid by discretizing it with a series of fluid particles that move

through space and time. The continuity of the fluid and its properties are

recovered by the spatial convolution of the physical properties of the particles

by a smoothing kernel function.

For free surface flows, the standard SPH approximations suffer from the

lack of full support. This mainly affects the density estimation and, conse-

quently, potential pressure oscillations. Many techniques were proposed in

the literature to overcome this problem.

The first attempt to apply SPH to free surface flow was introduced by

Monaghan [3] for the simulation of wave run-up and breaking in shallow wa-

ter. Monaghan used the continuity equation to calculate the change rate of

density as a function of the velocity gradient. He also introduced the XSPH

velocity variant algorithm to improve the particle distribution. In XSPH,

the velocity of each particle is modified to take into account the average ve-

locity of all nearby particles. A second common approach to smooth out the

pressure oscillations is to apply a density filter. Colagrossi and Landrini [4]

applied a periodic re-initialization of the density field based on the Moving
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Least Squares Approach (MLS) proposed by Belytschko et al. [5] and Dilts

[6]. This proposed kernel correction ensures a consistent interpolation of the

density field. Bonet and Lok [7] considered this kernel correction unsuitable

for explicit schemes. Instead, they proposed a simpler correction of the den-

sity field by considering a constant correction instead of a linear one or what

is known as the Shepard filter. These density corrections methods should

be applied every n time steps, where n is typically chosen between 20 and

50. Bonet and Lok [7] also introduced another correction technique based

on the modification of the kernel gradient by a correction matrix. Various

schemes for applying the kernel gradiant correction can be found in the liter-

ature [8, 9]. A combination of these two techniques, i.e. the constant kernel

correction and the kernel gradient correction, is also possible. Furthermore,

Molteni and Colagrossi [10] and Ferrari et al. [11] introduced an artificial

density diffusion term to smooth out the numerical noise of the pressure field.

The intensity of this numerical correction is to be defined according to the

problem at hand. More recently, Seo et al. [12] proposed to correct the den-

sity of each particle based on shape functions adopted from the interpolation

scheme of FEM. Several review papers discussing free-surface flows in SPH

have been published, amongst other [13, 14].

All these procedures give good results, some of them are more suitable

than the others depending on the application. However, these corrections can

be insufficient when dealing with surface tension force. In this case, the force

should be applied on surface particles at each time step, thus it is important

to estimate the density of these particles accurately.
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For applications where the surface tension force is not the dominant force,

Calderon et al. [15] developed very recently a geometrical formulation that

improves the Shepard correction coefficient. In their work, the dimensional-

ity of the problem is reduced by defining the kernel in such a way that the

volume integral is cast into a surface integral. Despite the promising results,

this method still contains complex and computationally expensive numerical

evaluation [16].

In this work, we propose a new density evaluation method. The idea

behind this method is to calculate analytically a coefficient that represents

the weight of the missing particles from the support domain and use it to

correct the density summation for particles near the free surface. This new

correction factor depends on the distance to the surface as well as on the

curvature of the free surface. A variant of this method has originally been

proposed by Herant [17] and also used by Vanhala and Cameron [18] in or-

der to implement boundary conditions in cases where boundaries are only

used for confinement. To our best knowledge, this method has never been

extensively described in the literature and never been used to simulate free

surface flows with surface tension.
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2. SPH governing equations and numerical model

In the Lagrangian description, the Navier-Stokes equations read as

dρ

dt
= −ρ∇ · ~v (1)

and
d~v

dt
= ~g +

1

ρ
[−∇P + F ν + F s] (2)

where P and ~g are the material pressure and body force, respectively. F ν

denotes the viscous force and F s is the surface tension force. In weakly

compressible SPH, the pressure is related to the density by means of an

Equation-Of-State (EOS)

P =
ρ0c

2
s

γ

[(
ρ

ρ0

)γ
− 1

]
(3)

The exponent γ is usually taken equal to 7 for water. The artificial sound

of speed cs is estimated based on a scale analysis of the Navier-Stokes equa-

tion presented by Morris et al. [19].

The SPH method is based on the discretization of the domain with a set of

particles used to interpolate continuous field functions. The contribution or

weight of each particle is determined by a kernel function. The value of any

field function f at a position r can be estimated according to the following

summation form

f(~r) ≈
N∑
j

mj

ρj
f(~rj)W (|~r − ~rj|, h), (4)
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where mj and ~rj are the mass and position of particle j, respectively. W

represents the weighting kernel function with the smoothing length h.

Here, we use the cubic spike kernel function with a compact support of

3h. We prefer this kernel for its stability against compression [20] and it has

the advantage of being a one piece function which simplifies the analytical

calculation of the correction factor C, defined later in Section 3.

Wij =

 α(1− r
3h

)3 if r
h
≤ 3

0 otherwise
(5)

with

α =


2
3h

dim=1

9
10πh2

dim=2

15
27πh3

dim=3

(6)

Various SPH formulations can be obtained depending on the assumptions

and purpose of the simulation [21]. In our study, we used the formulation

proposed by Adami [22]. The momentum equation is written as

d~vi
dt

=
1

mi

∑
j

−(V 2
i + V 2

j )

[
p̃ij ~∇Wij +

2νiνj
νi + νj

~vij
rij

∂Wij

∂rij

]
+
~F
(s)
i

mi

(7)

where V and ν are the volume and dynamic viscosity of each particle, re-

spectively. ~vij = ~vi − ~vj is the relative velocity between particles i and j

and ~rij = |~ri − ~rj| is the distance between the two particles. ~F
(s)
i is the sur-

face tension force of particle i, and p̃ij is the density-weighted inter-particle
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averaged pressure

p̃ij =
ρipj + ρjpi
ρi + ρj

(8)

In the present work, the Continuum Surface Force (CSF) approach is used

to model the surface tension force. This approach was initially proposed by

Brackbill [23] and then extended by Morris et al. [24] to be applied in the

framework of SPH. The surface tension force is expressed as a volumetric

force applied only on particles close to the interface

~F (s) = σk~nδs (9)

Here, δs is the surface-delta function used to smooth the surface tension

force over a band of particles near the free surface, ~n is the normal vector

and k is the curvature. In general and for this work, it is taken equal to the

norm of the color gradient factor.

Due to the lack of full support near the free-surface, additional correc-

tion should be applied to accurately estimate the normal direction and the

curvature of the interface. In this work, the correction matrix for the kernel

gradient [7] is used only for the calculation of the local normal vector and

the curvature is estimated following Sirotkin et al. [20]. The full details for

the surface tension force can be seen in [20].

For single phase simulation, the color function of all liquid particles in
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the bulk is equal to c0j = 1. The smoothing of the color function gives

ci =
∑
j

mj

ρj
c0jWij (10)

The value of the smoothed color function ci is theoretically equal to 1 for

particles in the bulk with a full kernel support. Contrary, close to the free

surface the number of neighbouring particles decreases and thus the value

of ci will also decrease. In general, a threshold value of 0.9 is defined for

detecting surface particles. However with this method voids inside the fluid

phase can be detected as free-surface, to avoid this problem a more accurate

surface tracking algorithms was used. The cover-vector technique was pro-

posed by Barecasco et al. [25]. Each particle i is represented by a sphere

and has a cover vector defined by : ~bi =
∑

j
~rij
||~rij || . For detecting surface

particles, a cone of angle θi (threshold angle) is considered around each bi. If

at least one of the neighbouring particles j is inside the cone, then particle

i is not considered as a surface particle, otherwise particle i belongs to the

free surface. The value of θi plays an important role in boundary particle

detection, it is usually chosen equal to π
3
.

Once the surface particles are detected, the normal vector ni can be ex-

pressed as the gradient of the color function : ~ni = ∇ci
|∇ci| . To overcome the

problem of lacking full support for free-surface flows, the correction matrix

to adjust the kernel gradient [7], can be used.
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For each particle i, the correction matrix is defined as

Li =
∑
j

Vj∇Wij ⊗ ~rij (11)

and the corrected kernel gradient is expressed as follows

∇W̃ij = L−1i ∇Wij (12)

In SPH, the local curvature for each particle is calculated as the divergence

of the normalised normal vector as follows

ki =
∑
j

( ~nj − ~ni).~∇W̃ij (13)

Furstenau et al. [26] found that equation 13 overestimates the curvature

by almost a factor of 2 in 3D simulations. To overcome this problem, they

calculated the mean curvature based on a local coordinate system. First, the

global curvature tensor is calculated by

Ξij =
∑
j

min(Ri, Rj)( ~nj − ~ni)⊗∇W̃ij (14)

Then, this global curvature tensor is rotated into the local coordinate system

as follows : Ξkl = T TkiΞijTjl. The metric T is calculated as the scalar product

of the basis vectors Tij = Gi.Lj, where G is the global basis vectors which

form a unity matrix and L = (~n, t1, t2), with t1 and t2 being two tangent

vectors. After the transformation, the 3D matrix is reduced to a 2D matrix
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by deleting the row and column related to the normal vectors, in this case

the first row and column. Then, the eigenvalues of the 2x2 matrix are calcu-

lated. They are considered as the principal curvature k1 and k2. The mean

curvature is finally obtained by k = 1
2
(k1 + k2).

The time integration scheme used in this work is the kick-drift-kick scheme

also known as the velocity Verlet algorithm used by Monaghan [21]. It starts

with the prediction of the intermediate velocity

~v(t+
1
2
dt) = ~v(t) +

1

2
δt~a(t). (15)

Then, the position is updated by

~r(t+dt) = ~r(t) + δt~v(t+
1
2
dt). (16)

The new density and forces are calculated at this new position, the accel-

eration is deduced from Newton’s second law of motion. Finally the velocity

is updated by

~v(t+dt) = ~v(t+
1
2
dt) +

1

2
δt~a(t+dt). (17)

For stability reasons the time step δt should be limited. To satisfy all the

conditions, the minimum of these four time steps is used [24]
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- CFL condition

δt ≤ 0.25
h

cs + vref
(18)

- Surface tension condition

δt ≤ 0.25

[
ρh3

2πσ

]1/2
(19)

- Viscous diffusion condition

δt ≤ 0.125
ρh2

ν
(20)

- Body force condition

δt ≤ 0.25

[
h

g

]1/2
(21)

3. New density formulation

The novelty in this work is a new version of the density summation taking

into account the proximity of a free surface by algebraic correction .

From the different density correction techniques cited above, the Shep-

ard density filter is the most common one. In this case the density will be
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calculated using the density evolution formula

dρi
dt

=
∑
j

mj~vij · ~∇Wij (22)

Then, the density is corrected every n time steps by the Shepard summa-

tion as follows

ρi = mi

∑
jWij∑

j VjWij

(23)

Note, equation 23 can be written in the form of a corrective factor Ci,

which will depend in this work on the distance of each particle to the free

surface and the local curvature.

ρi = Ci mi

∑
j

Wij (24)

If we consider only the geometric aspect, then the correction coefficient

C can be expressed as follows

Ci ≈
V SD

VSD − V empty

(25)

where V SD and V empty are the volume of the support domain of particle i and

the empty volume represented by the missing particles at the free surface,

respectively. Figure 1 represents the support domain area and empty volume

of a particle at a distance d from the free surface. The support domain is

represented by the circle of radius Rc and the empty volume is represented

by the hatched moon. The curvature of the free surface is equal to k.
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Figure 1: Representation of the empty volume (hatched moon) for a particle at a
distance d from the free surface.

In fact, the impact of missing neighbours on the density calculation de-

pends on their location. The impact of removing a distant neighbour is much

smaller than the impact of a closer one. Therefore, the weight of each miss-

ing particle, represented by the kernel function, should be taken into account

when expressing Ci. V empty is modified to
∫
V empty

W (r)dV and V SD is mod-

ified to
∫
V SD

W (r)dV which is the integral of the kernel function over all the

support domain. Equation 25 will be then modified to

Ci =
1

1−
∫
V empty

W (r)dV∫
V SD

W (r)dV

(26)

Because the kernel functions are normalized, the integral of W over all

the support domain should theoretically be equal to 1. The integral over the

empty volume can be expressed as

∫
V empty

W (r)dV =

∫ Rc

d

W (r)2π(r − I)dr (27)

where I represents the distance between the center and the intersection of
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the two spheres. By writing I as a function of 1/k, r and d, we obtain

I = −
r2 + ( 1

k
− d)2 − ( 1

k
)2

2( 1
k
− d)

(28)

Finally, by substituting equation 28 in equation 27, we obtain

∫
V empty

W (r)dV =

∫ Rc

d

W (r)2πr

[
r +

r2 + ( 1
k
− d)2 − ( 1

k
)2

2( 1
k
− d)

]
dr (29)

For 3D simulations, the integral over the empty volume can be expressed

as a function of δ = d
h

and % = 1
|k|h . d represents the distance between par-

ticle i and the nearest surface particle and k is the curvature of this surface

particle. The kernel function used in this case is the Spike with Rc = 3h

(Equation 5). Two cases must be considered.

For positive curvatures,

∫
V empty

W (r)dV =
(δ − 3)5(−4δ2 + 3δ + 28δ%+ 42%+ 27)

20412(δ − %)
, (30)

and for negative curvatures

∫
V empty

W (r)dV =
(δ − 3)5(−4δ2 + 3δ − 28δ%− 42%+ 27)

20412(δ + %)
. (31)

The same scheme can be used in 2D simulations by integrating over a

surface instead of a volume. However, the analytical solution for surface

integrals is surprisingly not as simple as for 3D cases, thus numerical in-
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tegration is necessary in these cases. The same problem was reported by

Hérant [17] although he used another kernel function for the integration. We

limit our study here to 3D simulations.

It should be noted that when δ tends to or is bigger than %, equation

30 can diverge. Because the second derivative of the color function is very

sensitive to the particle distribution, the curvature k is limited to DIM−1
3h

. In

3D, kmax = 2
3h

. Plus, the maximum value of δ is defined by the radius of the

support domain, which is in this case equal to 3. This means that :

0 < δ < 3

2

3
< % <∞

To avoid this problem, the correction coefficient Ci is only calculated for

values of % bigger than the maximum value of δ. In this case, for values

of % below 3, the standard Shepard summation (Equation 23) is used for

the density calculation. The implementation of this correction technique is

detailed in algorithm 1.
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Algorithm 1 Density Computation

At t=0 isnitial calculation of ρi with equation 23
for all particles i do

Define surface particles
Calculate curvature ki

end for
for all particles i do
if particle i is a surface particle then

Set δ = 1
2

Set % = 1
|ki|h

else
Find the nearest surface particle j
Compute the distance d = dij + h

2

Set δ = d
h

Set % = 1
|kj |h

end if
if % > 3 then

Compute Ci with equation 26 and ρi with equation 24
else

Compute ρi with equation 23
end if

end for
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4. Numerical validation

4.1. Cubic droplet

As first test case, we analyse is the transformation of a cubic droplet into

a spherical droplet. The main purpose of this example is to test the new

correction coefficient for estimating the density at the free surface. For this

example, an initial cube of lx = ly = lz = 0.6 with a total number of 3375

particles is considered. Dimensionless properties were assigned to the fluid

phase, see table 1. The spherical droplet formed after t=2 is presented in

figure 2 for three different methods of density evaluation.

Table 1: Properties of the fluid phase

ρ ν σ
1 0.2 1

Figure 2: Particle position at t=2: a) Density evolution (equation 22) b) Density
evolution with Shepard filter (n=30) and c) New correction based on curvature.

The Young-Laplace law gives the theoretical pressure inside the droplet

at equilibrium

P =
2σ

Rdroplet

=
2σ

L

(
4π

3

)1/3

. (32)
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Figure 3: Pressure inside the droplet as a function of the radius

Figure 3 presents the pressure inside the droplets as a function of the

radius (all particles are considered). With the new method, the homogene-

ity of the density field is strongly improved. However, we can still see the

effect of the initial square shape on the pressure profile, where we see a pres-

sure variation in the regions around the corners which is mainly a geometric

effect due to the initial particle stacking. By comparing the results of the

three methods, it can be found that the new method outperforms the ex-

isting approaches for particle distribution at the interface. Figure 4 shows

the variation of the average pressure inside the droplet as a function of time.

The problem with applying the Shepard filter every n time steps is that the

density of the surface particles can change instantaneously, which results in

strong pressure fluctuations. As a consequence, the drop is unstable and

keeps expanding. Accordingly, the pressure inside the droplet keeps increas-

ing, see the corresponding curve (Evolution + Shepard) in figure 4. It should

be noted that this new calculation method does not add much computational

cost for the simulations because the curvature is already calculated for the

surface tension force. It was found that the computational cost is increased
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by around 5% compared to the density evolution and by 2% compared to the

density evolution with the Shepard summation.

P/
P

La
p

la
ce

0

0.5

1

1.5

2

Time
0 0.5 1 1.5 2 2.5 3

Density evolution
Density evolution+Shepard
New density

Figure 4: Average pressure inside the droplet as a function of time

Table 2 shows the percentiles of the number of particles as a function of

pressure, for a better comparison between the density calculation methods.

It can be seen that with the new method, the pressure variation is smaller,

with almost all the particles having a pressure variation within 30% of the

theoretical Laplace pressure.

Table 2: Fraction in (%) of particles having a pressure within a certain range around
PLaplace

Method
Pressure

P ±1% P ±10% P ±30% P ±50%

Density evolution 1.066 25 60 100
New method (L/h = 15) 20 54 91 100
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4.2. Rayleigh Plateau instability

We consider the Rayleigh-Plateau instability for validation of our method

in dynamic situations. The test case simulation was first presented by Dai

and Schmidt [27] using a new moving mesh algorithm and then reproduced

by Olejnik and Szewc [28] using SPH with two phases. For this simulation,

we consider a fully periodic cubic (L×L×L) domain containing in its center

a liquid column of length L and a radius r = L/10. An initial perturbation

is imposed by a sinusoidal velocity field applied to the liquid column in its

longitudinal direction

ux = u0 sin(
2πx

L
). (33)

Because the particles are placed on a Cartesian grid and do not form

a perfect cylinder, we let the system first relax by imposing a high viscos-

ity. Then, we switch to the real properties of water before applying the

velocity perturbation. The dimensionless numbers describing this case are

the Reynolds number (Re=18) and the Weber number (We=1.4) calculated

based on u0. The dimensionless time is defined by

T =
t√
ρrD0
σ

. (34)

The simulations have been performed with a total number of fluid parti-

cles equal to 18000, which corresponds to h = L/82. Figure 5 shows several

particle snapshots at different times for the classical and the new approach.

Clearly, the new method shows more stable results compared to the classic

density evolution with the density filter. It should be noted that the two pic-
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tures at the last row correspond to the particles positions after the break-up.

With this new density formulation, only 0.005% of the total particle number

disintegrate (as compared to 1.2% for the standard method of the density

evolution with the Shepard filter). Because the break-up does not occur at

the same moment for both cases, the time T is not the same. The break-up

time is defined as the time when the ligament diameter between droplets is

composed of less than two particles.

We can clearly see from figure 5 that the break-up with the new method

is much smoother. For the first case the unstable flying particles are seen at

the moment of the break-up. In fact, the density evolution with no additional

correction can accumulate errors with time. However, the additional main

issue of this method, for this specific test case with fragmentation, is that

the density could change drastically when a bulk particle becomes a surface

particle, thus creating instabilities.

The correction coefficient for the Shepard technique was compared with

the new correction coefficient. Figure 6 presents these two correction coeffi-

cients for surface particles as a function of particle position along the column

axis. The main difference is that this coefficient is more dispersed in the case

of the Shepard correction compared to the new technique presented in this

article.
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Figure 5: Particle position at different time: a) Density evolution and Shepard filter
(n=30) and b) New correction based on curvature.
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Figure 6: Correction coefficients as a function of the position of the particles along the
jet axis

To compare both methods, the SPH simulations have been performed for

different resolutions. Table 3 presents the number of flying particles for each

case. The result shows that the new method presents stable results even for

simulations with a lower resolution.

Table 3: Number of ”flying” particles for each method as a function of the system
resolution

Method
Resolution (L/h)

55 66 82

Density evolution + Shepard summation 30 (0.6 %) 96 (1 %) 217 (1.2%)
New method 4 (0.08 %) 1 (0.01 %) 1 (0.005 %)

For a quantitative comparison, the relative disturbance size ( rmax(t)−r0
r0

)

as a function of time is presented in figure 7 for the highest resolution. The

results show that the growth dynamics for the two methods agree well with

the reference data presented by Dai and Schmidt, even though the break-up

time is not the same. Furthermore, the droplet diameter can be estimated

25



from the volume of the liquid within the disturbance wavelength λ [29].

d3droplet = 6λR2
jet (35)

For both cases, the droplet diameter after the break-up agrees well with

the theoretical one, with an error around 5%.
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Figure 7: Disturbance growth process in time: Comparing the growth rate as a function
of time with the reference data from Dai and Schmidt

This new method proved its efficiency for simulating free surface flows

undergoing strong topological variations under the effect of surface tension

force. We found the method to work best when the interface is well resolved

with smoothed shapes. In fact, the density calculation presented above de-

pends significantly on the curvature and the distance of each particle from

the free surface. Thus, these two parameters must be calculated with great

precision in order to have the desired output result.
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5. Conclusion

This paper presents a new method for estimating the density for free sur-

face simulations dominated by surface-tension force in SPH. The main idea

is to correct the density by calculating the missing volume of the support

domain of each particle taking into account the local curvature and the dis-

tance from the free surface.

This technique was successfully applied to 3D test cases with free-surface

flows and surface-tension effects: Square Droplet and Rayleigh-Plateau in-

stability. The results for the square droplet show that the current method

can accurately predict the density of free surface particles. Numerical results

of the Rayleigh-Plateau instability show that the stability of the break-up of

a liquid column is improved with this correction technique. This method can

be easily extended to simulate other situations with jet break-up and liquid

atomization.

The new correction factors is strongly dependent to an accurate curvature

prediction, which still gives room for future improvement especially in terms

of robustness.
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A novel density calculation method is developed for free surface flows in SPH

A geometric based coefficient is proposed for correcting the density near the

free surface

The present method is found to increase the stability for surface tension

driven simulations




