
HAL Id: emse-03609291
https://hal-emse.ccsd.cnrs.fr/emse-03609291v1

Submitted on 15 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Unifying Framework for Agency in Hypermedia
Environments

Victor Charpenay, Tobias Käfer, Andreas Harth

To cite this version:
Victor Charpenay, Tobias Käfer, Andreas Harth. A Unifying Framework for Agency in Hypermedia
Environments. 9th International Workshop, EMAS 2021, May 2021, Virtual Event, France. pp.42-61,
�10.1007/978-3-030-97457-2_3�. �emse-03609291�

https://hal-emse.ccsd.cnrs.fr/emse-03609291v1
https://hal.archives-ouvertes.fr

A Unifying Framework for Agency in
Hypermedia Environments

Victor Charpenay1[0000−0002−9210−1583], Tobias Käfer2[0000−0003−0576−7457], and
Andreas Harth3[0000−0002−0702−510X]

1 Laboratoire d’informatique, de modélisation et d’optimisation des systèmes
(LIMOS), Saint-Étienne, France
victor.charpenay@emse.fr

2 Institute AIFB, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
tobias.kaefer@kit.edu

3 Chair of Technical Information Systems, Friedrich-Alexander University (FAU)
Erlangen-Nuremberg, Nuremberg, Germany

andreas.harth@fau.de

Abstract. One of the emerging trends in engineering multi-agent sys-
tems (MASs) is to use the Web as an environment. On the Web, hy-
permedia is the guiding principle of agent perception and action. Web
standards allow agents to have a single uniform interface to their envi-
ronment, be it real or simulated. Most recent proposals for hypermedia
MASs tend, however, to introduce a coupling between agents and their
environment.

This paper introduces a framework based on Semantic Web technologies
to formalize interactions between agents and a hypermedia environment.
Semantic Web technologies and, more specifically, Web ontologies guar-
antee interoperability on the Web and maximize uncoupling between
components. We show how existing ontologies can be used to make ex-
isting MAS prototypes fit our framework.

Our framework formalizes state transfer, the guiding principle of agent-
environment interactions in hypermedia, with respect to a reference for-
malism originally introduced by Genesereth and Nilsson. We also show
the equivalence between the two in the paper, under certain conditions.

Keywords: Semantic Web · Linked Data · Hypermedia · Multi-Agent
System

1 Introduction

“On the Internet, nobody knows you’re an autonomous agent.” The quote4 em-
phasizes the fact that Web servers have no means to distinguish between human
agents and autonomous agents (or ‘bots’) that perform request according to a

4 originally about dogs, from a Peter Steiner cartoon published in The New Yorker in
1993.

2 V. Charpenay et al.

predefined plan. Conversely, agents have no means to assert the origin of a re-
source, whether it was e.g. created by another agent in relation to physical world
events or simulated/forged.

Generally speaking, the architecture of the Web provides a uniform informa-
tion space that agents can manipulate, through hypermedia [12]. As such, the
Web has been seen as a good candidate architecture for building multi-agent
systems (MASs) since at least the 2000s [10]. At the time, it was envisioned that
autonomous agents could browse the Web as humans do and perform informed
actions, such as buying commercial goods online and negotiating prices. To that
end, preliminary work on Web ontologies and machine understanding started,
to eventually be standardized by the World Wide Web Consortium (W3C) as
Semantic Web technologies: RDF, SPARQL and OWL, the Web Ontology Lan-
guage. In 2010, James Hendler and Tim Berners-Lee underline the importance
of Semantic Web technologies to build “social machines” on the Web [11].

Meanwhile, Semantic Web technologies have evolved and deviated from the
original vision of autonomous Web agents. However, the Semantic Web is now
entering novel domains of applications that revive the need for agent-oriented
programming. The Web of Things5 (WoT) and the Social Web6, as standardized
by the W3C, are two such domains. The Web of Things allows for new forms
of industrial control that tend towards self-organization, a characteristic that is
often associated with agent-based modeling [21]. The Social Web allows for uni-
form human-to-human and human-to-machine interactions, e.g. with chatbots.
Most W3C standards for WoT and the Social Web reuse and extend Semantic
Web technologies, narrowing the gap between the original vision of autonomous
agents on the Web and available technologies.

In the MAS literature, various research prototypes with WoT and social
Web applications have been recently proposed, in particular among the work-
shop series on Engineering MASs (EMAS) [18,4,5,6]. However, most of these
proposals do not use Semantic Web technologies (only one proposal does [5],
although another includes Linked Data—a subfield of the Semantic Web—as
future work) [18].

Not using Semantic Web technologies such as RDF and OWL7, has a direct
consequence: agents can neither be developed independently from each other,
nor can their environment (which includes e.g. WoT ‘things’ or a social network-
ing platform) be developed independently from them. Such coupling between
agents and their environment go against the promise of hypermedia of unifying
information management. Yet, as we will see in Sec. 2, if one strictly applies
hypermedia principles to MAS architectures, certain architectures with direct
agent-to-agent interactions may not be realizable on the Web.

In this paper, we introduce a unifying framework, rooted in RDF, for agents
situated on the Web. This framework applies the usual Semantic Web abstrac-

5 https://www.w3.org/WoT/
6 https://www.w3.org/Social/
7 or, more generally, not providing guarantees as to shared message semantics across

agents in MAS prototypes.

https://www.w3.org/WoT/
https://www.w3.org/Social/

A Unifying Framework for Agency in Hypermedia Environments 3

tions (RDF triples, resources and datasets) to MAS architectures, to maximize
decoupling between system components. We make no assumption as to agent
architectures but rather characterize interactions between agents and their (hy-
permedia) environment in abstract terms. To that end, we base our framework
on a formalism first introduced by Genesereth and Nilsson [8], which is, to the
best of our knowledge, the most commonly accepted formalism of the sort. We
show how to reconcile hypermedia principles, a subset of the Representational
State Transfer (REST) principles [7], and MAS architectures, such that any clas-
sical MAS (as defined by Genesereth and Nilsson) has an equivalent hypermedia
MAS.

In the next section (Sec. 2), we analyse recent EMAS prototypes with re-
spect to the REST principles and identify potential limitations to address in
our formalism. We then move on to the main contribution of the paper: a MAS
formalism based on RDF (Sec. 3) and evaluate the feasability of implementing
MASs according to our framework, by providing examples of RDF and OWL
ontologies that the reviewed EMAS prototypes could leverage (Sec. 4). We con-
clude the paper in Sec. 5.

2 Related Work

2.1 Cyber-Physical Systems on the Web & Hypermedia

Recent research initiatives demonstrate renewed interest for topics at the inter-
section of autonomous agents and the Web. A workshop on hypermedia MASs
took place at TheWebConf in 20198, followed by a Dagstuhl-Seminar on the
same topic in 20219.

Papers emanating from the EMAS series of workshops confirm this trend.
The Web appears in three papers, either as a scalable distributed system made
of Web services [18,4] or as a uniform interface to cyber-physical systems [5]. In
all three papers, WoT is invoked as a new domain of application for autonomous
agents. A fourth paper even makes use of WoT principles without naming them:
its prototype indeed involves controlling physical devices via a Web API [6].

Two of these EMAS prototypes insist on hypermedia as the main distinctive
feature of their approach [18,5]. Ciortea et al. insist on the fact that hypermedia
helps agents “discover at runtime other entities in a MAS and the means to
interact with those entities”. Runtime discovery is made possible by the inter-
linking of Web resources (via hyperlinks) such that agents can navigate from one
resource to the other. Web resources should further include pointers to potential
actions (via Web forms). These hypermedia design principles are part of the
REST architectural principles, which have conditioned much of the architecture
of the Web itself [7]. The recent WoT standards published by the W3C [16,13]
acknowledge the importance of hypermedia on the Web and define interactions
between a ‘thing’ (a Web server) and a WoT ‘consumer’ (a Web client) in terms
of links and forms.
8 https://www.hyperagents.org/
9 https://www.dagstuhl.de/21072

https://www.hyperagents.org/
https://www.dagstuhl.de/21072

4 V. Charpenay et al.

2.2 Autonomous Agents and Representational State Transfer

The benefits of hypermedia as a mechanism unifying agent interactions only
hold if the links and forms embedded in Web resources have shared semantics
among agents, as underlined in introduction. RDF, the Resource Description
Framework, allows agents to discover the semantics of hyperlinks at runtime as
well, by making link relation types themselves dereferenceable resources. As a
result, every statement about a Web resource is a hyperlink (an RDF triple),
which creates an interdependency between the representation of a resource (as
a set of RDF triples) and its location on the Web (via a URI).

This interdependency between representation and location on the Web makes
REST an important requirement in Semantic Web applications. In particular,
the REST constraint that a hypermedia system has to be layered ensures the
proper addressing of semantic resources by so called ‘origin servers’. This con-
straint, known as the ‘layered system’ constraint is one of the six architectural
constraints of REST. It implies that “the large-grain data flows of hypermedia
interaction can each be processed like a data-flow network, with filter compo-
nents selectively applied to the data stream in order to transform the content as
it passes” [7]. In REST, there is a sharp distinction between origin servers, which
provide data at one end of the data stream, and ‘user agents’, which collect data
at the other end of the stream.

In a hypermedia MAS, however, agents play both roles: they may in turn be
origin servers and user agents. As a result, the hypermedia system would not be
layered anymore, wherever data flows give form to cycles among components.
Fig. 1 shows the different data flows that have been implemented in the four
EMAS prototypes previously mentioned. In the two prototypes featuring Web
services [18,4], an agent is a mixed component that includes both a server con-
nector (for perception and agent-to-agent interactions) and a client connector
(for action), enabling direct interactions with other agents (Fig. 1a). In the pro-
totype involving a Web API to physical devices [6], agents have a pure client
role while servers are purely reactive components translating remote control into
physical phenomena. In this application, servers are thus genuine origin servers
(Fig. 1b). Finally, the prototype by Ciortea et al. [5] does include origin servers
but it also uses WebSub [9] for agents to perceive their environment. WebSub
requires their agent platform to manage a Web server to receive notifications
from a WebSub hub (Fig. 1c).

Among the three patterns observed here, only one meets the layered system
constraint (Fig. 1b). In the two other patterns, there is no obvious distinction
between an agent space and an environment space among system components.
Indeed, if one considers an entire system component as an agent, then some
hypermedia agents are not strictly situated in some environment (due to the
absence of origin servers). Conversely, if one considers any RDF data as being
part of the environement, system components mix both agent behavior and
environmental resources. The word ‘servient’ emerged during standardization
work on WoT, as the contraction for ‘server and client’, to characterize such
system components [15].

A Unifying Framework for Agency in Hypermedia Environments 5

Agent
S C

Agent
S C

(a) Direct agent-to-agent interactions

Agent
C

Agent
C

Origin
Server

S

(b) Interactions with origin server

Agent
S C

Agent
S C

Hub
S C

(c) Interactions with hub

Fig. 1: Graphical representation of agent interactions on the Web; rounded rect-
angles are components, circles are component connectors (S: server, C: client)
[7]; hatched components are purely reactive components

Because of this ambiguity, there is no obvious definitions for perception and
action on RDF data in the presence of interaction cycles. In this paper, we intend
to bridge that gap through a single abstract formalism that defines perception
and actions of agents with respect to a hypermedia environment defined as an
RDF dataset. We consider the following requirement: while preserving the usual
RDF abstractions used in the Semantic Web literature, our formalism shall cap-
ture all MAS architectures, including those involving servients.

3 Formalism

The main contribution of the paper is a hypermedia MAS formalism, in which
the environment and agent spaces are strictly separated, to maximize uncou-
pling. The formalism we now present will be evaluated in Sec. 4 by showing that
existing EMAS prototypes could be re-implemented with equivalent functionali-
ties but with existing W3C standards for representing agent resources (including
Linked Data Platforms and ActivityStream, both relying on Semantic Web tech-
nologies).

3.1 Preliminaries

We start from a classical representation of agency (the ability of agents to act
on ther environment) as functions on environmental states and actions, bor-
rowed from Genesereth and Nilsson (chapter 13) [8] and Wooldridge (chapter
2.5) [22]. To the best of our knowledge, this representation has remained the
most widely known reference to study generic interactions between agents and
their environment, without making assumptions on agent architectures.

In the following, we define abstract structures for an environment, an agent
and a multi-agent system.

6 V. Charpenay et al.

Definition 1 (environment). An environment definition E is a tuple

E = 〈E, e0, A, do〉

where

– E is a set of states
– e0 ∈ E is an initial state
– A is a set of actions
– do : A× E → 2E is an effectory function

Note that function do maps to subsets of E rather than to elements of
E. This choice allows for non-deterministic actions on the environment, as per
Wooldridge’s definition of E .

Definition 2 (agent). A stateful (or hysteretic) agent definition A is a tuple

A = 〈P, I, i0, see, internalize, act〉

where

– P is a set of percepts
– I is a set of internal states
– i0 ∈ I is an initial internal state
– see : E → P is a sensory function
– internalize : I × P → I is a memory function
– act : I → A is a decision-making function

The definition above includes the basic components of an agent’s cognitive
loop: the agent perceives its environment, changes its internal state of mind
accordingly and then acts. When multiple agent are situated in the same envi-
ronment, they form a MAS.

Definition 3 (system). A multi-agent system definition S is a tuple

S = 〈E ,A1,A2, . . .〉

where

– E is an environment definition
– every Ai is an agent definition

Together, agents change the state of their environment over time. We model a
MAS run as a sequence of environmental states obtained through agent actions.
Agent actions are themselves conditioned by what agents perceive and by their
internal state of mind. See Fig. 2a for an overview of how functions are chained
during a MAS run.

We now formally define MAS runs. In the following definition, we choose to
model time in the most abstract possible way, as a fully ordered set T of time
positions—a timeline—with lower bound tmin. We denote t− and t+ the (unique)
predecessor and successor of any point in time t ∈ T .

A Unifying Framework for Agency in Hypermedia Environments 7

Definition 4 (system run). Let T be a timeline. A sequence 〈et〉t∈T of envi-
ronmental states is a system run for S = 〈E ,A1,A2, . . .〉 if for all t ∈ T

et =

{
e0 if t = tmin

e ∈ do(act(it), et−) for some it, otherwise

and if for all t ∈ T and all Ai = 〈P, I, i0, see, internalize, act〉

it =

{
i0 if t = tmin

internalize(it− , see(et)) otherwise

With this definition, we choose to deal with potentially conflicting actions
between agents by assuming that no two actions can be executed at the same
time. A MAS can however be defined such that an agent keeps choosing the
same action as long as it does not see its effects. As a result, concurrent actions
are in fact serialized in an arbitrary order by the environment.

Note that in our definition, it may be equal to it− if the two successive envi-
ronment states are indistinguishable by the agent. In this modeling, perception
is instantaneous. An agent always internalizes a state as soon as an action occurs
(as soon as function do() is applied). We will see how a hypermedia MAS differs
in that respect.

3.2 Dataset, Operations

As discussed in Sec. 2, the Web can be seen as a single open environment, which
agents browse through hypermedia. A common abstraction for the Web is to
see it as an RDF dataset, i.e. as a set of labeled graphs, each identified with a
URI [3]. If nodes of these graphs are themselves URIs, an edge can then be seen
as a hyperlink, which agents can follow to discover more data.

This abstraction (which is a formalization of the Linked Data principles)
slightly alters the nature of perception by autonomous agents. If everything on
the Web is made of URIs, an agent may universally interpret Web resources.
URIs are indeed unambiguous. As a result, agent situatedness in a hypermedia
environment does not depend on the individual sensory capabilities of agents
but rather on the fact they may only retrieve a finite set of resources at a time.
In the following, we formally introduce the RDF abstraction for the Web and
redefine the function see() in the context of a hypermedia environment.

We first briefly introduce the RDF data model10: U and L are respectively
the set of (internationalized) URI resources and literals. UL = U ∪ L is the set
of Web resources. T = U × U × UL is the set of RDF triples. The elements of
an RDF triple 〈s, p, o〉 ∈ T are respectively called its subject, its predicate and
its object. The set of RDF graphs is G = 2T . Finally, U ×G is the set of named
graphs. The first element of a named graph is the name of the RDF graph given
as the second element.

10 we leave out ‘blank nodes’ in our definitions, for the sake of clarity.

8 V. Charpenay et al.

An RDF dataset is a set of named graphs. The Web is thus (at a given
time) an infinite set of named graphs d = {〈u1, g1〉, 〈u2, g2〉, . . .}. When an agent
performs a GET request on resource u1, what it gets as a response is g1. In the
definitions to come next, we will use the shorthand notation σu1(d) to denote
{〈u1, g1〉}. Moreover, we will denote O the set of operations to perform on Web
resources. O is defined as {GET, PUT, POST, DELETE} × U ×G.

As discussed above, perception in a hypermedia environment consists in re-
trieving a subset of the Web. We define the set of environmental states as D,
the set of all RDF datasets and the set of percepts as the set D′ ⊂ D of all finite
datasets. On this basis, we can now define a standard sensory function on RDF
datasets.

In a hypermedia environment, we only consider perception as resulting from
link traversal. On the Web, link traversal is initiated by the agent, not by the
server, via operations of the form 〈GET, u, ∅〉. We denote OGET the set of such
operations and define the function transfer : OGET ×D → D′ such that

transfer(〈GET, u, ∅〉, d) = σu(d)

The name ‘transfer’ gets its name from the REST architectural principles, which
are oriented towards a ‘state transfer’ from servers to clients.

Similarly to the transfer() function, we can define a standard effectory func-
tion based on operations. We define update : (O \OGET)×D → D such that

update(〈PUT, u, g〉, d) = d \ σu(d) ∪ {〈u, g〉}
update(〈POST, u, g〉, d) = d ∪ {〈u, g〉}

update(〈DELETE, u, g〉, d) = d \ σu(d)

This definition, along with that of transfer(), is aligned with the HTTP Graph
Store protocol, a W3C standard to manipulate RDF datasets over a REST
interface [17]. Operations with GET are said to be safe because they never lead
to any update in the environment.

While we’ve considered hyperlinks in the partitioning of D, there is another
important aspect of hypermedia that must be properly modeled as well: Web
forms. The environment should include forms, i.e. request templates to indi-
cate what operations are permitted in the environment. We can define another
function to map the state perceived by the agent to potential actions that the
environment offers or, in other words, affords. We define it as afford : D → 2O.

We now have everything at hand to redefine environments, agents and multi-
agent systems in a hypermedia context.

Definition 5 (hypermedia environment). A hypermedia environment Eh is
a tuple

Eh = 〈D, d0, O, transfer, update, afford〉

Note that the definition above defines a singleton, in the sense that there
exists only a single set D, a single set O, a single function transfer, etc. Only the
definition of d0 could arguably be defined on an application basis.

A Unifying Framework for Agency in Hypermedia Environments 9

Definition 6 (hypermedia agent). A hypermedia agent Ah is a tuple

Ah = 〈I, i0, internalize, act〉

where

– I, i0 are as per Def. 2
– internalize : I ×D′ → I is a memory function (on RDF datasets)
– act : I → O is a decision-making function (with respect to operations)

Definition 7. A hypermedia multi-agent system definition Sh is a tuple

Sh = 〈Eh,Ah,1,Ah,2, . . .〉

Fig. 2b gives a comparison with generic MAS in terms of function chaining.
The main difference is in the position of the sensory functions transfer() vs.
see(). By defining a shared function for perception, agents can all be situated in
the same open environment. The downside of the approach is that perception
becomes an action on its own: the decision-making function act() outputs both
safe operations (for state transfer) and unsafe update operations. Transfer results
from a (GET) request/response exchange between an agent and a server.

Definition 8 (hypermedia system run). Let T be a timeline. A sequence
〈dt〉t∈T of datasets is a hypermedia system run for Sh = 〈Eh,Ah,1,Ah,2, . . .〉 if
for all t ∈ T

dt =

{
d0 if t = tmin

update(act(it), dt−) if act(it) ∈ afford(dt−), for some it

and if for all t ∈ T and all Ah,i = 〈I, i0, internalize, act〉

it =

i0 if t = tmin

internalize(it− , transfer(act(it−), dt)) if act(it−) ∈ OGET

internalize(it− , ∅) otherwise

In this modeling, we assume that update() and transfer() are instantaneous.
Yet, one cannot build all MAS variants as hypermedia MASs. As discussed in
Sec 2, the notion of servient is however sufficient to have an equivalence between
classically defined MASs and hypermedia MASs.

3.3 Servients

In hypermedia systems, the situatedness of an agent is primarily conditioned by
the hypermedia controls (links and forms) it finds in the environment. Hyper-
media controls do constrain the perception and action range of the agent. Yet,
in the various prototypes we have reviewed in Sec. 2, the perception of agents
also depends on another factor: the resources it owns as a Web server. As a

10 V. Charpenay et al.

servient, an agent has full access to the resources it owns and, in particular,
it gets immediately notified whenever these resources are updated (by another
agent).

We now incorporate the notion of resource ownership to Def. 6. In the fol-
lowing definition, we use the shorthand notations δt as the difference dt \ dt−
and σR(d) as the union

⋃
u∈R σu(d).

Definition 9 (hypermedia servient). A hypermedia servient Ahs is a tuple

Ahs = 〈I, i0, R, internalize, act〉

where

– I, i0, transfer, internalize and act are as per Def. 6
– R ⊂ U is a set of resources owned by the agent

We also modify Def. 8 accordingly.

Definition 10 (hypermedia system run bis). A sequence 〈dt〉t∈T of datasets
is a hypermedia system run for Shs = 〈Eh,Ah,1,Ah,2, . . . ,Ahs,1,Ahs,2, . . .〉 if, in
addition to constraints of Def. 8, for all Ahs,i = 〈I, i0, R, internalize, act〉

it =

i0 if t = tmin

internalize(it− , transfer(act(it−), dt) ∪ σR(δt)) if act(it−) ∈ OGET

internalize(it− , σR(δt)) otherwise

The modification allows us to assert an equivalence between classical MASs
and hypermedia MASs, as formally expressed below.

Theorem 1. Let τ : E → D be a bidirectional transformation that maps every
arbitrary environmental state (Def. 1) to some RDF dataset (Def 5).

For every multi-agent system S, there is an equivalent hypermedia system
Shs. That is, for every run 〈et〉t∈T of S, there is an equivalent run 〈τ(et)〉t∈T of
Shs.

This equivalence only holds if servients are allowed in the hypermedia MAS.

3.4 Artifacts

Our formalism for hypermedia MASs is based on a generic abstraction for the
Web: the RDF data model. In practice, agents are likely not to recognize all URIs
they find in the environment. Rather, they would be programmed to recognize
specific Web ontologies, which specify the structure of resources through a vo-
cabulary and the potential actions available on these resources. To that end, the
two EMAS prototypes dealing with hypermedia environments [18,5] make use of
the CArtAgO meta-model [19]: resources e.g. with a certain content type, such
as the Hypermedia Application Language (HAL), or a certain data structure,
such as RDF triples with a specific vocabulary (EVE), are turned into software

A Unifying Framework for Agency in Hypermedia Environments 11

objects called ‘artifacts’, that agents use as proxies to manipulate the origin Web
resources.

In the context of a hypermedia environment, it is however not clear whether
artifacts should be part of the environment itself (i.e. modeled as resources) or
added to the formalism as their own kind of entity. In the former case, the notion
would be redundant with that of a Web resource, introducing again a coupling
between the environment and agent spaces.

Rather, we make the assumption here that artifacts are ‘translators’ between
datasets and operations, on the one hand, and more idiomatic representations of
states and actions, on the other hand. Artifacts would allow any existing agent
architecture to be used against a hypermedia environment. Formally, an artifact
can be modeled as a function that maps D to a higher-level state space (e.g. a
set of predefined beliefs) and a function that maps arbitrary actions (e.g. WoT
forms or social actions) to O. To be consistent with how CArtAgO is used in
practice, we also make artifacts stateful entities, as follows.

Definition 11 (artifact). An artifact (or proxy) definition is a tuple

P = 〈E′, A′, I ′, transfer′, update′, internalize′〉

where

– E′ is a set of proxy states
– A′ is a set of proxy actions
– I ′ is a set of proxy internal states
– transfer′ : D′ → E′ is a proxy transfer function
– update′ : A′ × I ′ → O is a proxy update function
– internalize′ : E′ × I ′ → I ′ is a proxy memory function

An illustration of the above definition is given in Fig. 2c. Our modeling is
consistent with the fact that artifacts are not autonomous agents. As proxies,
they do not include any act() function. Moreover, artifact definitions are not tied
to specific agents, they can apply to all agents sharing the same abstraction of
states and actions.

We do not model actual communication channels in our formalism. In prac-
tice, the HTTP communication channel is often between an artifact and the
environment rather than between the agent and its environment. The simplest
artifact for hypermedia agents is a Web client that turns local actions to HTTP
requests.

4 Ontologies for a Hypermedia Environment

In the following, we briefly introduce ontologies relevant for engineering hyperme-
dia MASs (see Table 1 for an overview). This review shows how to re-implement
the four EMAS prototypes in a framework including Semantic Web technologies,
as per our formalism. To illustrate how artifacts can help integrate existing agent
architectures with a hypermedia MAS, we introduce artifact definitions where
E′ and A′ are sets of AgentSpeak beliefs and actions [2].

12 V. Charpenay et al.

Table 1: Ontologies relevant for hypermedia MASs

Name Namespace URL Prefix

Brick schema http://brickschema.org/ brick:

Hypermedia Controls https://www.w3.org/2019/wot/hypermedia# hctl:

Thing Description (TD) https://www.w3.org/2019/wot/td# td:

Schema.org http://schema.org/ schema:

Linked Data Platform (LDP) https://www.w3.org/ns/ldp# ldp:

ActivityStream https://www.w3.org/ns/activitystreams# as:

4.1 Reasoning with Web Ontologies

All Web ontologies (should) follow the RDF Schema and OWL specifications.
These specifications provide means to declare a certain vocabulary to use in
other RDF graphs, as well as axioms associated with that vocabulary. An OWL
artifact could process all ontological definitions for the vocabulary found in an
RDF graph, materialize implicit triples stated through axioms and turn the
original RDF graph into a set of Prolog/AgentSpeak predicates.

For example, we assume the existence of resource <room> in an environment
d such that

transfer(〈GET, <room>, ∅〉, d) = {〈<room>, g1〉}

where

g1 = {〈<room>, rdf:type, brick:Room〉
〈<room>, brick:partOf, <floor>〉
〈<floor>, brick:partOf, <building>〉}

If an agent chooses to look up schema axioms defined in the Brick schema, at
location brick:11, it gets graph g2 defined as

g2 = {〈brick:Room, rdf:type, owl:Class〉,
〈brick:Zone, rdf:type, owl:Class〉,
〈brick:Room, rdfs:subClassOf, brick:Zone〉,
〈brick:partOf, rdf:type, owl:ObjectProperty〉,
〈brick:partOf, rdf:type, owl:TransitiveProperty〉}

After internalizing g1 and g2, an OWL artifact should take into account OWL
class and property definitions, as well as the sub-class and transitivity axioms.

11 we represent URIs either as relative URIs or as ‘compact URIs’ (prefix followed by
local name).

http://brickschema.org/
https://www.w3.org/2019/wot/hypermedia#
https://www.w3.org/2019/wot/td#
http://schema.org/
https://www.w3.org/ns/ldp#
https://www.w3.org/ns/activitystreams#

A Unifying Framework for Agency in Hypermedia Environments 13

It could e.g. return the following predicates for <room> (assuming the artifact’s
internal state i′ has already internalized g2):

transfer′({〈<room>}, g1〉, i′) = {room(’room’),
partOf(’floor’, ’building),

zone(’room’),

partOf(’room’, ’floor’),

partOf(’room’, ’building’)}

Brick schema is an ontology for the domain of building automation. A Brick
representation of a building is e.g. relevant for autonomous agents controlling
vacuum cleaning robots navigating in the building, as in the case of the Neato
API [6]. It is also relevant for building automation systems to locate sensors and
actuators in the building. The Building on Linked Data (BOLD) benchmark12

includes various tasks to perform on a simulated building. The BOLD server,
exposing the simulation as RDF, closely follows the formalism we introduce in
this paper.

4.2 Resource Collections

A recurring pattern in hypermedia systems is to use resource collections. This
pattern is e.g. used by O’Neill et al. in their Multi-Agent Microservices (MAMS)
scenario [18]. Linked Data Platforms (LDPs) are a recent W3C standard to
implement the resource collection pattern. In LDPs, resource collections are
called ‘containers’, as in the following example:

g3 = {〈<coll>, rdf:type, ldp:BasicContainer〉,
〈<coll>, ldp:contains, <member1>〉,
〈<coll>, ldp:contains, <member2>〉}

LDP containers come with implicit affordances, e.g. to add a new item to the
collection:

afford(〈<coll>, g3〉) = {〈POST, <coll>, g〉 | g ∈ G}

An LDP artifact could implement the specification and provide an action to
AgentSpeak agents of the form add(’coll’, Item, ItemId) for all instances
of ldp:BasicContainer it would have internalized.

LDP is not the only standard to model resource collections. ActivityStream
(also part of a Social Web standard) can also be used, for the same result. The
following graph is semantically equivalent to g3:

g′3 = {〈<coll>, rdf:type, as:Collection〉,
〈<coll>, as:items, <member1>〉,
〈<coll>, as:items, <member2>〉}

12 https://github.com/bold-benchmark/

https://github.com/bold-benchmark/

14 V. Charpenay et al.

4.3 Social Activities

LDPs can be used for specific types of container, such as message inboxes. The
Linked Data Notification (LDN) specification standardizes how to use inbox con-
tainers. LDN and ActivityStream are both part of a series of W3C standards
meant for the Social Web13, which also includes WebSub. These standards allow
for direct agent-to-agent communication without requiring a dedicated commu-
nication channel. Instead, messages are placed in and retrieved from the envi-
ronmnent.

Another EMAS prototype based on JADE included a basic virtual assis-
tant to manage one’s agenda. We give below an example from the Activity-
Stream standard to represent agendas. The agenda itself is the named graph
〈<agenda>, g5〉 and individual events belonging to the agenda are each a re-
source, for instance 〈<event>, g′5〉, where g5 and g′5 are defined as

g5 = {〈<agenda>, as:items, <event>〉, . . .}

and

g′5 = {〈<event>, rdf:type, as:Event〉,
〈<event>, as:name, "Some agenda event"〉,
〈<event>, as:startTime, "2021-03-05T00:09:00Z"〉,
〈<event>, as:endTime, "2021-03-05T00:10:00Z"〉}

In this example, the agenda, modeled as a collection of events, offers the same
affordances as described in Sec. 4.2. Each event offers further affordances. For
instance, an autonomous agent can reschedule an event by removing the original
one from the collection with operation 〈DELETE, <event>, ∅〉, to then add the
rescheduled event to the agenda with a POST operation.

4.4 Affordances

Our formalism enforces agents to follow ‘affordances’ provided by the environ-
ment via the function afford(). We now show how Web forms can be embedded
in the environment through two ontologies: the Thing Description (TD) ontology
(which includes a module for hypermedia controls) and schema.org.

The TD ontology makes affordances explicit by specifying HTTP request
templates as RDF triples. For instance, graph g4 defined as the graph

g4 = {〈<lamp>, td:hasPropertyAffordance, <status affordance>〉,
〈<status affordance>, td:forProperty, <status>〉,
〈<status affordance>, td:hasForm, <status form>〉
〈<status form>, hctl:hasTarget, <target>〉
〈<status form>, hctl:forOperationType, td:readProperty〉}

13 https://www.w3.org/TR/social-web-protocols/

https://www.w3.org/TR/social-web-protocols/

A Unifying Framework for Agency in Hypermedia Environments 15

includes one affordance to retrieve the on/off status of a lamp via a GET request:

afford({〈<lamp>, g4〉}) = {〈GET, <target>, ∅〉}

The TD ontology defines a small set of operations that are possible on ‘things’
(physical objects on WoT). A TD artifact could e.g. provide a high-level action
for the td:readProperty operation type. This approach has been implemented
with JaCaMo [1] for a summer school on Artificial Intelligence for industrial
applications14. In the JaCaMo implementation, a ThingArtifact object would
expose the following action for g4: readProperty(’lamp’, ’status’, Value).

As with resource collections, the TD ontology is not the only way to make
affordances explicit. The following graph embeds the same affordance as g4:

g′4 = {〈<lamp>, schema:potentialAction, <status action>〉,
〈<status action>, schema:actionStatus, schema:PotentialActionStatus〉,
〈<status action>, schema:target, <status form>〉
〈<status form>, schema:httpMethod, "GET"〉
〈<status form>, schema:urlTemplate, "target"〉}

This graph uses the schema.org vocabulary for actions. The approach is being
used in another research project on agents in manufacturing [20]. Moreover,
schema.org actions are used by the Alexa virtual assistant, as a target represen-
tation of natural language commands [14].

4.5 Speech Acts

The MAMS scenario described by O’Neill et al. is based on FIPA’s Agent Com-
munication Language (ACL). We show here how to emulate ACL speech acts
with ActivityStream.

While WebSub does not recommend a particular vocabulary for the ex-
changed messages, LDNs and ActivityPub (a third Social Web protocol) en-
courage using ActivityStream activities. Activities have properties such as actor,
target, type, and object. By comparison, ACL messages include the analogous
properties ‘sender’, ‘receiver’, ‘performative’ and ‘content fields’. Activities could
therefore be a substitute for ACL messages on the Social Web. Table 2 gives a
mapping from ActivityStream types to ACL communicative acts. Not all ACL
speech acts have a correspondance in RDF but the list is enough to implement
e.g. an auction, as in the MAMS scenario.

We give an illustration with the first two steps of an auction through LDNs:
the auctioneer announces its auction to a bidder with 〈POST, <bidder/inbox>, g6〉,

14 https://gitlab.emse.fr/ai4industry/hackathon/

https://gitlab.emse.fr/ai4industry/hackathon/

16 V. Charpenay et al.

Table 2: Mapping from ActivityStream to FIPA ACL

Activity type (ActivityStream) Comunicative act (FIPA ACL)

as:Announce Inform, Call for Proposal
as:Offer Propose
as:Question Request
as:Accept Accept Proposal
as:Reject Reject Proposal, Refuse
as:Follow Subscribe
as:Undo Cancel

where

g6 = {〈<announce>, rdf:type, as:Announce〉,
〈<announce>, as:name, "Some announcement"〉,
〈<announce>, as:actor, <auctioneer>〉,
〈<announce>, as:target, <bidder>〉,
〈<announce>, as:object, <auction>〉}

to which the bidder submits the offer with 〈POST, <auctioneer/inbox>, g′6〉,
where

g′6 = {〈<bid>, rdf:type, as:Offer〉,
〈<bid>, as:inReplyTo, <announce>〉,
〈<bid>, as:name, "Some offer"〉,
〈<bid>, as:actor, <bidder>〉,
〈<bid>, as:target, <auctioneer>〉,
〈<bid>, as:object, <offer>〉}

The auctioneer can then accept or reject the offer. Auctioneer and bidder discover
each other’s inbox through hypermedia, as specified in LDN. Multi-agent proto-
cols can be further specified by using the W3C provenance ontology, PROV-O15,
as suggested by the LDN specification. PROV-O provides a vocabulary to relate
activities to entities used or produced by the activity and to agents involved in
the activity.

5 Conclusion

In this paper, we introduced a formalism for hypermedia MASs based on the
abstraction that the Web is equivalent to an RDF dataset. We were able to

15 http://www.w3.org/ns/prov#

http://www.w3.org/ns/prov#

A Unifying Framework for Agency in Hypermedia Environments 17

show how four different prototypes recently presented at the EMAS series of
workshops could fit our formalism, although none of them uses RDF or other
Semantic Web technologies. In addition, we showed how other implementations
natively follow the formalism. With this paper, we have aimed at making MAS
and Semantic Web technologies converge again, as per the original 2000 vision
of autonomous agents on the Web.

Because it is based on Semantic Web technologies, our formalism should al-
low for a scalable hypermedia environment, hosting many (physical or simulated)
resources and responding to many agents in parallel. Experimental proof of the
scalability of such an environment is yet to be provided, though. Implementation
effort could be targeted towards designing reusable artifacts for W3C standards,
such as LDPs, ActivityStream and the TD ontology. More importantly, how-
ever, what remains to be proven is the ability of agents of different origins of
interacting in the same (unknown) environment. The BOLD benchmark is an
attempt to tend towards that goal. Other MAS competitions around hypermedia
environments could be developed as well.

References

1. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A.: Multi-agent oriented program-
ming: programming multi-agent systems using JaCaMo. Intelligent robotics and
autonomous agents series, The MIT Press (2020)

2. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason, vol. 8. John Wiley & Sons (2007)

3. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs. Journal of Web
Semantics 3(4), 247–267 (2005)

4. Casals, A., El Fallah-Seghrouchni, A., Negroni, O., Othmani, A.: Exposing agents
as web services in JADE. In: Engineering Multi-Agent Systems. Springer Interna-
tional Publishing (2019), OCLC: 1144197734

5. Ciortea, A., Boissier, O., Ricci, A.: Engineering world-wide multi-agent systems
with hypermedia. In: Weyns, D., Mascardi, V., Ricci, A. (eds.) Engineering Multi-
Agent Systems, vol. 11375, pp. 285–301. Springer International Publishing (2019),
series Title: Lecture Notes in Computer Science

6. Collenette, J., Logan, B.: Multi-agent control of industrial robot vacuum cleaners.
In: Baroglio, C., Hubner, J.F., Winikoff, M. (eds.) Engineering Multi-Agent Sys-
tems, vol. 12589, pp. 87–99. Springer International Publishing (2020), series Title:
Lecture Notes in Computer Science

7. Fielding, R.: Architectural Styles and the Design of Network-based Software Ar-
chitectures. phdthesis, University of California, Irvine (2000)

8. Genesereth, M.R., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Mor-
gan Kaufmann Publishers Inc. (1987)

9. Genestoux, J., Parecki, A.: Websub. W3C Recommendation (2018), https://www.
w3.org/TR/websub/

10. Hendler, J.: Agents and the semantic web. IEEE Intelligent systems 16(2), 30–37
(2001)

11. Hendler, J., Berners-Lee, T.: From the Semantic Web to social machines: A research
challenge for AI on the World Wide Web. Artificial Intelligence 174(2), 156–161
(Feb 2010). https://doi.org/10.1016/j.artint.2009.11.010

https://www.w3.org/TR/websub/
https://www.w3.org/TR/websub/
https://doi.org/10.1016/j.artint.2009.11.010

18 V. Charpenay et al.

12. Jacobs, I., Walsh, N.: Architecture of the world wide web, volume one. W3C Rec-
ommendation (2004), https://www.w3.org/TR/webarch/

13. Kaebisch, S., Kamiya, T., McCool, M., Charpenay, V., Kovatsch, M.: Web of
Things (WoT) thing description. W3C Recommendation (2020), https://www.

w3.org/TR/wot-thing-description/

14. Kollar, T., Berry, D., Stuart, L., Owczarzak, K., Chung, T., Mathias, L., Kayser,
M., Snow, B., Matsoukas, S.: The alexa meaning representation language. In: Pro-
ceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 3 (Industry
Papers). pp. 177–184 (2018)

15. Kovatsch, M., Matsukura, R., Lagally, M., Kawaguchi, T., Toumura, K., Kajimoto,
K.: Web of Things (WoT) Architecture. W3C Recommendation (2019), https:

//www.w3.org/TR/wot-architecture/

16. Kovatsch, M., Matsukura, R., Lagally, M., Kawaguchi, T., Toumura, K., Kajimoto,
K.: Web of Things (WoT) architecture. W3C Recommendation (2020), https:

//www.w3.org/TR/wot-architecture/

17. Ogbuji, C.: Sparql 1.1 graph store http protocol. Tech. rep. (2013), http://www.
w3.org/TR/sparql11-http-rdf-update/

18. O’Neill, E., Lillis, D., O’Hare, G.M.P., Collier, R.W.: Delivering multi-agent Mi-
croServices using CArtAgO. In: Baroglio, C., Hubner, J.F., Winikoff, M. (eds.)
Engineering Multi-Agent Systems, vol. 12589, pp. 1–20. Springer International
Publishing (2020), series Title: Lecture Notes in Computer Science

19. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: A framework for prototyping artifact-
based environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.)
Environments for Multi-Agent Systems III, vol. 4389, pp. 67–86. Springer Berlin
Heidelberg (2007), series Title: Lecture Notes in Computer Science

20. Schraudner, D., Charpenay, V.: An HTTP/RDF-based agent infrastructure for
manufacturing using stigmergy. In: Harth, A., Presutti, V., Troncy, R., Acosta, M.,
Polleres, A., Fernández, J.D., Xavier Parreira, J., Hartig, O., Hose, K., Cochez, M.
(eds.) The Semantic Web: ESWC 2020 Satellite Events, vol. 12124, pp. 197–202.
Springer International Publishing (2020), series Title: Lecture Notes in Computer
Science

21. Wilensky, U., Rand, W.: An introduction to agent-based modeling: modeling nat-
ural, social, and engineered complex systems with NetLogo. The MIT Press (2015)

22. Wooldridge, M.J.: An introduction to multiagent systems. John Wiley & Sons, 2nd
ed edn. (2009), OCLC: ocn246887666

https://www.w3.org/TR/webarch/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-architecture/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/sparql11-http-rdf-update/

A Unifying Framework for Agency in Hypermedia Environments 19

see internalize act

E A

IP

do

see internalize act

IP

Multi-agent system

(a) MAS

transfer

internalize act

D O

I

updateD’

internalize act

I

Hypermedia agent Hypermedia agent

Origin Server / Hypermedia agent

(b) Hypermedia MAS

transfer D OupdateD’

internalize act

I

see act

I’

transfer’ update’internalize’

...

E’ A’

Agent &
Artifact

Hypermedia agent

Origin Server / Hypermedia agent

(c) Integration of a non-hypermedia agent into a hypermedia MAS via an artifact

Fig. 2: Graphical representation of abstract (hypermedia) multi-agent systems;
rectangles contain function names, circles contain set names, dashed rectangles
are REST components (as presented in Fig. 1) and dotted rectangles are reusable
software modules

	A Unifying Framework for Agency in Hypermedia Environments

