N
N

N

HAL

open science

Hypermedea: A Framework for Web (of Things) Agents

Victor Charpenay, Antoine Zimmermann, Maxime Lefrancois, Olivier Boissier

» To cite this version:

Victor Charpenay, Antoine Zimmermann, Maxime Lefrancois, Olivier Boissier. =~ Hypermedea:

A Framework for Web (of Things) Agents.

WWW ’22: Companion Proceedings of the Web

Conference 2022, ACM, New York, NY, USA, Apr 2022, Lyon (Virtual), France. pp.176-179,

10.1145/3487553.3524243 . emse-03609556

HAL Id: emse-03609556
https://hal-emse.ccsd.cnrs.fr /emse-03609556
Submitted on 12 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-emse.ccsd.cnrs.fr/emse-03609556
https://hal.archives-ouvertes.fr

Hypermedea: A Framework for Web (of Things) Agents

Victor Charpenay
victor.charpenay@emse.fr
Mines Saint-Etienne, Univ Clermont Auvergne, INP
Clermont Auvergne, CNRS, UMR 6158 LIMOS
Saint-Etienne, France

Maxime Lefrancois
maxime.lefrancois@emse.fr
Mines Saint-Etienne, Univ Clermont Auvergne, INP
Clermont Auvergne, CNRS, UMR 6158 LIMOS
Saint-Etienne, France

ABSTRACT

Hypermedea is an extension of the JaCaMo multi-agent program-
ming framework to act on Web and Web of Things environments.
In this demo, the performance of Hypermedea’s Linked Data navi-
gation and planning components are evaluated, both encapsulating
computation-intensive algorithms.

CCS CONCEPTS

« Information systems — RESTful web services; » Networks —
Cyber-physical networks.

KEYWORDS
Hypermedia, Web of Things, Jason, JaCaMo, Linked Data

ACM Reference Format:

Victor Charpenay, Antoine Zimmermann, Maxime Lefrancois, and Olivier
Boissier. 2022. Hypermedea: A Framework for Web (of Things) Agents. In
Companion Proceedings of the Web Conference 2022 (WWW ’22 Companion),
April 25-29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3487553.3524243

1 INTRODUCTION

Recently, the standardization of the Thing Description (TD) model
by the World Wide Web Consortium (W3C)! renewed interest for
Web agents. The TD model is part of an effort to build what is called
the Web of Things (WoT), i.e. bring sensors, actuators and digitally
tagged devices to the Web. The main idea behind WoT is similar to
that of semantic Web services: if connected devices had a uniform
(semantically described) interface, they could be dynamically com-
bined to build ‘physical mashups’ [4]. Yet, it appears that most WoT
systems require continuous monitoring to be properly controlled.
As an example, a manufacturing execution system is designed to

https://www.w3.org/TR/wot-thing-description/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WWW 22 Companion, April 25-29, 2022, Virtual Event, Lyon, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9130-6/22/04...$15.00
https://doi.org/10.1145/3487553.3524243

Antoine Zimmermann
antoine.zimmermann@emse.fr
Mines Saint-Etienne, Univ Clermont Auvergne, INP
Clermont Auvergne, CNRS, UMR 6158 LIMOS
Saint-Etienne, France

Olivier Boissier
olivier.boissier@emse.fr
Mines Saint-Etienne, Univ Clermont Auvergne, INP
Clermont Auvergne, CNRS, UMR 6158 LIMOS
Saint-Etienne, France

optimize continuous flows of materials and final products, instead
of individual manufacturing processes.

As a consequence, WoT control systems require a combination
of proactivity, by composing Web services, and reactivity, by acting
in response to spontaneous changes in the system. The combina-
tion of the two is what characterizes agent-oriented programming
languages. We introduce here Hypermedea, an open-source frame-
work for Web and WoT agents®. Hypermedea is based on JaCaMo,
a multi-agent oriented programming platform [1], whose relevance
to develop Web agents has recently been highlighted [2]. In this
demo, we more specifically show how JaCaMo, via Hypermedea,
can be used in the context of WoT.

2 RELATED WORK

We have identified two main agent frameworks for controlling WoT
systems: UberManufacturing, in its original form [8] as well as in an
extended form that leverages the JaCaMo multi-agent platform [3],
and Linked-Data-Fu [6, 10]. Both frameworks rely on Semantic
Web technologies, as originally motivated by Hendler two decades
ago [5], but they slightly differ in the level of complexity of their
cognitive loop.

The UberManufacturing platform, introduced by Mayer et al. [8],
is meant to provide a uniform control layer over actuators and
human workers, where the two collaborate to produce goods (an
assembled stool, in the original UberManufacturing publication).
The control system can be considered as an agent that executes a
basic cognitive loop: synthesize a plan based on an order (a stool
to assemble) and a description of available producers (automated
workstations and human workers); execute the plan step-by-step;
if a producer agent signals an error during execution, re-plan with
current step as goal. The control agent has a single high-level goal:
to process orders as they are placed. The automated planner used
in UberManufacturing is derived from the EYE proof engine (Euler
Yet Another Proof Engine). EYE is a Prolog program that can derive
proofs from a set of first-order logic statements [11]. In particular,
EYE can be used as a Web service composition tool (then referred
to as RESTdesc) to apply on semantically annotated TD documents.
Since EYE is not restricted to automated planning, its performances
are however not optimal for this task (as shown later, in Sec. 4).

Zhttps://github.com/Hypermedea/hypermedea

https://orcid.org/0000-0002-9210-1583
https://orcid.org/0000-0003-1502-6986
https://orcid.org/0000-0001-9814-8991
https://orcid.org/0000-0002-2956-0533
https://doi.org/10.1145/3487553.3524243
https://www.w3.org/TR/wot-thing-description/
https://doi.org/10.1145/3487553.3524243
https://restdesc.org/
https://github.com/Hypermedea/hypermedea

WWW ’22 Companion, April 25-29, 2022, Virtual Event, Lyon, France

UberManufacturing was later extended by Ciortea et al., taking
into account the latest advances in multi-agent system engineer-
ing [3]. In its extended form, UberManufacturing integrates EYE
into JaCaMo. In contrast to the earlier proposal of Mayer et al. [8],
agents run a complex decision loop involving three modalities: be-
lief, desire and intention (BDI). BDI agents maintain an internal
state (beliefs) and pre-defined plans that agents select according to
their goals (desires) and execute (intentions). Ciortea et al. add the
possibility of synthesizing new plans at runtime with EYE. They
also demonstrate the use of multi-agent organizations to share a
plan, such as a stool assembly plan, and collectively execute it.

Linked-Data-Fu, the second framework we identified, was ini-
tially designed to perform Linked Data navigation. To navigate and
discover their environments, agents dereference resource identi-
fiers (URIs) and follow hyperlinks embedded in the underlying Web
resource. As Web environments may include many interlinked
resources, Linked-Data-Fu is designed to program simple reac-
tive agents (without planning) with optimized dereferencing of
links [7]. Kéfer and Harth showed however that Linked-Data-Fu
agents can be combined with Linked Data Platforms to become
a Turing-complete programming framework [7]. Linked-Data-Fu
also supports automated reasoning via the Web Ontology Language
(OWL): it infers statements on-the-fly based on OWL axioms found
in a Linked Data environment, while navigating through it. Linked-
Data-Fu being a pure rule engine, it supports a strict subset of all
possible OWL axioms, though (e.g. the OWL 2 RL profile).

Hypermedea is an attempt to build upon the strengths of both
UberManufacturing (planning) and Linked-Data-Fu (reasoning).
Hypermedea agents are BDI agents that can synthesize plans from
domains in the well-defined Planning Domain Definition Language
(PDDL) [9] more efficiently than EYE and they are capable of Linked
Data navigation and OWL reasoning, with full support of OWL 2
DL axioms (the largest decidable fragment of OWL).

3 ARCHITECTURE
3.1 The JaCaMo Platform

JaCaMo is a multi-agent oriented programming platform composed
of 3 elements: Jason (a BDI agent architecture with its own agent-
oriented programming language), CArtAgO (an infrastructure for
designing agent environments) and Moise (a meta-model for build-
ing organizations of agents governed by norms) [1]. Moise is out of
scope of the present paper, we briefly describe Jason and CArtAgO
in the following.

Jason is among the most widely known languages to program
BDI agents. A Jason agent maintains an internal state as a set
of ground terms (analogous to facts in logic programming). Such
terms are referred to as “beliefs”. The agent’s beliefs are influenced
by what the agent perceives from the environment. The agent
also maintains a set of goals to achieve as “desires”. To act on its
environment, the agent executes plans triggered by internal events
(belief revision or change in its desires). A plan is a sequence of
actions that the agent commits to—while other events may occur,
triggering new plans. A plan committed to is called an “intention”.

Jason actions are represented as functional terms (action name
and parameters) whose return value is either success or failure.
Actions generally have further effects in the environment in which

Charpenay, et al.

Hypermedeas

Knowledge
Base

2.3) notify of new
resource (to detect
TD documents)

1) add resource
representation
(RDF graph)

2.1) notify of new
resource (to detect
OWL axioms)

2.2) notify of new
resource (to detect
action models)

Linked Data Ontology Planner Thing
Artifact Artifact Artifact Artifact

‘ readProperty/2

visit/1 Class/1 ‘ writeProperty/2
Property/2 [buildPlan/2 |plan/2 I ‘ e
fre—

crawlerStatus/1

subscribeEvent/2
T

Figure 1: Technical overview of the 4 Hypermedea artifacts;
artifacts have observable properties (rectangle boxes) and
operations (arrow-shaped boxes); Class and Property are tem-
plates to be instantiated with terms defined in ontologies

the agent is situated, though. The semantics of Jason actions are
environment-dependent. The role of CArtAgO, the Common “Ar-
tifacts for Agents” Open framework, is to provide a unified mech-
anism to interface agents with arbitrary environments. To do so,
CArtAgO introduces the notion of “artifact”, which is a tool that
agents use to interact and act on their environment. A CArtAgO
artifact is an abstract entity declaring “operations” and “observ-
able properties”. Operations are actions an agent is able to perform
on the artifact and observable properties are what the agent can
perceive from the artifact. Developers can implement CArtAgO
artifacts as Java classes.

3.2 Hypermedea Artifacts

Hypermedea is implemented as a collection of CArtAgO artifacts,
as has already been suggested in the literature [2]. An overview of
the observable properties and operations of all four Hypermedea
artifacts is given in Fig. 1, following the graphical notation of the
multi-agent oriented programming book [1]. Operations and ob-
servable properties are denoted with name and arity (e.g. rdf/3 for
the ternary property rdf). Each artifact is also documented in the
Hypermedea code repository>.

We now describe the Hypermedea artifacts in the order in which
they are likely to be used as the BDI agent acts “intentionally”:
the Linked Data artifact first (for perceiving the environment),
then the ontology artifact (for expanding perception with inferred
statements), then the planner artifact (preceding action) and, finally,
the Thing artifact (for acting on the environment).

A Linked Data artifact is responsible for retrieving RDF repre-
sentations of resources. It is up to agents to decide what resource
to visit. When an agent calls the visit/1 operation with a URI as
argument, a worker thread dereferences the URI and retrieves a
representation of the resource in the form of an RDF graph (indexed
by the dereferenced URI). Currently supported URIs are HTTP(S)
and file (pseudo-)URIs. In order to let the agent manage naviga-
tion, observable properties indicate which URIs are being deref-
erenced (toVisit/1), which ones have been already dereferenced
(visited/1) and whether at least one worker thread is being active

3https://hypermedea.github.io/javadoc/latest/

https://www.w3.org/TR/ldp/
http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
https://hypermedea.github.io/javadoc/latest/

Hypermedea

(crawlerStatus/1, with active, idling or error as possible val-
ues). The Linked Data artifact manages a fixed number of worker
threads in a thread pool. In order for agents to “forget” (remove/1)
at a later time about resources (e.g. if the set of visited resources is
logically inconsistent, as detailed in the next paragraph), all named
graphs are kept in an in-memory knowledge base (Apache Jena).
Each triple included in the representation of a visited resource is
also added to the state of the artifact (rdf/3). The resource’s URI is
kept as annotation.

The ontology artifact listens to changes in the knowledge base
and processes the OWL definitions found in incoming named graphs.
OWL declarations of classes, object properties and datatype proper-
ties are used for generating unary and binary observable properties*
from any subsequently found RDF triple. This syntactic transforma-
tion from URIs to shorter names aims at closing the gap between
the RDF models and predicate representations, more commonly
used in agent-oriented programming languages. More importantly,
however, the ontology artifact also performs OWL reasoning. It
materializes any class or property assertion that can be inferred
from the knowledge base as new unary and binary predicates. If
the knowledge base turns out to be inconsistent, a flag is raised
(kbInconsistent/0), so that all agents focusing on the artifact are
notified. Agents can then resolve conflicts in the knowledge base by
using remove/1 of the Linked Data artifact. The ontology artifact
consequently deletes inferred assertions invalidated by the removal.
The resolution strategy is entirely left to agents, to preserve their
autonomy. The ontology artifact is mainly implemented using the
ONT-API, an implementation of the OWL API over Apache Jena.
The current implementation includes the HermiT OWL reasoner>,
although any reasoner compliant with the OWL API could be used
as a substitute.

By default, BDI agents execute actions according to pre-defined
plans stored in their plan library. However, Jason allows for meta-
programming, allowing agents to add synthesized plans to their
plan library at runtime. This feature of Jason is particularly useful
in the context of WoT: as multiple Things expose their services
simultaneously, agents must select and order these services accord-
ing to their current goals (or intentions, in the case of BDI agents).
The planner artifact takes advantage of the meta-programming fea-
ture of Jason to expose synthesized plans as observable properties
(plan/1). Agents can trigger planning with the buildPlan/2 oper-
ation, taking two parameters: a planning domain (the description
of available services) and a planning problem (an initial state and
a goal state). It is then up to agents to add the synthesized plan to
their plan library, to modify it (e.g. in case of failure while executing
the plan) or to ignore it (e.g. if the state of the environment has
drifted away from the initial state used for planning). The input
planning domain and problem that are provided to the artifact to
build a plan are serialized as PDDL definitions, such that they can be
processed by any PDDL planner. The planner artifact uses PDDL4JS,
an open-source library to manipulate PDDL definitions, and FF-X7,
an extended version of the well-known Fast-Forward (FF) planner.

4‘object properties’ and ‘datatype properties’ refer to OWL constructs while ‘observable
properties’ refer to CArtAgO constructs, defined at another level.
Shttps://github.com/owlcs/hermit-reasoner

Shttps://github.com/pellierd/pddl4j

"https://fai.cs.uni- saarland.de/hoffmann/ff. html

WWW ’22 Companion, April 25-29, 2022, Virtual Event, Lyon, France

The Thing artifact class is meant to have as many instances as
there are Things in the environment®. Every time an incoming re-
source representation includes a full TD document, a new instance
of the artifact is created, acting as a proxy for the physical Thing.
A Thing artifact instance provides an operation for each opera-
tion type defined in the TD standard (readProperty/2, writePro-
perty/2, observeProperty/2, invokeAction/3 and subscribe-
Event/2). The Thing artifact class currently supports one protocol
binding only (HTTP) but more bindings may be added in the future
without modifying its interface. New protocol bindings for the Ro-
bot Operating System (ROS) and OPC Unified Architecture (OPC
UA) are currently under development.

4 PERFORMANCE EVALUATION

By integrating with Jason via CArtAgO artifacts designed for Web
and WoT agents, Hypermedea inherits the expressiveness of the
Jason language. We now evaluate Hypermedea with the intention
to show that a higher expressiveness does not come with degraded
performances compared to UberManufacturing and Linked-Data-
Fu.

We evaluate the performances of Linked Data navigation to-
gether with OWL reasoning’: reasoning should indeed occur in-
crementally, during Linked Data navigation. We then evaluate the
performances of PDDL planners against EYE, the proof engine used
for deriving plans in UberManufacturing. Automated reasoning
and planning are known to be computation-intensive tasks. In con-
trast, HTTP communication as performed by the Thing artifact can
hardly be optimized from a client perspective only. Since most tools
rely on the same Apache HTTP client library, we do not evaluate
the Thing artifact.

4.1 Linked Data Navigation and Reasoning

To evaluate Linked Data navigation and reasoning, we use the
dataset that describes an experimental factory line located on the
ground floor of Mines Saint-Etienne’s facility. We also include the
description of the remainder of the building, such that the whole
dataset includes 7,380 RDF triples defined in 290 interlinked re-
sources. It is exposed online according to the Linked Data princi-
ples'? The assertions in the dataset reference five ontologies that
declare a total of 149 classes, 72 object properties and 11 datatype
properties. The ontologies also have 207 logical axioms, including
123 sub-class axioms. When applied on the production line dataset,
1150 assertions can be inferred from all logical axioms. Most non-
trivial axioms being inferred are adjencies between rooms.

We compare Hypermedea with Linked-Data-Fu (the two ver-
sions of UberManufacturing, by Mayer et al. [8] and Ciortea et
al. [3] do not support Linked Data navigation). Results in terms of
execution time are shown on Fig 2a. Results suggest that, in average,
Hypermedea and Linked-Data-Fu have comparable performances
for pure Linked Data navigation (i.e. without reasoning).

In terms of reasoning, Linked-Data-Fu outperforms Hyperme-
dea: the overhead caused by OWL reasoning is at least twice as
important for Hypermedea (median: 2.7s) as for Linked-Data-Fu

8in contrast, other artifacts may be singletons.
%all evaluations were run on a Intel Core i7 processor (1.8 GHz, 8 cores).
Ohttps://ci.mines-stetienne.fr/kg/

https://jena.apache.org/
https://github.com/owlcs/ont-api/wiki
https://github.com/owlcs/hermit-reasoner
https://github.com/pellierd/pddl4j
https://fai.cs.uni-saarland.de/hoffmann/ff.html
https://ci.mines-stetienne.fr/kg/

WWW ’22 Companion, April 25-29, 2022, Virtual Event, Lyon, France

10000

Charpenay, et al.

6000 [%

5000 [
1000 |

4000 [

3000 [

execution time (ms)
execution time (in ms)

2000 [

1000 -

Hypermedea C——1
Linked-Data-Fu E222

FF——

EVE
PDDLY) (HSP)

100000

FF——

EYE —o—

10000 |

1000

Hypermedea (w/ reasoning) £
Linked-Data-Fu (w/ reasoning) E== 4 8 16

(a) Linked Data navigation

(b) Planification (RESTdesc benchmark)

64 128 256 512 1024 2 3 4 5 6 7 8 9 10

chain length number of assembly steps

(c) Planification (SIRAM scenario)

Figure 2: Performance evaluation of Hypermedea (average execution time over 10 runs)

(median: 1.2s). It is however worth noting that, in order to have a
fair comparison, the evaluation dataset does not include axioms
that lie outside the OWL RL profile (which is the largest fragment of
OWL supported by Linked-Data-Fu). Linked-Data-Fu can therefore
implement dedicated optimization techniques that do not apply
to OWL reasoners such as HermiT (which support a broader set
of axioms). A total execution time below 6s is still low, making
Hypermedea useful in practice.

4.2 Automated Planning

Automated planning has been the subject of the International Plan-
ning Competition (IPC) for many years. The EYE proof engine,
because it is a more generic tool, has never been evaluated against
IPC benchmarks. It has, however, been tested against a simpler
benchmark consisting of chaining Web services with a single state-
ment as pre-condition and a single (but different) statement as
effect!!. We therefore ran FF-X against the RESTdesc benchmark
with growing chain lengths. Results are shown on Fig. 2b. FF-X
consistently outperforms EYE, roughly tenfold. We also ran an
alternative planner implementation provided by PDDL4J'2. The
main difference between FF-X and this PDDL4] implementation is
that the former is native while the latter runs in the JVM. The JVM
seems to introduce a significant overhead, as PDDL4]J’s planner is
itself outperformed by EYE.

The RESTdesc benchmark is rather straightforward compared
to IPC benchmark scenarios, though. We therefore compare FF-X
and EYE in a benchmark that combines two classical IPC tasks: the
assembly benchmark, by Drew McDermott, and the gripper bench-
mark, by Jana Koehler. In the combined task, an Antomated Guided
Vehicle (AGV) equipped with a gripper has to concurrently find its
way throughout the factory floor and to pick (place) items stored
at source (target) locations of the AGV’s path. Such an augmented
AGV has e.g. been prototyped in the SIRAM research project'®. As
shown on Fig. 2c, FF-X clearly outperforms EYE, the more signifi-
cantly when the number of assembly steps grows. For an assembly
process with 5 steps, it takes more than a thousand times longer
for EYE to find a plan (600s) than for FF-X (200ms).

Uhttps://github.com/RubenVerborgh/RESTdesc- Composition-Benchmark
12pDDL4Y’s primary purpose is however to read and write PDDL definitions.
Bhttps://siram.mecaconcept.com/

5 CONCLUSION

Hypermedea has been used and tested in the SIRAM project and
in a series of summer schools!4. Its use in these two real-world
scenarios is to be demonstrated at WWW 2022, beyond performance
evaluation. Its design was driven by WoT applications but could
find a broader audience, in particular for social applications, against
personal information management systems such as Social Linked
Data (Solid)!®. As mentioned in the paper, further work is already
planned on extending the Thing artifact with protocol bindings for
robotics and industrial computing.

ACKNOWLEDGMENTS

This work was partially funded through the following projects:
SIRAM, HyperAgents (grant ANR-19-CE23-0030-01) and CoSWoT
(grant ANR-19-CE23-0012-04).

REFERENCES

[1] Olivier Boissier, Rafael H. Bordini, Jomi Fred Hiibner, and Alessandro Ricci.
2020. Multi-agent oriented programming: programming multi-agent systems using
JaCaMo. The MIT Press, Cambridge, Massachusetts.

[2] Andrei Ciortea, Olivier Boissier, and Alessandro Ricci. 2019. Engineering World-
Wide Multi-Agent Systems with Hypermedia. In EMAS 2019.

[3] Andrei Ciortea, Simon Mayer, and Florian Michahelles. 2018. Repurposing Man-
ufacturing Lines on the Fly with Multi-agent Systems for the Web of Things. In
AAMAS 2018.

[4] Dominique Guinard and Vlad Trifa. 2009. Towards the Web of Things: Web
Mashups for Embedded Devices. In MEM 2009.

[5] James Hendler. 2001. Agents and the Semantic Web. IEEE Intelligent Systems 16,
2 (2001), 30-37.

[6] Felix Leif Keppmann, Maria Maleshkova, and Andreas Harth. 2016. Semantic
Technologies for Realising Decentralised Applications for the Web of Things. In
ICECCS 2016.

[7] Tobias Kafer and Andreas Harth. 2018. Rule-based Programming of User Agents
for Linked Data. In LDOW 2018.

[8] Simon Mayer, Dominic Plangger, Florian Michahelles, and Simon Rothfuss. 2016.
UberManufacturing: A Goal-Driven Collaborative Industrial Manufacturing Mar-
ketplace. In IoT 2016.

[9] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,

Manuela Veloso, Daniel Weld, and David Wilkins. 1998. PDDL-The Planning

Domain Definition Language. Technical Report CVC TR-98-003.

Steffen Stadtmiiller, Sebastian Speiser, Andreas Harth, and Rudi Studer. 2013.

Data-Fu: a language and an interpreter for interaction with read/write linked

data. In WWW 2013.

Ruben Verborgh and Jos De Roo. 2015. Drawing Conclusions from Linked Data

on the Web: The EYE Reasoner. IEEE Software 32, 3 (2015), 23-27.

[10

[11

Yhttps://aidindustry.wp.imt.fr/
Bhttps://solidproject.org/

https://www.icaps-conference.org/competitions/
https://www.icaps-conference.org/competitions/
https://fai.cs.uni-saarland.de/hoffmann/ff-domains.html
https://github.com/RubenVerborgh/RESTdesc-Composition-Benchmark
https://siram.mecaconcept.com/
https://ai4industry.wp.imt.fr/
https://solidproject.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Architecture
	3.1 The JaCaMo Platform
	3.2 Hypermedea Artifacts

	4 Performance Evaluation
	4.1 Linked Data Navigation and Reasoning
	4.2 Automated Planning

	5 Conclusion
	Acknowledgments
	References

