
HAL Id: emse-03641581
https://hal-emse.ccsd.cnrs.fr/emse-03641581v1

Submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

The Steiner bi-objective shortest path problem
Hamza Ben Ticha, Nabil Absi, Dominique Feillet, Alain Quilliot

To cite this version:
Hamza Ben Ticha, Nabil Absi, Dominique Feillet, Alain Quilliot. The Steiner bi-objective
shortest path problem. EURO Journal on Computational Optimization, 2021, 9, pp.100004.
�10.1016/j.ejco.2021.100004�. �emse-03641581�

https://hal-emse.ccsd.cnrs.fr/emse-03641581v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

The Steiner Bi-objective Shortest Path Problem

Hamza Ben Tichaa,∗, Nabil Absia, Dominique Feilleta, Alain Quilliotb

aEcole des Mines de Saint-Etienne and UMR CNRS 6158 LIMOS, CMP Georges Charpak F-13541
Gardanne, France

bLIMOS, Institut Supérieur d’Informatique de Modélisation et leurs Applications, ISIMA, Campus des
Cèzeaux, Aubière Cedex, France

Abstract

In this paper, we introduce the Steiner Bi-objective Shortest Path Problem. This problem
is defined on a directed graph G = (V,A), with a subset T ⊂ V of terminals. Arcs are labeled
with travel time and cost. The goal is to find a complete set of efficient paths between every
pair of nodes in T . The motivation behind this problem stems from data preprocessing for
vehicle routing problems. We propose a solution method based on a labeling approach with
a multi-objective A* search strategy guiding the search towards the terminals. Computa-
tional results based on instances generated from real road networks show the efficiency of the
proposed algorithm compared to state-of-art approaches.

Key words: A* algorithm, multiple destinations, vehicle routing with road-network
information

1. Introduction

The Vehicle Routing Problem (VRP) can be described as the problem of designing a set
of routes that start and end at a depot and that visit a number of geographically dispersed
locations, called customers. In the standard version of the problem, the road network of the
geographic area at hand is not explicitly considered. Instead, a directed graph G = (T,D) is
introduced, where T is composed of the depot and the customers, and D represents all the
possible connections between these nodes: D = {(i, j) : i ∈ T, j ∈ T \ {i}}. A weight cij is
then associated with every arc (i, j) ∈ D to indicate travel costs (distances) between nodes.

Weights cij are assumed to be precomputed using the road-network structure, which can
very easily be done with shortest path algorithms. This can be performed by applying a goal
directed search independently for each arc in D (e.g., algorithm A*, Hart et al. [1]), by solving
one-to-all shortest paths starting from each node in T (e.g., Dijkstra’s algorithm, Dijkstra
[2]), or by computing all-to-all shortest paths (e.g., Floyd’s algorithm, Floyd [3]). All these
algorithms admit a polynomial-time complexity and generally allow a very fast computation
of the data in view of the limited number of customers in VRP applications (rarely more
than a few hundreds). A large amount of literature exists to accelerate these algorithms for

∗Corresponding author
Email address: hamza.ben-ticha@emse.fr (Hamza Ben Ticha)

Preprint submitted to Elsevier March 3, 2021

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2192440621000010
Manuscript_3abf4b8e7ac8433fa515330059ff3c1d

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2192440621000010
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2192440621000010

large-scale networks (see, e.g., Bast et al. [4]), but none of them are really necessary in this
context.

In many real-world routing problems however, and in most variants of the VRP, this
model is not accurate enough to determine optimal solutions (Ben Ticha et al. [5]). Indeed,
road segments usually have at least two attributes, time and distance, and nodes in T may be
connected together using many different paths with different trade-offs in distance and time.
The VRP with Time Windows (VRPTW) gives a good illustration of this difficulty. In the
VRPTW, vehicle routes are constrained by time windows that define the earliest and latest
possible starting times of the service for customers. The objective is to minimize the total
traveled distance. The min-distance path between any pair of customers i and j should usually
be preferred because it minimizes the impact of traveling from i to j on the cost function.
However, depending on the arrival time to i, a fastest path could sometimes be required
to reach customer j on time. As it depends on the complete sequence of customers in the
route, deciding which path should be preferred between two successive customers cannot be
determined in advance. The preprocessing approach described above is thus not appropriate.

To handle this situation, a more effective model has been proposed by Garaix et al. [6]. It
consists in representing road network information with a multigraph. The node set is still T
but the arc set is replaced by an arc multiset D constructed as follows. Given two nodes in T ,
a complete set of efficient paths is computed between these two nodes. Then, an arc is added
to D for every path in the complete set. Arc weights (travel distance, travel time) are defined
to their value in the corresponding path. An example of a multigraph is depicted on Figure
1. In this small example, pairs of nodes are connected by at most two arcs: in some cases the
min-cost and min-time paths coincide, in other cases they are distinct and two parallel arcs
are added. More generally, the size of the Pareto front, i.e. the number of Pareto optimal
objective vectors, can be much larger and many parallel arcs could be inserted. All these
efficient solutions are essential because they might all offer the best compromise to minimize
costs and satisfy time constraints.

1

0

2 3

(1,1)

(1,2)

(1,1)

(3,3)

(1,1)

(1,2)

(2,2)

(3,4)

(1,2)

(2,2)

(a) Road-network graph

1 2

0

3

(3,5)

(4,4)

(1,1)

(3,6)(5,5)

(4,6)

(5,5)

(2,3)
(4,4)

(b) Multigraph

Figure 1: Road-network graph and multigraph for a simple example with one depot, three customers and two
attributes (arcs labeled with (distance,time))

This new model opens important research perspectives that recently started receiving a
strong interest (e.g., Lai et al. [7], Letchford et al. [8], Huang et al. [9], Ben Ticha et al.
[10]). Among others, it opens the question of the tractability of computing the multigraph.

2

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Clearly, the arc multiset and their weights cannot be obtained by solving simple shortest path
problems. The aim of the Steiner Multi-objective Shortest Path Problem is to deliver this
information. It consists in computing complete sets of efficient paths between every pair of
nodes in T . In what follows, we adopt the standard terminology of Steiner tree problems and
call terminals the nodes in T .

In this paper, we introduce the Steiner Multi-objective Shortest Path Problem and propose
a solution approach for its solution. We limit our study to the case of two attributes (Steiner
Bi-objective Shortest Path Problem, Steiner BSPP). The proposed approach is based on a
dynamic programming algorithm with an A* guiding strategy. In addition to the introduction
of this new problem, the contributions of the paper are:

• An original implementation of the A* strategy that simultaneously drives the search
towards all the terminals.

• An experimental study giving new insights on how efficiently multigraph data can be
computed for vehicle routing problems.

The rest of this paper is organized as follows. In Section 2, we present an overview of the
related literature. Section 3 formally introduces the Steiner BSPP and useful notation. It
also reports some basic properties that will be helpful for the remainder of the paper. In
Section 4, we describe our solution method. In Section 5, we propose some enhancements
when the problem is addressed in the context of the VRPTW. Finally, numerical results are
reported in Section 6.

2. Literature review

The Steiner BSPP is related to two types of problems: bi-objective shortest path problems
(BSPPs) and “Steiner-like” problems:

• BSPPs are multi-objective extensions of standard shortest path problems (SPPs). Every
arc of the graph receives two weights (that correspond to two criteria) and the goal is
to generate efficient paths. Three variants can naturally be considered: the one-to-one
BSPP, the one-to-all BSPP and the all-to-all BSPP, where efficient paths are searched
between one origin and one destination, one origin and all destinations, all origins and
all destinations, respectively. All three variants are NP-hard (Serafini [11]).

• Steiner problems originate from the well-known Steiner Tree Problem. Given a weighted
graph G = (V,A) and a set of terminals T ⊂ V , the Steiner tree problem consists
in finding a min-cost tree covering all the nodes in T . It generalizes the minimum
spanning tree problem, where all nodes have to be covered. Following this terminology,
the Steiner Traveling Salesman Problem was introduced and investigated by several
authors (Cornuéjols et al. [12], Letchford et al. [13]). In this problem, a minimum
cost cycle visiting all the vertices in T ⊂ V is sought. It generalizes the Traveling
Salesman Problem (case T = V). Following the same trend, we called our problem
Steiner BSPP because we are only interested in shortest paths between a subset of
nodes (the terminals) instead of all-to-all shortest paths. It generalizes the all-to-all
shortest path problem (T = V) and the one-to-one shortest path problem (|T | = 2)

3

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

If the relationship with Steiner problems is important to understand the name given to our
problem, the Steiner BSPP is essentially a variant of BSPPs. Actually, solving the all-to-all
BSPP also solves the Steiner BSPP. Equivalently, solving a one-to-all BSPP starting from
each node in T or solving a one-to-one BSPP for each pair of nodes in T also solves the Steiner
BSPP. Clearly our point here is to propose a more efficient approach.

BSPPs (and more generally Multi-objective SPPs) have been widely studied in the litera-
ture, as acknowledged by several literature reviews (Ehrgott and Gandibleux [14], Skriver [15],
Climaco and Pascoal [16]). A first important matter concerns the size of solution sets, which
directly translates to the number of arcs that would have to be added to the multigraph in
our VRP context. Hansen [17] shows that, in the worst case, this number can be exponential
in the size of graph G. Müller-Hannemann and Weihe [18] and Mandow and Pérez de la Cruz
[19] however show that much better behaviors can be observed in practice. Evaluating the
typical size of the solution sets in our context will be a meaningful output of the paper.

A second important information that can be derived from the literature concerns exact
solution methods. The prominent approaches to solve BSPPs are labeling algorithms. These
algorithms all follow the same principle (Hansen [17], Martins [20]). A label represents a
partial path in the graph. The most elementary operation in the algorithm is to select a
label and extend the associated partial path with an additional arc. It results in a new label
that can be dominated or kept for further extensions. Algorithms differ in the order in which
these elementary label extensions are performed and in the data structures that are used to
efficiently manage label selection and dominance. Labeling algorithms can solve one-to-one
and one-to-all BSPPs. Algorithms applied to solve all-to-all SPPs have a very different nature
and, as far as we know, have never been extended to the bi-objective or multi-objective case.
Also, the presence of nonpositive arc weights can complicate a lot the problems, especially
when elementary paths are required (see, e.g., Martins and Santos [21], Irnich and Desaulniers
[22] or Feillet et al. [23]). Seeing that we are only interested in positive weights in our context,
we focus on this case hereafter.

Regarding the one-to-all BSPP, two main label selection heuristics are employed in the
literature. In a node-selection strategy (e.g., Brumbaugh-Smith and Shier [24]), all labels
representing paths ending at a same node are selected and extended to all successors of this
node. In a label-selection strategy, a single label is selected, based on its value. Again this
label is extended to all the successors of the ending node of the path that it represents (e.g.,
Tung and Chew [25]). Several computational studies evaluated various variants of these two
strategies and gave a slight advantage to node-selection techniques (Guerriero and Musmanno
[26], Paixão and Santos [27]).

In the one-to-one BSPP, the label-selection strategy is employed but with a destination-
driven selection rule, following the principle of A* algorithm (Steward and White [28], Mandow
and Pérez de la Cruz [29]). Labels are selected according to an optimistic evaluation of the
cost that paths reaching the destination from this label could have. In order to efficiently
select labels and add new labels to the set of labels in wait, a heap is generally used. In
Mandow and Pérez de la Cruz [29], all label evaluations (which are actually composed of a
value for each criterion) are compared and a label with a non-dominated evaluation is se-
lected. In Tung and Chew [25], the two components of the evaluation are added and the label
with the smallest sum is selected. The evaluation measure is given by the actual cost of the
label completed, for both components, by the mono-criterion shortest path cost to reach the

4

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

destination.

Another category of solution methods is based on ranking. They determine paths pro-
gressively, in a non-decreasing order of one of the objectives (Climaco and Martins [30], Raith
and Ehrgott [31]). Martins [32] proposed a ranking method based on path deletion. In this
method, the shortest path according to a selected criterion is determined at each iteration.
This path is then eliminated from the network for the next iteration. The algorithm stops
when the expected number of path is found or when no more efficient paths are found. Huarng
et al. [33] however showed that this ranking method was not competitive compared to labeling
approaches.

Another approach was proposed by Mote et al. [34]. It is organized in two phases. In the
first phase, extreme solutions in the convex hull of the BSPP solution space are computed
by solving the LP relaxation of the problem. In the second phase, an enumerative method is
used to determine the set of efficient paths. The main idea is to restrict enumeration thanks
to the information extracted from the first phase. Raith and Ehrgott [31] studied more deeply
this two-phase approach. They investigated different combinations of methods for the two
phases: a network simplex method and single objective label setting and label correcting
algorithms were tested in Phase 1 and, ranking and bi-objective labeling approaches were
explored in Phase 2. They compared the two-phase method with purely labeling approaches
and a ranking method. Computational experiments carried out on different instance sets
showed the competitiveness of the two-phase method with the different configurations. In
their conclusions, Raith and Ehrgott [31] noticed that the efficiency of solution methods
depends a lot on network structure.

Besides these exact methods, many heuristic algorithms have also been applied to BSPPs,
such as evolutionary algorithms (e.g., Pangilinan and Janssens [35]) or ant colony optimization
algorithms (e.g., Ghoseiri and Nadjari [36]). These algorithms are however out of the scope
of this research as we focus on exact solution.

3. Problem definition, notation and basic properties

3.1. Problem definition

We consider a directed graph G = (V,A) modeling a road network. Arcs (i, j) ∈ A
represent road segments and are tagged with two positive weights dij and tij . We define a
path P in G as an ordered list of nodes P = (u0, u1, ..., up) such that (uk, uk+1) ∈ A for
k ∈ {0, ..., p− 1}. The cost vector of path P is the sum of its arc weights:

(d(P), t(P)) =

 ∑

k∈{0,...,p−1}
dukuk+1

,
∑

k∈{0,...,p−1}
tukuk+1

We introduce the subset T ⊂ V of terminals. The Steiner BSPP aims at finding a complete
set of efficient paths between every pair of terminals.

A few definitions are given below, to clarify what a complete set of efficient paths is. We
consider in these definitions that all paths have the same starting and ending points.

Definition 1. Dominance
A vector (a1, a2) dominates a vector (b1, b2) if and only if a1 ≤ b1 and a2 ≤ b2 with at least
one inequality being strict.

5

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Definition 2. Efficient path
A path P1 is efficient if there does not exist any path P2 whose cost vector (d(P2), t(P2))
dominates (d(P1), t(P1)).

Definition 3. Set of non-dominated cost vectors (also called Pareto front)
The set of all non-dominated cost vectors is the set of vectors (d(P), t(P)) obtained from
efficient paths.

Definition 4. Complete set of efficient paths
A set P of efficient paths is complete if every non-dominated cost vector (d, t) admits at least
one path P ∈ P such that (d, t) = (d(P), t(P)). A complete set is minimal if none of its
subsets is complete.

For the remainder of the paper, we denote |V | = n, |A| = m and |T | = nT .

3.2. Additional notation and basic properties

We now introduce additional notation and some simple properties that will be useful in
next sections. We first recall that a vector a = (a1, a2) is lexicographically smaller than a
vector b = (b1, b2), denoted by a <

lex
b, if either a1 < b1 or both a1 = b1 and a2 < b2. Similarly,

we say that a path P1 is lexicographically smaller than a path P2, denoted by P1 <
lex

P2, if and

only if (d(P1), t(P1)) <
lex

(d(P2), t(P2)). The lexicographic order defines a total order between

paths.

Let P(u, v) denote the set of all paths linking two nodes u and v in T and let Popt(u, v) =
(P1, P2, ..., Pr) be a complete set of efficient paths between u and v. Without loss of generality,
we assume that Popt(u, v) is minimal and that paths in Popt(u, v) are sorted according to the
lexicographic order, i.e., P1 <

lex
P2 <

lex
... <

lex
Pr. As a consequence:

d(P1) < d(P2) < ... < d(Pr−1) < d(Pr)

t(P1) > t(P2) > ... > t(Pr−1) > t(Pr)

Using this notation, we can recall the following simple properties:

Property 1. P1 is the shortest path in distance from u to v in G: d(P1) = min
P∈P(u,v)

d(P).

Property 2. Pr is the shortest path in time from u to v in G: t(Pr) = min
P∈P(u,v)

t(P).

Proof. For each non-efficient path P ∈ P(u, v) \ Popt(u, v), at least one path Pk ∈ Popt(u, v)
exists such that d(Pk) ≤ d(P) and t(Pk) ≤ t(P). Consequently, for each path P ∈ P(u, v),
we have d(P1) ≤ d(P) and t(Pr) ≤ t(P).

In the remainder of this paper, we denote by (dmin(u, v), tmax(u, v)) the cost vector associ-
ated with the shortest path in distance in Popt(u, v) and we denote by (dmax(u, v), tmin(u, v))
the cost vector associated with the shortest path in time in Popt(u, v). Note that any effi-
cient path P ∈ P(u, v) is such that dmin(u, v) ≤ d(P) ≤ dmax(u, v) and tmin(u, v) ≤ t(P) ≤
tmax(u, v).

6

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4. Solution algorithm

The core mechanism of our solution algorithm is similar to the label setting algorithm
proposed, first, by Martins [20] which is, in turn, based on Dijkstra’s algorithm [2]. It es-
sentially follows a one-to-all solution framework, with the difference that, in our adaptation,
we are only interested in the efficient paths arriving to nodes in T and we guide the search
towards this direction. To solve the Steiner BSPP, this algorithm is repeated several times,
once for each terminal defined as a starting point

In what follows, the starting node is named v0. A label represents a path P from v0 to a
certain node u ∈ V and is defined with the following information:

L = (last(L), d(L), t(L), father(L))

where last(L) = u, d(L) = d(P), t(L) = t(P) and father(L) is the label from which L
was extended (∅ for the initial label). Following previous definitions, we say that a label
L1 dominates another label L2 if (d(L1), t(L1)) dominates (d(L2), t(L2)). We say that L1 is
lexicographically smaller than L2, denoted by L1 <

lex
L2, if (d(L1), t(L1)) <

lex
(d(L2), t(L2)); we

say that the two labels are equal if (d(L1), t(L1)) = (d(L2), t(L2)), even if the father nodes
can differ.

In Section 4.1, we detail the solution method. In Section 4.2, we prove that the proposed
algorithm correctly provides the expected set of efficient paths. We then give, in Section 4.3,
more details on the data structures and report on the complexity.

4.1. The multi-destination-A* algorithm

The solution method and its preprocessing are described in Algorithm 1 and 2. We call
this algorithm multi-destination-A* algorithm (MDA*). It provides a minimal complete set
of efficient paths between v0 and s.

Algorithm 1 Preprocessing

1: compute dmin(v0, v), tmin(v0, v), dmax(v0, v) and tmax(v0, v) for all v ∈ V
2: for all s ∈ T do
3: compute dmin(v, s), tmin(v, s), dmax(v, s) and tmax(v, s) for all v ∈ V
4: end for

The preprocessing is important to implement the A* mechanism. It works as follows:

• Using Dijkstra’s algorithm, we compute shortest paths in distance and in time from node
v0 to all nodes v ∈ V . Four tables are constructed: dmin(v0, v) and tmax(v0, v) indicating
distances and times associated with shortest paths in distance and, dmax(v0, v) and
tmin(v0, v) indicating distances and times associated with shortest paths in time.

• Using Dijkstra’s algorithms in backwards from all nodes s ∈ T (that is, with the arcs
implicitly reversed), we compute shortest paths in distance and in time from all nodes
v ∈ V to destination nodes s ∈ T . Four series of tables are obtained: dmin(v, s) and
tmax(v, s) indicating distances and times associated with shortest paths in distance and,
dmax(v, s) and tmin(v, s) indicating distances and times associated with shortest paths
in time.

7

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

In both forward and backward Dijkstra’s algorithms, label comparisons are based on the
lexicographical order <

lex
. Thanks to that, we have the guarantee that all the computed paths

are efficient.

Algorithm 2 Multi-destination-A* algorithm for the Steiner BSPP

1: L = (v0, 0, 0, ∅)
2: allLabels.add(L)
3: Labels[v0].add(L)
4: while K(allLabels.Min()) ≤ max

s∈T
Kmax

s do

5: L = allLabels.extractMin()
6: u = last(L)
7: for all (u, v) ∈ A do
8: L′ = (v, d(L) + duv, t(L) + tuv, L)
9: if L′ is not dominated nor equal to a label in Labels[v] then

10: allLabels.add(L′)
11: Labels[v].add(L′)
12: if a label L′′ ∈ Labels[v] is dominated by L′ then
13: allLabels.remove(L′′)
14: Labels[v].remove(L′′)
15: end if
16: end if
17: end for
18: end while
19: Compute path set Popt(v0, s) from all labels in Labels[s], for all s ∈ T
20: return Popt(v0, s) for all s ∈ T

Algorithm MDA* mainly relies on the two following structures:

• Set allLabels contains all the labels that have to be extended. It is used for label
selection. It is initialized with a single label anchoring future labels to the starting
position v0 (Lines 1–2). When a label with a new non-dominated cost vector is created,
it is added to this set (Line 10). When a label is selected for extension or dominated,
it is removed (Lines 5 and 13)

• Vector Labels[v] contains all the efficient paths that are known for nodes v ∈ V . It is
used for dominance. It is initially empty for all nodes but v0 (Line 3). Labels with new
non-dominated cost vectors are added (Line 11), newly dominated labels are removed
(Line 14).

At each iteration, a label L is selected in allLabels (Line 5) and extended to all the successors
of last(L) (Line 7). If new promising labels are found (Line 9), the different label sets are
updated as explained above.

Label selection function extractMin() aims at finding the label apt to lead the most quickly
to one of the nodes in T . This is where the innovation of our algorithm stands. In the
standard A* strategy, the search is guided to a single destination. In Dijkstra’s algorithm, all
destinations are given the same priority. In order to guide the search to a subset of primary

8

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

destinations (the set T of terminals), we select the label L = (u, d(L), t(L), father(L)) that
minimizes value:

min
s∈T

(d(L) + dmin(u, s)− dmin(v0, s))

We denote K(L) this value and call it the key of the label. For a given node s, d(L) +
dmin(u, s)− dmin(v0, s) is the minimum detour that could be achieved when extending label
L to s, compared to the shortest path in distance between v0 and s. The key thus gives the
minimal value among detours to all destinations in T , that is, it prioritizes labels that could
potentially lead to one of the destinations effectively. Actually, with this key, the algorithm
will first explore the min-distance paths leading to nodes in T (the key is zero for these
paths), then it will progressively deviate from these paths. Note that distances computed in
preprocessing are used when computing the key.

The algorithm should terminate when the labels representing min-time paths have been
generated for all terminals in T . Indeed, any label with a larger detour would necessarily
be dominated by these labels: both time and distance would be larger. More formally, the
min-time path between v0 and s is given by label Ls = (s, dmax(v0, s), t

min(v0, s), father(Ls)).
In Ls, the detour is dmax(v0, s)−dmin(v0, s). Therefore, the stopping criterion is that the key
of the selected label is larger than maxs∈T Kmax

s with Kmax
s = dmax(v0, s)− dmin(v0, s). The

selected label is given by function Min(), which indicates the label with minimal key, i.e., the
label that would be returned using function extractMin() (Line 4).

4.2. Proof of optimality

Theorem 1. Algorithm MDA* provides minimal complete sets of efficient paths from source
node v0 to all destination nodes s ∈ T .

Proof. Let us assume that at the end of Algorithm 2 there exists an efficient path P from the
source node v0 to a destination node s ∈ T such that (d(P), t(P)) does not belong to the set
of non-dominated vector costs returned by the algorithm. Under this assumption, the set of
efficient paths between v0 and s is incomplete. We show that it cannot happen.

Let (u0, u1, ..., ur) be the sequence of nodes visited along path P with u0 = v0 and ur = s.
Let us denote by P0i and Pis the paths respectively defined by node sequences (u0, ..., ui)
and (ui, ..., ur) for all i ∈ {0, ..., r}. Let Li be the label associated with path P0i. Due to
the Principle of Optimality [20], label Li can never be dominated by labels in Labels[ui].
Consequently, the reason why P is not found by Algorithm 2 is that:

• either the algorithm stops before P is generated, that is, there exists j ∈ {1, ..., r − 1}
such that K(Lj) > max

s′∈T
Kmax

s′ ;

• or there exists j ∈ {1, ..., r − 1} such that a label L ∈ Labels[uj] is equal to Lj .

In the second case, let P ′ be the path obtained from L by extending it with path Pjs. Seeing
that (d(P ′), t(P ′)) = (d(P), t(P)) we fall into a situation similar to that of P and, inductively,
we eventually arrive to the first case.

Without loss of generality, let us thus assume that label Lj obtained from path P is such
that K(Lj) > max

s′∈T
Kmax

s′ . We know that d(P) = d(Lj) + d(Pjs). From properties 1 and 2, we

9

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

also know that d(P) ≤ dmax(v0, s), i.e.:

d(Lj) + d(Pjs) ≤ dmax(v0, s)

Then,
d(Lj) + dmin(uj , s) ≤ dmax(v0, s)

and, so,
d(Lj) + dmin(uj , s)− dmin(v0, s) ≤ dmax(v0, s)− dmin(v0, s)

Seeing that d(Lj) + dmin(uj , s) − dmin(v0, s) = K(Lj) and that dmax(v0, s) − dmin(v0, s) =
Kmax

s , we obtain
K(Lj) ≤ Kmax

s ≤ max
s′∈T

Kmax
s′

which contradicts our assumption and proves that the algorithm provides complete sets of
efficient paths. In addition, these sets are minimal because the algorithm prevents from having
two labels with the same vector cost attached to the same node.

4.3. Complexity analysis

We analyze the complexity of algorithm MDA* with structures allLabels and Labels[v]
implemented as follows:

• Structure allLabels is a heap; it embeds the following methods:

– Min() returns the label L at the top of the heap, i.e., with the smallest K(L)
value; its complexity is in O(1);

– extractMin() extracts the label L at the top of the heap; its complexity is in
O(log(|allLabels|));

– add(L) inserts label L into allLabels; its complexity is in O(log(|allLabels|));
– remove(L) removes label L from allLabels. its complexity is in O(|allLabels|).

• Structure Labels[v] is a chained list for each v ∈ V ; it gives access to the following
methods:

– add(L) adds label L to Labels[v]; the complexity is in O(1);

– remove(L) removes label L from the list; it is performed in O(|Labels[v]|).

Without loss of generality, we assume that data are integer. If it is not the case, data can
be multiplied by a power of ten. Let us introduce δ(v) = max

s∈T
(dmax(v0, s) − dmin(v0, v) −

dmin(v, s)) for every node v ∈ V , and let ∆ = max
v∈V

(δ(v)).

Theorem 2. The complexity of algorithm MDA* is in O(m∆2log(n∆)).

Proof. Given a node v ∈ V , a label L arriving at node v has a chance to lead to an efficient
path at one of the destination nodes s ∈ T if d(L) +dmin(v, s) ≤ dmax(v0, s). Therefore every
label L maintained at node v during the labeling procedure verifies d(L) ≤ max

s∈T
(dmax(v0, s)−

dmin(v, s)). In addition, dmin(v0, v) ≤ d(L), and, seeing that distances are assumed to be

10

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

integer and that at most one label is kept for every value of the distance, the number of
labels in list Labels[v] is bounded by δ(v). Equivalently, the total number of labels in heap
allLabels is bounded by

∑
v∈V δ(v) ≤ n∆.

The complexities of the main procedures performed during the search are as follows:

• The extraction of the label with smallest key value requires O(log(n∆)) operations;

• For each new label L′ = (v, d(L′), t(L′), father(L′)), the dominance check which implies
the insertion of the new (non-dominated) label in list Labels[v] and the removal of
dominated labels from Labels[v] and from the heap allLabels, requires O(δ(v)log(n∆))
operations.

• The extension of a selected label L = (u, d(L), t(L), father(L)) through all outgoing arcs
(u, v) ∈ A requires O(

∑
(u,v)∈A(1 + log(n∆) + δ(v)log(n∆)) operations: the first term

in the sum corresponds to the generation of the new label, the second term corresponds
to the insertion of the new label into the heap and the third term corresponds to the
dominance check.

Since every label arriving at a node v and that is in the heap is selected once andO(
∑

(u,v)∈A(1+
log(n∆) + δ(v)log(n∆))) ≤ O(

∑
(u,v)∈A δ(v)log(n∆), the total complexity of the algorithm is

given by:

complexity of MDA* = O

∑

u∈V

∑

L∈Labels[u]

log(n∆) +

∑

v∈V ;(u,v)∈A
δ(v)log(n∆)

≤ O

n∆log(n∆) +

∑

L∈Labels[u]

∑

(u,v)∈A
∆log(n∆)

≤ O
(
n∆log(n∆) +m∆2log(n∆)

)

≤ O(m∆2log(n∆))

5. Steiner BSPP with Time Windows

As already explained, this work is motivated by the computation of multigraph data in the
context of vehicle routing problems. When two attributes (e.g., time and distance) are present,
it generally implies additional constraints on routes. For example, in the VRPTW, time
windows limit customer visit times. These constraints can be exploited in the computation,
as we now show for the VRPTW.

Let es and ls denote respectively the earliest starting service time and the latest starting
service time for a terminal s ∈ T . It is not allowed to reach customer s after time ls; arriving
before es is possible but implies waiting for the opening time es. For the depot, this window
corresponds to the time horizon: starting time from the depot, latest allowed returning time.
A path P between two terminals u and v is feasible with respect to time windows if and only
if eu + t(P) ≤ lv. Therefore, sets of efficient paths can be limited to paths satisfying this
condition.

11

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

We consider the computation of efficient paths starting from a given node v0 ∈ T . We
denote by T+(v0) the subset of terminals reachable from v0 within their time windows:
T+(v0) = {s ∈ T : ev0 + tmin(v0, s) ≤ ls} ⊂ T . Only destination nodes in T+(v0) should be
considered during the search procedure. To do this, we propose the following enhancements:

1. The key of a label L = (u, d(L), t(L), father(L)) is evaluated regarding only reachable
destination nodes: K(L) = min

s∈T+(v0)
(d(L) + dmin(u, s)− dmin(v0, s));

2. The algorithm should terminate once labels Ls = (s, dmax(v0, s), t
min(v0, s), father(Ls))

have been generated for destination nodes s ∈ T+(v0). Thus, the stopping criterion is
that the selected label key is larger than max

s∈T+(v0)
Kmax

s ;

3. Only nodes that are apt to lead to a destination node with a feasible path should be
considered. Every node u such that ev0 + tmin(v0, u) + tmin(u, s) > ls for all destination
nodes s ∈ T+(v0) is discarded from graph G.

Due to the first enhancement, label keys increase more quickly during the labeling pro-
cedure. The second enhancement tightens the stopping condition. Combined with the first
enhancement, it limits the number of labels generated during the search. The third enhance-
ment is performed in preprocessing and permits reducing the size of the graph.

6. Computational experiments

In this section, we present the computational experiments carried out to evaluate the
efficiency of the proposed solution method. First, we present the benchmark problems used
in the experiments. Then, we report the computational results and we analyse the impact of
considering the time windows on the algorithm performance.

All algorithms are implemented in the C++ programming language and tests are run on
an Intel Xeon(R) CPU E5-2620v2 2.1 GHz computer with 32GB of memory.

6.1. Test problems

Since we are interested in computing paths for transportation problems, we conducted
our computational experiments on the basis of two series of real-world road networks:

• Two road networks (AIX-1 and AIX-2) were constructed based on spatial data from the
city of Aix-en-Provence 1 in France provided by OpenStreetMap© 2 database. Each
road segment is defined by a length, a maximum allowed speed and a travel direction.
Travel times were then computed using speeds and lengths.

1Aix-en-Provence is a city-commune in the region of Provence-Alpes-Cote d’Azur in the south of France,
about 30 km north of Marseilles

2OpenStreetMap is a collaborative project wich creates and distributes freely available geospatial data.
www.openstreetmap.org/

12

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• Four road networks (DC, DE, RI and AK) were extracted by Schultes [37] from US
Census 3 and correspond to Washington D.C., Delaware, Rhode Island and Alaska,
in the United States, respectively. In these networks, each road segment is given with
a distance and a travel time. Note that, the road networks in the original data are
undirected and we converted them into directed networks by duplicating all arcs.

Table 1 reports the main characteristics of these 6 road networks. For each road network,
the first two columns indicate the number of nodes n and the number of arcs m, respectively.
The last two columns give the minimum and the maximum number of outgoing arcs over all
nodes in the road network.

outgoing arcs
network n m min max

AIX-1 5437 10098 1 4
AIX-2 19500 36203 1 5
DC 9559 29707 1 6
DE 49109 119838 1 6
RI 53658 137596 1 6
AK 69082 155245 1 6

Table 1: Road network characteristics

From each road network, we generated 50 instances by randomly selecting terminals among
the network nodes. We considered different terminal set sizes and two different configurations:

• Random: terminals are randomly drawn on the whole road network graph.

• Centered: all terminals but one are randomly selected in the center of the network
(a fourth of the area covered by the network, centered). The remaining terminal is
randomly selected near the south-west corner of the network. It represents the standard
situation of urban deliveries from a distant depot.

Table 2 details the number of instances for each road network and for each value of nT . For
each configuration, 10 instances are generated: 5 random instances and 5 centered instances.
It amounts to a total of 300 instances.

number of terminals
network nT = 26 nT = 51 nT = 101 nT = 201 nT = 501

AIX-1 10 10 10 10 10
AIX-2 10 10 10 10 10
DC 10 10 10 10 10
DE 10 10 10 10 10
RI 10 10 10 10 10
AK 10 10 10 10 10

Table 2: Number of instances for each road network

3US Census 2000 TIGER/Line Files. U.S. Census Bureau, Washington, DC, Geography Division. http:

//www.census.gov/geo/www/tiger/tigerua/uatgr2k.html

13

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6.2. Computational results

In order to evaluate the performance of our algorithm, we compare its results to those of
three state-of-the-art algorithms: A*, LSET and LCOR.

• A* follows the classical guided-search mechanism. The core algorithm solves the bi-
objective shortest path problem from a single origin to a single destination. Contrary
to MDA*, the key of a label is given by the minimal distance to reach the destination.
It is repeated for all pairs of terminals.

• LSET is a one-to-all label setting algorithm. The search is not guided. At each itera-
tion, the minimum label according to the lexicographic order is selected. The stopping
criterion defined for MDA* is used. The algorithm is repeated for all possible origin
points in T .

• LCOR is a one-to-all label correcting algorithm. The search is not guided either. At
each iteration, a node is selected and the labels associated with this node are extended
to successor nodes. Nodes reenter the queue when their label list is modified. The
algorithm is repeated for all possible origin points in T .

For each instance, MDA* is also applied nT times, once for each node in T selected as the
source node, so that complete sets of efficient paths are obtained between all pairs of terminals.

Results for random instances are presented in Tables 3, 5, 7, 9, 11 and 13, for road
networks AIX-1, AIX-2, DC, DE, RI and AK, respectively. Results for centered instances are
presented in Tables 4, 6, 8, 10, 12 and 14, for road networks AIX-1, AIX-2, DC, DE, RI and
AK, respectively. Columns “MDA*”, “A*”, “LSET” and “LCOR” report total computing
times (in seconds) for the four algorithms. The average number of efficient paths between
pairs of terminals is presented in column “#p”.

A first observation in these tables is that, apart from a few exceptions, results are ho-
mogeneous among the 5 instance replications for a given value nT and a given configuration
(random or centered).

Comparing MDA* and A*, the latter is consistently beaten. A* is only competitive for
small values of nT , when the number of executions of the one-to-one core algorithm remains
limited. Clearly, the advantage of driving the search to a single direction is quickly lost when
the size of nT increases and reaches values that are practically meaningful in the context of
vehicle routing.

Similarly, except for a few exceptions, LSET is more efficient than LCOR, sometimes very
significantly. For that reason, in the remainder of the analysis we focus on MDA* and LSET.
Except for the smaller graph (AIX-1), MDA* is always many times faster than LSET, often
up to 10 times. Not surprisingly, MDA* is specially interesting when nT is small. In this case
indeed, being able to limit the search to some promising directions really makes a difference,
compared to an algorithm that indifferently explores all directions. Globally, the larger the
graph and the smaller nT , the larger the benefits achieved with MDA*.

Result tables for Centered instances even strengthen these observations. Let us recall that
this setting is particularly relevant in practice, as it typically corresponds to the situation
encountered by urban logistics providers. Having a distant depot (south-west corner) with
centered customers is indeed particularly beneficial for MDA*. When the source node (v0) is

14

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

nT MDA* A* LSET LCOR #p

26 1 0.5 1.0 0.5 1.4 3.8
2 0.6 1.2 0.6 1.6 4.3
3 0.5 1.1 0.6 1.4 4.1
4 0.5 1.0 0.6 1.4 4.1
5 0.5 1.2 0.5 1.4 4.0

51 1 1.2 3.7 1.1 2.9 3.9
2 1.1 3.3 1.1 2.8 4.0
3 1.1 3.5 1.0 2.8 4.1
4 1.2 4.0 1.1 2.8 4.3
5 1.2 4.0 1.1 3.1 4.2

101 1 2.6 11.5 2.2 5.4 4.1
2 2.5 10.8 2.1 5.2 3.9
3 2.6 13.4 2.3 5.8 4.1
4 2.6 12.9 2.1 5.2 4.0
5 2.5 11.8 2.2 5.3 4.1

201 1 6.0 43.4 4.3 10.6 4.1
2 6.3 51.8 4.4 11.0 4.1
3 6.2 47.2 4.3 10.6 4.1
4 6.4 54.1 4.4 11.5 4.2
5 6.3 51.8 4.2 11.2 4.2

501 1 22.5 285.0 11.4 27.0 4.1
2 22.9 278.1 10.6 28.0 4.2
3 22.8 263.6 12.4 29.1 4.2
4 22.6 255.7 12.4 27.1 4.2
5 23.0 275.0 12.8 30.7 4.4

Table 3: Computing times for AIX-1 - Ran-
dom

nT MDA* A* LSET LCOR #p

26 1 0.4 0.5 0.5 0.9 2.6
2 0.4 0.6 0.5 0.9 3.0
3 0.4 0.5 0.5 1.0 3.1
4 0.4 0.6 0.5 1.0 3.0
5 0.4 0.6 0.6 1.3 3.5

51 1 0.8 1.3 0.8 1.7 2.6
2 0.9 1.5 1.0 2.2 3.1
3 0.8 1.5 1.1 2.3 3.2
4 0.8 1.4 1.0 2.0 3.0
5 0.8 1.4 0.9 2.1 2.8

101 1 1.9 3.9 1.6 3.5 2.8
2 1.8 4.0 1.7 3.7 2.7
3 1.9 4.6 2.2 4.7 3.1
4 1.9 4.4 1.8 4.0 3.0
5 1.9 4.3 1.8 4.0 2.8

201 1 4.6 14.2 3.5 7.7 2.8
2 4.7 12.8 3.4 7.2 2.7
3 4.7 15.8 3.5 8.1 3.0
4 4.6 14.8 3.1 7.5 2.9
5 4.6 14.3 3.3 7.2 2.9

501 1 18.2 76.8 8.5 19.0 2.9
2 18.0 79.2 8.7 18.7 2.8
3 18.1 77.7 7.7 19.2 2.8
4 18.2 73.9 9.0 19.2 2.8
5 18.0 78.1 8.6 20.0 2.8

Table 4: Computing times for AIX-1 - Cen-
tered

15

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

nT MDA* A* LSET LCOR #p

26 1 9.3 24.5 23.8 169.7 15.6
2 7.4 19.0 20.7 134.3 14.3
3 9.7 25.6 20.7 120.6 13.6
4 9.1 27.7 22.7 152.8 16.1
5 7.7 28.7 27.1 156.1 15.9

51 1 19.9 80.8 43.3 296.2 14.5
2 21.2 91.3 41.5 276.4 14.8
3 16.6 77.3 38.5 245.5 13.3
4 23.7 91.3 45.5 298.4 14.7
5 23.7 113.5 45.2 342.0 15.2

101 1 47.6 328.5 81.3 561.8 14.5
2 48.6 345.0 81.5 551.6 14.4
3 45.5 319.5 79.1 534.1 13.3
4 36.0 229.2 70.8 509.4 12.6
5 45.9 344.0 78.4 615.3 14.0

201 1 105.3 1323.6 162.8 1106.8 14.4
2 94.0 1062.8 149.1 1041.2 13.0
3 100.7 1273.8 153.9 1170.7 13.9
4 87.0 960.4 143.1 1000.1 12.9
5 96.6 1069.8 163.0 1034.5 12.6

501 1 285.5 7365.8 375.2 2767.1 13.8
2 274.1 5831.1 384.4 2637.6 12.9
3 269.6 6200.6 399.8 2597.3 13.0
4 273.7 6405.3 399.4 2587.4 13.3
5 275.6 6664.8 395.1 2697.6 13.6

Table 5: Computing times for AIX-2 - Ran-
dom

nT MDA* A* LSET LCOR #p

26 1 2.7 5.4 12.8 106.7 8.2
2 3.5 7.6 14.9 118.0 10.6
3 2.6 5.3 10.4 66.1 7.2
4 3.3 6.6 14.2 95.1 8.9
5 2.8 5.5 10.6 75.9 8.2

51 1 7.2 21.1 24.4 239.7 8.6
2 7.7 25.1 28.9 225.1 10.0
3 6.5 20.6 21.0 144.3 7.7
4 7.4 22.1 25.0 181.5 8.7
5 6.5 20.0 25.6 165.2 8.3

101 1 16.0 83.4 52.2 439.7 8.8
2 17.5 98.5 53.0 432.4 9.7
3 15.0 80.2 43.6 292.7 7.6
4 16.8 81.2 46.3 369.0 8.9
5 17.6 86.0 50.9 350.8 8.5

201 1 35.1 295.6 100.5 824.6 8.4
2 37.7 368.2 98.8 818.7 9.1
3 36.7 300.6 94.2 655.9 8.1
4 38.2 341.9 99.3 792.3 8.8
5 38.5 332.4 96.9 708.0 8.5

501 1 123.1 1689.8 255.5 1934.3 8.4
2 120.7 1821.6 257.2 1918.7 8.8
3 123.0 1809.6 244.1 1808.1 8.4
4 125.8 1560.3 238.5 1888.2 8.1
5 124.3 1838.9 250.2 2039.8 8.7

Table 6: Computing times for AIX-2 - Cen-
tered

16

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

nT MDA* A* LSET LCOR #p

26 1 5.5 13.3 22.4 144.7 15.1
2 6.4 21.1 25.7 131.6 15.2
3 5.9 18.7 21.0 112.2 13.2
4 8.0 27.4 27.3 183.9 19.1
5 5.6 15.6 21.1 137.3 15.5

51 1 14.7 63.8 48.4 272.8 14.7
2 16.1 87.3 48.6 287.0 15.7
3 15.3 64.7 46.3 301.4 16.4
4 13.0 58.6 41.0 263.9 14.3
5 16.5 80.1 47.4 345.4 17.3

101 1 34.6 300.0 96.7 556.5 15.2
2 32.2 241.9 87.4 555.5 15.1
3 42.1 397.8 119.4 719.2 18.7
4 37.8 295.5 86.5 686.8 17.3
5 37.7 358.6 88.5 589.4 15.3

201 1 72.6 1064.9 185.9 1109.4 15.3
2 84.5 1334.4 215.8 1377.4 17.7
3 78.0 1359.5 188.3 1170.9 16.0
4 79.9 1281.1 185.4 1257.4 16.5
5 73.9 1129.1 210.0 1154.7 15.6

501 1 211.0 7961.5 527.2 3071.1 16.3
2 205.2 7722.3 539.0 2825.3 16.1
3 201.6 7444.0 520.5 2856.1 15.4
4 205.0 7602.0 485.4 3014.1 15.9
5 199.6 7307.8 542.7 2771.6 15.3

Table 7: Computing times for DC - Random

nT MDA* A* LSET LCOR #p

26 1 4.1 11.1 19.3 140.4 14.4
2 3.5 7.9 27.5 143.8 12.6
3 3.7 10.3 22.1 145.6 13.9
4 2.7 6.2 15.7 163.2 13.2
5 2.9 6.3 19.1 132.3 13.1

51 1 8.3 37.1 43.1 292.6 14.2
2 9.3 46.9 48.3 326.5 15.4
3 8.1 36.6 49.7 306.8 14.6
4 8.0 36.4 48.6 284.0 14.0
5 8.7 42.0 44.1 288.3 14.4

101 1 17.0 122.7 83.9 565.9 13.6
2 20.1 170.0 92.2 659.9 15.7
3 19.4 168.4 110.2 658.5 15.3
4 17.9 147.1 92.0 590.1 14.3
5 20.4 180.4 93.6 631.8 15.4

201 1 40.7 589.5 218.1 1119.7 14.0
2 41.6 570.6 207.3 1223.6 14.6
3 41.9 603.6 174.4 1260.4 14.7
4 37.7 508.1 166.3 1160.8 13.6
5 35.9 447.6 197.4 1130.0 13.2

501 1 117.9 3567.4 618.0 2866.3 14.1
2 115.1 3443.5 434.3 3001.9 14.1
3 111.7 3320.5 525.6 2911.0 13.8
4 114.2 3368.3 413.2 2931.8 14.1
5 115.4 3158.2 446.1 2949.8 13.7

Table 8: Computing times for DC - Centered

the depot, all destination nodes are clustered and the search is very efficiently guided. When
the source node is any other terminal, all destination nodes but one are close; the best paths
to these nodes can efficiently be found; the best paths to the last node (the depot) are also
efficiently computed thanks to the A* mechanism. On the contrary, LSET always needs to
compute best paths to a large part of the network before being able to stop the search.

Tables 3 to 14 also give interesting insights on the size of complete sets of efficient paths
in the different networks. For a given network, this value only slightly depends on value
nT , as could be expected, but is different for the Random and Centered configurations. In
the Centered configuration, the average distance between terminals is smaller and one could
expect a more limited number of efficient paths. This is confirmed by experiments, but,
surprisingly, the reduction factor is extremely dependent on the network (almost null for
DC, very large for DE or AK). Anyway, one can see that the average size of efficient sets
approximately varies between 3 and 40, which can be interpreted in two different manners.
On the one hand, it remains very limited compared to the theoretical exponential-size that
these sets could have. On the other hand, time and distance are strongly correlated and it
is generally admitted that the longer the distance, the longer the traveling time. Values of
#p show that it is not completely true and that the number of efficient paths between two
terminals in a road-network can be relatively important.

6.3. Results in the context of the VRPTW

We now evaluate the impact of the enhancements proposed in Section 5 when time windows
are introduced. For the sake of brevity, we limit our experiments to the 25 AIX-2 instances

17

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

nT MDA* A* LSET LCOR #p

26 1 41.9 89.1 2436.2 1845.4 20.8
2 25.4 65.3 2003.1 1294.0 14.6
3 60.8 227.1 2338.6 1914.2 20.9
4 38.3 100.0 2319.0 2426.0 21.8
5 49.7 126.8 2091.5 1693.1 16.3

51 1 83.7 275.1 4350.8 2978.5 16.9
2 145.1 677.3 4702.5 4464.7 22.5
3 175.1 647.8 4397.2 5331.1 22.9
4 136.8 565.4 5353.1 4093.4 19.4
5 122.0 428.1 4609.7 3976.9 19.0

101 1 280.2 1795.0 8993.5 7332.3 19.3
2 391.5 2536.7 9621.7 9492.8 21.3
3 284.9 1656.3 9547.9 7856.1 18.7
4 283.3 1511.6 9235.2 8017.7 18.5
5 299.5 1695.9 9120.2 7324.3 17.2

201 1 797.8 8648.8 18258.2 16861.5 20.2
2 671.5 6257.1 18681.4 15227.2 18.5
3 640.2 5823.0 18601.4 14473.7 16.5
4 722.6 7472.9 21660.4 16124.0 19.0
5 743.2 6655.7 17283.4 15907.9 18.2

501 1 2148.6 48383.4 45874.4 39798.4 19.0
2 2086.3 42608.7 47167.5 39141.1 18.0
3 2075.5 38102.2 52560.1 39243.8 18.5
4 2108.1 45133.2 49693.9 37259.4 18.6
5 2404.2 51901.8 49771.4 43776.5 20.7

Table 9: Computing times for DE - Random

nT MDA* A* LSET LCOR #p

26 1 5.3 6.6 923.5 1038.2 5.2
2 6.0 8.7 854.2 967.0 6.6
3 5.2 6.6 983.4 915.5 5.3
4 5.8 7.8 790.3 1130.4 5.9
5 5.4 7.9 1239.0 1305.5 6.4

51 1 10.8 16.2 1710.3 1860.8 5.2
2 11.1 18.8 1769.1 2296.3 5.5
3 12.2 24.5 2295.2 2460.0 6.8
4 11.2 17.5 1799.8 2217.7 6.0
5 11.5 19.4 2070.7 1925.9 6.0

101 1 23.6 51.4 3293.0 4086.3 5.3
2 25.3 65.9 3865.4 4740.1 6.4
3 24.7 60.8 3732.4 4201.3 6.1
4 23.3 55.8 3983.9 4000.4 5.5
5 22.2 52.0 3743.0 4566.0 5.4

201 1 54.6 187.6 6662.8 8491.9 5.6
2 55.5 200.7 7284.9 8216.5 5.8
3 54.0 200.5 7479.9 8329.5 5.9
4 58.7 218.9 7469.4 9338.0 6.4
5 57.9 261.6 7929.7 8876.5 6.4

501 1 189.4 1112.5 16953.1 21155.7 5.7
2 187.1 1333.4 19643.9 21895.6 6.3
3 188.9 1295.8 17553.3 21035.5 6.0
4 188.7 1324.7 17387.9 21497.7 6.2
5 200.5 1305.3 18159.4 21075.8 6.0

Table 10: Computing times for DE - Cen-
tered

18

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

nT MDA* A* LSET LCOR #p

26 1 247.6 809.6 1711.0 12453.8 35.1
2 233.3 685.1 1841.4 11315.9 31.7
3 361.6 1197.9 2099.0 15145.3 40.0
4 235.1 725.7 2327.8 13142.7 37.3
5 758.2 2566.0 3693.9 28150.2 57.9

51 1 596.0 2674.4 3433.6 23524.0 32.6
2 758.7 3905.8 4168.2 26257.5 38.0
3 1166.0 8649.9 5739.0 41957.7 49.4
4 556.5 2763.9 3448.7 22908.7 34.2
5 711.1 3796.6 4530.1 27262.1 34.7

101 1 1513.8 13173.9 7454.2 49607.5 35.3
2 1943.1 24201.7 9107.0 64238.5 42.3
3 1504.2 14482.2 8485.1 51957.0 35.7
4 1645.6 18710.7 8534.4 54202.1 38.4
5 1073.2 8629.2 8233.8 46816.5 33.1

201 1 3105.8 54667.5 16072.7 100117.0 36.0
2 3020.0 51102.8 15736.8 96977.3 33.8
3 3125.2 53022.5 15586.0 101538.0 36.2
4 3481.9 70638.8 18784.7 111291.0 36.7
5 3732.5 77161.3 18149.0 116441.0 39.5

501 1 8220.0 333443.0 39876.1 244181.0 34.9
2 9371.8 36338.7 46338.7 276690.0 37.9
3 8154.8 308090.5 40890.9 26892.7 34.1
4 9027.8 328953.4 42953.3 27954.1 37.5
5 9250.2 320034.0 40035.0 25021.1 37.5

Table 11: Computing times for RI - Random

nT MDA* A* LSET LCOR #p

26 1 148.7 660.6 1996.1 12324.5 27.0
2 111.9 409.1 1699.6 11821.7 29.4
3 87.9 218.8 1464.7 7863.0 18.6
4 98.2 375.1 1815.6 8796.0 20.7
5 58.1 157.7 1378.8 9121.0 20.3

51 1 269.3 1657.9 3376.6 21111.2 24.6
2 142.2 498.3 2292.4 13476.7 16.9
3 140.5 622.1 2522.3 18777.3 21.3
4 222.6 1085.6 2537.6 20031.5 24.2
5 302.3 1916.6 3490.5 21924.8 30.3

101 1 463.1 3773.2 5407.8 33954.8 21.1
2 347.5 2288.8 4789.9 36727.3 22.2
3 541.4 4926.1 6004.2 40479.8 25.7
4 398.0 2889.1 5001.0 37140.0 21.8
5 461.4 3398.0 6625.2 40491.0 27.3

201 1 950.0 11324.7 9809.7 68533.0 21.0
2 979.3 12219.7 10539.0 71759.8 22.9
3 997.9 12035.4 11843.0 76078.0 24.8
4 910.5 11935.3 11438.4 76861.6 24.2
5 693.9 6598.2 9920.7 57901.8 18.0

501 1 2750.0 71994.4 24948.2 176894.0 22.4
2 2465.4 61735.4 26412.1 170807.0 21.5
3 2350.1 72256.9 24382.1 173560.0 22.3
4 2821.9 71924.2 22053.0 167324.0 21.0
5 2742.2 72347.3 23655.0 164094.0 21.0

Table 12: Computing times for RI - Cen-
tered

19

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

nT MDA* A* LSET LCOR #p

26 1 217.6 733.1 1111.6 2731.9 34.2
2 164.0 626.8 1127.4 2303.3 35.8
3 292.1 1050.0 1309.6 3037.7 37.3
4 161.1 633.4 1053.8 2665.7 35.9
5 260.8 1553.4 1456.1 3147.2 45.8

51 1 423.5 3077.9 2184.7 4971.3 36.0
2 539.5 3389.7 2322.9 5600.6 39.2
3 448.7 3295.3 2307.0 5347.0 38.2
4 402.5 2502.3 2008.4 4635.5 33.7
5 460.5 3274.5 2001.6 5273.7 37.2

101 1 1109.6 12536.9 4454.1 10095.5 37.0
2 960.3 11787.0 4285.7 10050.4 36.0
3 945.5 9965.8 3788.1 9376.4 33.7
4 1151.9 14056.3 4720.7 10744.0 37.5
5 1057.6 9883.7 4473.6 10041.0 34.5

201 1 2396.4 49467.7 8609.2 20472.4 37.1
2 2355.0 46347.2 8381.8 19343.5 35.3
3 2503.1 47041.6 9202.7 21304.7 37.0
4 2499.4 57734.6 8992.6 22188.9 39.8
5 2338.8 54599.6 9636.2 20946.5 37.4

501 1 6584.5 291573.0 21734.9 50337.2 35.8
2 6837.0 349924.0 25313.8 54515.3 38.6
3 6597.9 300878.0 20646.0 50640.3 36.2
4 6316.4 305386.0 21351.3 50216.9 36.2
5 7058.7 337687.0 23276.6 53547.0 38.2

Table 13: Computing times for AK - Ran-
dom

nT MDA* A* LSET LCOR #p

26 1 109.4 138.5 1425.1 2563.6 12.6
2 13.8 19.2 1357.8 2291.2 9.5
3 14.4 20.8 1335.7 2729.2 11.3
4 145.3 195.2 1142.8 2313.4 14.1
5 209.0 282.8 1840.7 3023.6 14.3

51 1 231.7 357.6 2822.4 5368.9 10.5
2 441.1 630.5 2454.0 4946.7 11.5
3 453.1 663.2 2902.1 5440.4 11.9
4 227.9 358.9 2736.7 4679.5 11.1
5 27.2 58.2 3186.7 4323.9 9.1

101 1 476.6 781.5 5086.1 9504.9 9.3
2 662.4 1006.1 5507.3 9885.5 10.1
3 54.8 148.5 5626.3 8105.5 7.8
4 858.7 1320.1 6437.0 10034.1 10.1
5 737.0 1177.6 5190.0 9748.5 9.9

201 1 1000.5 1900.2 10170.1 20245.3 9.0
2 159.3 590.0 11884.4 17890.7 8.1
3 881.2 1728.8 9777.2 20692.0 8.7
4 802.8 1561.9 10312.3 19110.1 8.3
5 1946.2 3110.6 10868.0 22597.3 9.0

501 1 1827.2 5095.0 26988.8 46531.6 7.8
2 3432.9 7138.1 27202.1 46359.8 8.3
3 2094.9 5431.2 29882.9 47885.6 7.7
4 2719.3 6828.1 30291.2 44805.7 8.2
5 2738.2 6256.0 28583.7 46866.3 7.8

Table 14: Computing times for AK - Cen-
tered

20

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

and the 25 DC instances, with nodes randomly drawn. Time windows are added as follows:

1. A node, denoted s0, is randomly selected in T to represent the depot; other terminals
represent customers.

2. The depot time window [0, l0] defines the time horizon and is set such that every node
in T \ {s0} can be visited on a back-and-forth route.

3. A feasible VRP solution is then constructed with a simple greedy algorithm.

4. Finally, time windows [es, ls] are defined for all customers s ∈ T \ {s0}, centered on the
visit time in the greedy solution and with a width equal to l0

5 (truncated to make sure
that es ≥ 0 and ls ≤ l0).

Results are presented in Tables 15 and 16. In these tables, Column “|T+(v0)|” reports the
average number of reachable destinations; Column “# removed” indicates the average number
of nodes that could be removed. Column “CPU %” indicates the average impact on computing
time (in %), including preprocessing. Column “#p” indicates the average impact on the
number of efficient paths found between two terminals (in %). Note that this gap is not null
because it compares the number of paths with or without time windows.

nT |T+(v0)| # removed CPU % #p %

26 13 2881 -50.3 -64.0
51 26 3766 -41.3 -61.1

101 51 3373 -37.6 -63.1
201 101 3311 -38.4 -63.6
501 255 2902 -26.3 -61.8

Table 15: Impact of enhancements on network AIX-2 - Random

nT |T+(v0)| # removed CPU % #p %

26 14 1245 -32.4 -52.8
51 27 1778 -41.8 -54.2

101 51 1821 -37.7 -56.6
201 95 1984 -37.4 -60.8
501 239 2000 -32.2 -60.6

Table 16: Impact of enhancements on network DC

From these tables, we notice that, with our enhancements, the number of considered
destinations |T+(v0)| is significantly reduced: approximately divided by 2 on average. We also
see that the number of removed nodes is relatively important. Regarding computing times, it
clearly appears that the algorithm is faster when the enhancements are used. Regarding the
number of paths, one can observe that the size of complete sets of efficient paths is divided
by more than 2.

7. Conclusion

In this paper, we introduced and investigated the Steiner bi-objective shortest path prob-
lem. The particularity of this problem is to seek for complete set of efficient paths linking a

21

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

subset of nodes in the network, the so-called terminals. We developed an exact solution ap-
proach based on a labeling algorithm combined with a modified A∗ algorithm. The proposed
approach is based on a goal-directed search strategy that guides labels simultaneously towards
all terminals and allows stopping the search quickly once all efficient paths have been found.
The motivation for this new problem stems from the preprocessing of travel information for
vehicle routing problems and we proposed and evaluated several enhancements in the case of
the VRPTW.

Computational experiments were carried out on a large panel of instances based on real
road networks. Results show that the proposed algorithm performs very well for all tested
instances. The MDA* algorithm largely outperforms state-of-the-art algorithms. Additional
savings are obtained when taking into account time windows.

Experiments also give insights on the solution of vehicle routing problems with multi-
graphs. They show that multigraphs of acceptable size should be obtained and that these
graphs could be computed in a reasonable amount of time for road-network graphs with
dozens of thousand of nodes and hundreds of customers.

Would these computing times be considered too high in practice, several possible adap-
tations of our algorithms could be possible. For example, computations might be simplified
a lot by only keeping the min-time and min-cost paths. Also, some heuristic rules might
be introduced in the dynamic programming algorithm to limit the number of labels. Mono-
objective shortest path problems with different weighted sums for travel time and cost could
also be solved. Of course, with all these approaches, the theoretical guarantee of optimality
would be lost for the subsequent vehicle routing problem.

Acknowledgements

The first author was supported by the Labex IMobS3, by the European Fund for Regional
Development (FEDER Auvergne region) and by the Auvergne Region.

References

[1] P. E. Hart, N. J. Nilsson, B. Raphael, A formal basis for the heuristic determination
of minimum cost paths, IEEE Transactions on Systems Science and Cybernetics 4 (2)
(1968) 100–107.

[2] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathe-
matik 1 (1) (1959) 269–271.

[3] R. W. Floyd, Algorithm 97: Shortest path, Communications of the ACM 5 (6) (1962)
345.

[4] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wag-
ner, R. F. Werneck, Route planning in transportation networks, in: Algorithm Engineer-
ing, Springer, 2016, pp. 19–80.

[5] H. Ben Ticha, N. Absi, D. Feillet, A. Quilliot, Vehicle routing problems with road-network
information: State of the art, Networks 72 (3) (2018) 393–406.

22

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[6] T. Garaix, C. Artigues, D. Feillet, D. Josselin, Vehicle routing problems with alternative
paths: An application to on-demand transportation, European Journal of Operational
Research 204 (1) (2010) 62–75.

[7] D. S. Lai, O. C. Demirag, J. M. Leung, A tabu search heuristic for the heterogeneous
vehicle routing problem on a multigraph, Transportation Research Part E: Logistics and
Transportation Review 86 (2016) 32–52.

[8] A. N. Letchford, S. D. Nasiri, A. Oukil, Pricing routines for vehicle routing with time
windows on road networks, Computers & Operations Research 51 (2014) 331–337.

[9] Y. Huang, L. Zhao, T. Van Woensel, J.-P. Gross, Time-dependent vehicle routing prob-
lem with path flexibility, Transportation Research Part B: Methodological 95 (2017)
169–195.

[10] H. Ben Ticha, N. Absi, D. Feillet, A. Quilliot, Empirical analysis for the VRPTW with
a multigraph representation for the road network, Computers & Operations Research 88
(2017) 103–116.

[11] P. Serafini, Some considerations about computational complexity for multi objective
combinatorial problems, in: Recent Advances and Historical Development of Vector
Optimization, Springer, 1987, pp. 222–232.

[12] G. Cornuéjols, J. Fonlupt, D. Naddef, The traveling salesman problem on a graph and
some related integer polyhedra, Mathematical Programming 33 (1) (1985) 1–27.

[13] A. N. Letchford, S. D. Nasiri, D. O. Theis, Compact formulations of the Steiner travel-
ing salesman problem and related problems, European Journal of Operational Research
228 (1) (2013) 83–92.

[14] M. Ehrgott, X. Gandibleux, A survey and annotated bibliography of multiobjective com-
binatorial optimization, OR-Spektrum 22 (4) (2000) 425–460.

[15] A. J. Skriver, A classification of bicriterion shortest path (BSP) algorithms, Asia Pacific
Journal of Operational Research 17 (2) (2000) 199–212.

[16] J. C. Cĺımaco, M. Pascoal, Multicriteria path and tree problems: Discussion on exact
algorithms and applications, International Transactions in Operational Research 19 (1-2)
(2012) 63–98.

[17] P. Hansen, Bicriterion path problems, in: Multiple Criteria Decision Making Theory and
Application, Springer, 1980, pp. 109–127.

[18] M. Müller-Hannemann, K. Weihe, On the cardinality of the Pareto set in bicriteria
shortest path problems, Annals of Operations Research 147 (1) (2006) 269–286.

[19] L. Mandow, J. L. Pérez de la Cruz, A memory-efficient search strategy for multiobjective
shortest path problems, in: Annual Conference on Artificial Intelligence, Springer, 2009,
pp. 25–32.

[20] E. Q. V. Martins, On a multicriteria shortest path problem, European Journal of Oper-
ational Research 16 (2) (1984) 236–245.

23

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[21] E. Q. V. Martins, J. Santos, The labeling algorithm for the multiobjective shortest path
problem, Departamento de Matematica, Universidade de Coimbra, Portugal, Tech. Rep.
TR-99/005 (1999).

[22] S. Irnich, G. Desaulniers, Shortest path problems with resource constraints, in: Column
Generation, Springer, 2005, pp. 33–65.

[23] D. Feillet, P. Dejax, M. Gendreau, C. Gueguen, An exact algorithm for the elementary
shortest path problem with resource constraints: Application to some vehicle routing
problems, Networks 44 (3) (2004) 216–229.

[24] J. Brumbaugh-Smith, D. Shier, An empirical investigation of some bicriterion shortest
path algorithms, European Journal of Operational Research 43 (2) (1989) 216–224.

[25] C. T. Tung, K. L. Chew, A multicriteria Pareto-optimal path algorithm, European Jour-
nal of Operational Research 62 (2) (1992) 203–209.

[26] F. Guerriero, R. Musmanno, Label correcting methods to solve multicriteria shortest
path problems, Journal of Optimization Theory and Applications 111 (3) (2001) 589–
613.

[27] J. M. Paixão, J. L. Santos, Labeling methods for the general case of the multi-objective
shortest path problem–a computational study, in: Computational Intelligence and Deci-
sion Making, Springer, 2013, pp. 489–502.

[28] B. S. Stewart, C. C. White III, Multiobjective A*, Journal of the ACM (JACM) 38 (4)
(1991) 775–814.

[29] L. Mandow, J. L. Pérez de la Cruz, Multiobjective A* search with consistent heuristics,
Journal of the ACM (JACM) 57 (5) (2010) 27.

[30] J. C. N. Climaco, E. Q. V. Martins, A bicriterion shortest path algorithm, European
Journal of Operational Research 11 (4) (1982) 399–404.

[31] A. Raith, M. Ehrgott, A comparison of solution strategies for biobjective shortest path
problems, Computers & Operations Research 36 (4) (2009) 1299–1331.

[32] E. Q. V. Martins, An algorithm for ranking paths that may contain cycles, European
Journal of Operational Research 18 (1) (1984) 123–130.

[33] F. Huarng, P. Pulat, L. Shih, A computational comparison of some bicriterion shortest
path algorithms, Journal of the Chinese Institute of Industrial Engineers 13 (2) (1996)
121–125.

[34] J. Mote, I. Murthy, D. L. Olson, A parametric approach to solving bicriterion shortest
path problems, European Journal of Operational Research 53 (1) (1991) 81–92.

[35] J. M. A. Pangilinan, G. K. Janssens, Evolutionary algorithms for the multiobjective
shortest path problem, World Academy of Science, Engineering and Technology, Inter-
national Journal of Mathematical, Computational, Physical, Electrical and Computer
Engineering 1 (1) (2007) 7–12.

24

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[36] K. Ghoseiri, B. Nadjari, An ant colony optimization algorithm for the bi-objective short-
est path problem, Applied Soft Computing 10 (4) (2010) 1237–1246.

[37] D. Schultes, Tiger road networks for 9th DIMACS implementation challenge–shortest
path, http://users.diag.uniroma1.it/challenge9/data/tiger (2005).

25

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

