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Overview

This presentation summarizes the research done by :
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during two consequent post-doctoral projets in collaboration with :

Christophette Blanchet-Scalliet

Céline Helbert

Rodolphe Le Riche

This work was partly supported by the OQUAIDO research Chair in Applied Mathematics.
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Context

Design optimization of complex engineering systems:

Computationally costly system performance simulations

Computational Fluid-Dynamics

Finite Element Models

Internal optimizations

Presence of uncertain parameters

Manufacturing errors

Meteorological conditions

Physical model limitations

Necessity to determine a robust optimal design in terms of objective function value and

feasibility with a finite amount of simulations
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Problem formulation (1)

We consider 2 types of variables [Valdebenito et al. 2010]

x ∈ Sx ⊂ Rd Design variables

u ∈ Su ⊂ Rm Uncertain variables

u ∼ U with known density function ρU.

The system performance can be modeled as an objective function:

f (x,U)

subject to multiple constraints:

gi (x,U) ≤ 0, i = 1, . . . , ng
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Problem formulation (2)

In the presence of uncertain variables, an optimal robust and feasible design can be defined as:

min x∈Sx EU[f (x,U)]

s.t. P(gi (x,U) ≤ 0, i = 1, . . . , ng ) ≥ 1− α, 0 < α < 1

Alternatively:

P(gi (x,U) ≤ 0, i = 1, . . . , ng ) ≥ 1− α ←→ c(x) ≤ 0
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Bayesian optimization

Necessity to solve the optimization problem with a limited amount of costly simulations →
Bayesian optimization

Surrogate Model Based Design Optimization (SMBDO) relying on Gaussian Process (GP)

modeling

GPs are used to define an acquisition function, characterizing how promising an

unmapped location in the search space is

At each iteration, the costly system performance is only evaluated at one or few

promising locations

A 2-step Bayesian optimization algorithm for robust optimization under uncertainties is

therefore proposed
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Robust Bayesian optimization (1)

Generic approach : two-step acquisition function

Let P(x) be a random progress measure at x computed w.r.t. the GPs of f and g1, . . . , gng

Step 1: Define a desirable xtarget by maximizing the expectation of the progress measure

xtarget = arg max
x

E(P(t)(x))

Step 2: Define the complete next iterate by minimizing the one step-ahead variance of

the progress measure at xtarget :

(xt+1,ut+1) = arg min
x,u

Var(P(t+1)(xtarget))

What points should be added to the training set in order to minimize the progress variance at

xtarget?
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Robust Bayesian optimization (2)

f and g modeled in the joint search space Sx × Su as [Janusevskis et al. 2013] :

F (x,u) ∼ GP(mF (x,u), kF (x,u; x′,u′))

Gi (x,u) ∼ GP(mGi
(x,u), kGi

(x,u; x′,u′)), for i = 1, . . . , ng

F (t), G
(t)
i represent the GPs conditioned on t observations. e.g., {f (x1,u1), . . . , f (xt ,ut)}

Projected process:

Z (x) = EU [F (x,u)] ∼ GP(mZ (x), kZ (x, x′))
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Robust Bayesian optimization (3)

We choose the Feasible Improvement (FI) as the measure of progress

Feasible improvement (projected space)

P(x) = FI (t)(x) = I (t)(x)1{C (t)(x)≤0}

= (z feasmin − Z (t)(x))+
1{C (t)(x)≤0}

where

C (t)(x) = 1− α− EU[1∩ngi=1{G
(t)
i (x,U)≤0,i=1,...,ng}

]

z feas
min is not known and must be estimated through an optimization routine
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Robust Bayesian optimization (4)

The most promising set of design variables is computed as:

Expected Feasible improvement (projected space)

EFI (t)(x) = E[(z feasmin − Z (t)(x))+
1{C (t)(x)≤0}]

= EI (t)(x)P(C (t)(x) ≤ 0)

xtarget = arg max
x∈Sx

EFI (t)(x)

C (t)(x) is not Gaussian → no closed form expression for P(C (t)(x) ≤ 0)
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Robust Bayesian optimization (5)

xt+1,ut+1 selected in order to minimize the one-steap-ahead variance of the FI at xtarget we

would obtain if we added {xt+1,ut+1} to the training set:

One-step-ahead FI variance

Var
(
I (t+1)(xtarget)1{C (t+1)(x)≤0}

)
where F (t+1) | {f (x1,u1), . . . , f (xt ,ut)} ∪ f (xt+1,ut+1)

G
(t+1)
i | {gi (x1,u1), . . . , gi (xt ,ut)} ∪ gi (xt+1,ut+1)

Which new evaluation would provide the largest amount of information on the robust

optimal design?
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Robust Bayesian optimization (6)

We consider xt+1 = xtarget and a FI variance proxy:

ut+1 = argmin
ut+1

Var
(
I (t+1)(xtarget)

)∫
Rm

Var
(
1∩ng

i=1{G
(t+1)
i (x,U)≤0,i=1,...,ng}

)
ρUdu

Product of variances instead of variance of product

The conditioning values f (xt+1,ut+1) and gi (xt+1,ut+1) are unknown

The FI variance at t+1 is integrated w.r.t. the distributions of f (xt+1,ut+1) and gi (xt+1,ut+1)
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Results, part 1

3 compared algorithms

EFI : presented RBO algorithm

EFI + random : xt+1 determined through EFI maximisation, ut+1 sampled according to

its distribution

EFI + random : xt+1 determined through constrained EI maximisation, ut+1 is computed

by minimizing the deviation number:

D(u) = mini
|m

G
(t)
i

(xt+1,u)|

σ
(t)
Gi

(xt+1,u)
,
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4-d test-case

min
x

EU [f (x,U)] s.t. P(g(x,U) ≤ 0) ≥ 0.95

f (x1, x2, u1, u2) = 5(x2
1 + x2

2 )− (u2
1 + u2

2) + x1(u2 − u1 + 5)

+x2(u1 − u2 + 3)

g(x1, x2, u1, u2) = −x2
1 + 5x2 − u1 + u2

2 − 1

with x ∈ [−5, 5]2 and U ∼ U([−5, 5]2)

Results over 20 repetitions
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4-d test-case
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4-d test-case
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Algorithm variants (1)

In general, the constraints are considered independent and are modeled separately

: Gi (x,u)

The objective function and all of the constraints are computed at every iteration and at

the same location xt+1,ut+1

Some additional notes can be made:

Constraints often depend on correlated physical phenomena, e.g.,

Displacement & Von Mises stress

Aerodynamic and structural responses of a wing

It is often possible to separately simulate a single given constraint

Constraints often drive the computational cost of the optimization
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Algorithm variants (2)

The proposed extensions stem from modeling the ng constraints as a multi-output GP
[Alvarez et al. 2011], [Evgeniou et al. 2006]

A single GP simultaneously models all of the constraints characterizing the problem

This allows for:

Possibly more accurate GP modeling of constraints

Possibility of selecting different values of u for f and for each gi

Possibility of selecting the constraints which provide the most information w.r.t. the

robust optimum location

→ Overall computational cost reduction
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Multi-output GP modeling (1)

The output-as-input approach is considered:

G (x,u, p) ∼ GP(mg (x,u, p), kg (x,u, p, x′,u′, p′))

kg (x,u, p, x′,u′, p′) = kgc (x,u, x′,u′)× kgd (p, p′)

p ∈ {1, . . . , ng} indicates the selected output

kgd (p, p′) is a kernel characterizing the covariance between discrete levels [Roustant et al. 2018]

The design space is augmented: the training sets for all constraints are considered

simultaneously
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Multi-output GP modeling (2)

G(x,u) = {G1(x,u), . . . ,Gng (x,u)}
G(x,u) ∼ GP(mg (x,u),Kg (x,u, x′,u′))

C (t)(x) = 1− α− EU[1G(t)(x,U)≤0]

where:

mg (x,u) is an ng × 1 vector

Kg is a ng × ng matrix

The prediction of G(x,u) at un unmapped location follows a multivariate normal distribution
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Multi-output GP modeling (3)

Example

Figure 1: RMSE separate modeling Figure 2: RMSE Multi-Output
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RBO Variant (1)

It can be shown that the FI equations remain valid if multi-output modeling is considered

A first straightforward extension is obtained as:

xtarget = arg max
x∈Sx

EFI (x)

ut+1 = arg min
ut+1

Var
(
I (t+1)(xtarget)

)∫
Rm

Var
(
1{G(x,u)≤0}

)
ρUdu

NB: the objective function is considered independent and uncorrelated from the constraints
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RBO Variant (2)

Notice: the feasible improvement variance proxy at t+1 can be decomposed into two separate

terms:

S(xtarget ,u) = Var
(
I (t+1)(xtarget)

)∫
Rm

Var
(
1{G(x,u)≤0}

)
ρUdu

= ST1(xtarget ,u)ST2(xtarget ,u)

ST1 only relates to the objective function GP, while ST2 only relates to the constraints GP

What if we refine objective and constraint functions with different values of u?
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RBO Variant (3)

Independent refining of each constraint

The search space of the one-step-ahead FI variance can be augmented and decomposed:

One-step-ahead FI variance proxy variant

ST1(x, uf ) = Var((z feasmin − Z(xtarget))+|ft , f (x, uf ))

ST2(x, u1, . . . , ung ) =

∫
Rm

Var

(
1{G(xtarget ,u)t+1≤0}|gt1,...,g

t
ng

,g1(x,u1),...,gng (x,ung )

)
ρU(u)du

{xtarget ,uf } represents the objective function infilled sample

{xtarget ,ui} with i = 1, . . . , ng represents the sample infilled associated to the i-th

constraint
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RBO Variant (4)

Example

Feasibility variance at t+1 Improvement variance at t+1
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RBO Variant (5)

What if we do not evaluate all of the constraints at every iteration?

Selection of the most informative constraint

One-step-ahead FI variance proxy variant

ST1(x,uf ) = Var((z feasmin − Z (xtarget))+|ft , f (x,uf ))

ST2(x,ug , p) =

∫
Rm

Var
(
1{G(xtarget ,u)t+1≤0}|gt

1,...,g
t
ng
,gp(x,ug )

)
ρU(u)du

{xtarget ,uf } represents the objective function infilled sample

{xtarget ,ug , p} represents the sample infilled to the constraint associated to the indicator p
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RBO Variant (6)

Example
Feasibility variance reduction g1 Feasibility variance reduction g2
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RBO Variant (7)

One-step-ahead FI variance proxy variant

ut+1
f = arg min

uf

ST1(xtarget ,u1)

ut+1
g , pt+1 = arg min

ug ,p
ST2(xtarget ,ug , p)

Different ’random scenarios’ are considered for the objective and the constraint function

At each iteration, only the single constraint which yields the largest FI variance reduction

is evaluated

Reduction of costly function evaluations

Possibility of separately optimizing ST1 and ST2
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Results, part 2

4 compared methods:

REF: Reference method, separate Modeling and common value of U

SMCS: Separate Modeling and Constraints selection

MMCU: Multi-output Modeling of constraints and Common value of U

MMCS: Multi-output Modeling and Constraint Selection
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4-d test-case

min
x

EU [f (x,U)] s.t. P(gi (x,U) ≤ 0, i = 1, 2) ≥ 0.95

f (x1, x2, u1, u2) = 5(x2
1 + x2

2 )− (u2
1 + u2

2) + x1(u2 − u1 + 5)

+x2(u1 − u2 + 3)

g1(x1, x2, u1, u2) = −x2
1 + 5x2 − u1 + u2

2 − 1

g2(x1, x2, u1, u2) = (−x2
1 + 5x2 − u1 + u2

2 − 1)(x1 + 5)/5− u1 − 1

with x ∈ [−5, 5]2 and U ∼ U([−5, 5]2).

Initial data-set : 30 samples (15 per constraint)

Optimization performed with 80 constraint evaluations
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4-d test-case

J. Pelamatti (EDF R&D) Sampling criteria for constrained Bayesian optimization under uncertaintySIAM UQ, Atlanta, 12-15 April 2022 31 / 40



Industrial test case: compressor rotor design

Design optimization problem for the NASA rotor 37. The objective is to maximize the

compressor polytropic efficiency.

20 geometric design variables

7 random variables

5 Constraints

Initial data-set : 100 samples (20 per constraint)

Single repetition due to computational costs

Only 2 methods are compared: REF and MMCS
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Industrial test case: compressor rotor design
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Industrial test case: compressor rotor design

Constraint g1 g2 g3 g4 g5

N◦ evaluations REF 100 100 100 100 100

N◦ evaluations MMCS 103 202 17 98 80
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Conclusions

Novel two-step robust Bayesian optimization algorithm, alloving to solve chance

constrained problems for which both objective function and constraints are influenced by

random variables

Different variants of the algorithm are proposed and compared

Possibility of refining the surrogate models more efficiently

Different random variable values for each constraint

Selection of most informational constraints

The variants performance depends on the considered optimization problem nature

J. Pelamatti (EDF R&D) Sampling criteria for constrained Bayesian optimization under uncertaintySIAM UQ, Atlanta, 12-15 April 2022 35 / 40



Perspectives

Possibility of selecting the most relevant batch of constraints (and associated value of u)

rather than a single one

Possibility of relying on multi-output GPs only for constraints for which the presence of

correlation is known

Possibility of taking into account the correlation between the objective function and the

constraints

Improvement of the internal optimization routines

Extension of the method to inversion problems
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