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Abstract

Variational autoencoders (VAEs) have recently been used for unsupervised disen-
tanglement learning of complex density distributions. Numerous variants exist to
encourage disentanglement in latent space while improving reconstruction. How-
ever, none have simultaneously managed the trade-off between attaining extremely
low reconstruction error and a high disentanglement score. We present a gen-
eralized framework to handle this challenge under constrained optimization and
demonstrate that it outperforms state-of-the-art existing models as regards dis-
entanglement while balancing reconstruction. We introduce three controllable
Lagrangian hyperparameters to control reconstruction loss, KL divergence loss and
correlation measure. We prove that maximizing information in the reconstruction
network is equivalent to information maximization during amortized inference
under reasonable assumptions and constraint relaxation.

1 Introduction

Unsupervised learning describes an intelligent approach for extracting meaningful classes of decisions
from unlabeled data using intrinsic properties such as similarity metrics. Numerous classical data-
driven approaches based on multivariate statistical analysis including Principal Component Analysis
[Karl, 1901, Hoffmann, 2007, Song et al., 2014] and Canonical Correlation Analysis [HOTELLING,
1936] have been used to obtain latent or subspace patterns of high correlation. Decision labels are
then obtained by applying clustering algorithms [Martin et al., 1996, Breunig et al., 2000, Andrade
et al., 2013, Liu et al., 2019, Ren et al., 2020]. Recently, deep learning-based approaches have
gained traction for their improved performance at learning better latent representations with a high
disentanglement metric [Hinton and Salakhutdinov, 2006] and have evolved into a new dimension of
learning known as Disentangled Representation Learning [Bengio et al., 2014].

Disentanglement learning is a branch of unsupervised deep representation learning which involves
uncovering the underlying independent factors responsible for making up an observation. For instance,
an image with high dimensional features (eyes, nose, mouth, hair etc.), can be projected into a lower
dimensional space of high disentanglement where different factored features of the images can
be easily identified visually or clustered by an algorithm. Autoencoders are a specific type of a
neural network, designed to encode the input into a compressed and meaningful representation, and
then decode it back, so that the reconstructed input is as similar as possible to the original [Bank
et al., 2021]. While learning the reconstructed space, autoencoders are not capable of inducing
disentanglement in the latent space, hence, keeping the latent factors entangled.
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Variational Autoencoders (VAE) [Kingma and Welling, 2014] are an improved generative version
of autoencoder based on probabilistic graphical modeling. VAEs replace the encoder section of an
autoencoder with an amortized inference process (from Bayesian machine learning) and sample the
latent space using a reparameterization trick before reconstruction. VAEs have been employed for text
disentanglement [John et al., 2018] and generation [Shen et al., 2019], as well as image generation
[Kingma and Welling, 2014, Kulkarni et al., 2015, Gregor et al., 2015]. Despite the numerous benefits
of VAEs, they experience certain drawbacks including the notable vanishing Kullback-Leibler (KL)
divergence problem. However, β-VAE [Higgins et al., 2017] solves the challenges arising from
using VAE by imposing a weight (β � 1) on KL-divergence, thus eliminating the problem. This is
at the expense of poor reconstruction which leaves room for improvement. InfoGAN [Chen et al.,
2016] belongs to a family of Generative Adversarial Networks (GAN) [Goodfellow et al., 2014], and
involves an adversarial training of two models in a zero-sum game with the objective of inducing
disentanglement in the latent space by maximizing variational mutual information. Despite the
improved representation learned from using InfoGAN, a major drawback, as with all GANs, is the
instability in training and strong assumption as regards the underlying distribution of the data.

It is imperative therefore to improve the amortized inference process of generative VAE networks
which induces disentanglement with good reconstruction. InfoVAE [Zhao et al., 2018] takes a cue
from InfoGAN by introducing a weighted mutual information term within the original objective of the
VAE. While it proves to be an improvement in disentanglement and representation compared to VAE
and β-VAE, reconstruction is still not optimal. It is similar in performance to FactorVAE [Kim and
Mnih, 2019], whose objective also includes mutual information and a directional KL-divergence in the
latent dimension. FactorVAE uses a discriminating network to compare the performance of the latent
space at every epoch, achieving better disentanglement compared to its counterparts. A challenging
question to answer when using FactorVAE is the choice of hyperparameter γ capable of inducing
maximum disentanglement in the latent space while balancing reconstruction. ControlVAE [Shao
et al., 2020] on the other hand tries to solve the problem of selecting the appropriate β automatically
by introducing a non-linear Proportional-Integral-Derivative (PID) controller, to adaptively control
the β hyperparameter.

In all the methods proposed in the literature, very little has been done in trying to adapt a model that
encourages disentanglement while minimizing reconstruction error in the VAE model simultaneously.
We propose a generalized framework similar that emphasizes information maximization in the
reconstruction network rather than in the inference network, and tune the hyperparameters using
the non-linear PID controllers proposed in controlVAE [Shao et al., 2020]. The proposed model is
designed to maximize the mutual information between the reconstructed data and the latent spaces
by adaptive weighting of the reconstruction term of the VAE. We show that factorizing latent space
or increasing the weight of β on KL-divergence is not entirely sufficient for disentanglement. Our
proposed model identifies the failures of existing models and introduces the squared Mahalanobis
distance as a heuristic to improve independence in latent space.

The remaining sections of the paper are as follows: Section two discusses variational autoencoders and
their variants; section three presents the proposed generalized-controllable variational autoencoder;
section four contains experimental results; section five presents the final conclusion and finally the
acknowledgements.

2 Variational Autoencoder (VAE)

VAEs [Kingma and Welling, 2014] are a class of generative model proposed to model complex distri-
butions existing in images, natural language and functional data. VAEs serve a significant purpose
in language modeling, especially in representation learning for text disentanglement, unsupervised
abstractive sentence summarization [Schumann, 2018] and long and coherent text generation [Shen
et al., 2019] among others. We formally define the VAE model by observing a d-dimensional input
space {xi}Ni=1 ∈ X consisting of N-independently and identically distributed (i.i.d) samples; k-
dimensional latent space {zi}Ni=1 ∈ Z (where k � d) over which a generative model is defined. We
assume an empirical prior distribution pθ(z) ∼ N (0, I) to infer an approximate posterior distribution
qφ(z|x) ∼ N (z|µφ(x), σ2

φ(x)I), with mean µφ(x) and variance σ2
φ(x)I used for reparameterization

sampling of the latent space z [Kingma and Welling, 2014]. We model the data using conditional
distribution pθ(x|z) ∼ N (x|µθ(x), σ2

θ(x)I). Let us suppose that the underlying distribution of the
input space p(x) follows a normal distribution, and its empirical distribution is denoted by pD(x).
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The objective function L(θ, φ) to be maximized is given by,

E
pD

E
z∼qφ(z|x)

[ln pθ(x|z)]−DKL(qφ(z|x)||pθ(z)) (1)

where φ and θ represent the parameters of the neural network encoder and decoder respectively. This
objective function is known as the Evidence Lower Bound (ELBO), upper bounded by the input data
log-likelihood ln pθ(x). The first term of the objective is a reconstruction error. Ideally, maximizing
negative reconstruction loss, simultaneously minimizes non-symmetric divergence between the
distributions of the Kullback-Leibler (KL)-divergence terms.

Equivalently, maximizing ELBO maximizes negative KL-divergence between the inference prior
qφ(z|x) and generative prior pθ(z|x), where pθ(z|x) ∝ pθ(x, z) and qφ(z|x) ∝ qφ(x, z).

L(θ, φ) = − E
pD

[DKL(qφ(z|x)||pθ(z|x))] (2)

ln pθ(x) ≥ E
pD

[
ln pθ(x|z)−DKL(qφ(z|x)||pθ(z))

]
(3)

We prove equation (3) in Appendix A.1.
β-VAE [Higgins et al., 2017] introduces a fixed weight on the KL divergence (βDKL) with the aim
of (i) eliminating the vanishing KL problem (where DKL → 0) and (ii) inducing disentanglement by
adjusting the value of β.

2.1 ControlVAE

Due to the difficulty in modeling complex entangled functions and the lack of statistical independence
of the latent variables, [Higgins et al., 2017] has proposed an adjustable β-hyperparameter that (i)
balances latent bottlenecks and independence with an improved reconstruction compared to VAE (ii)
solves the vanishing KL-divergence problem where DKL(qφ(z|x)||pθ(z)) = 0.

E
pD

E
z∼qφ(z|x)

[ln pθ(x|z)]− βDKL(qφ(z|x)||pθ(z)) (4)

β-VAE ensures that the hyperparameter on the KL increases the independence of the latent variables
for very large values of β (β > 1) while ensuring posterior conditional inference probability qφ(z|x)
is relatively close to its prior pθ(z). However, there is no a priori limit for β as the value of β depends
on the data; which results in overfitting of the prior to the approximate posterior pθ(z) ≈ qφ(z|x).
This implies that the information about x preserved in z decreases with β → +∞. ControlVAE
[Shao et al., 2020] proposes the use of a PID controller for an adaptive β. Its objective function is as
follows,

E
pD

E
z∼qφ(z|x)

[ln pθ(x|z)]− βtDKL(qφ(z|x)||pθ(z)) (5)

Where,

βt =
Kp

1 + exp(et)
−Ki

t∑
j=0

ej + βmin (6)

where Kp and Ki are constants; et is the error between the actual KL-divergence value and the
desired value at time t; βmin is an application-specific constant which shifts the range to within
which βt is allowed to vary.

2.2 InfoVAE

InfoVAE [Zhao et al., 2018] adds a weighted mutual information criteria to the VAE objective
function and maximizes the mutual information between the data x and latent space z. The objective
function of InfoVAE is given by,

E
pD

E
z∼qφ(z|x)

[ln pθ(x|z)]− (1− α)DKL(qφ(z|x)||pθ(z))− (α+ λ− 1)DKL(qφ(z)||pθ(z)) (7)

which is reduced to a family of variational autoencoding objectives when α = 1,

E
pD

E
z∼qφ(z|x)

[ln pθ(x|z)]− λDKL(qφ(z)||pθ(z)) (8)
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Where DKL(qφ(z)||pθ(z)) is a non-negative distance called Maximum Mean Discrepancy (MMD)
and is defined as a kernel function,

D2
MMD(q||p) = E

p(z)·p(z′)
[k(z, z′)]− 2E

q(z)·p(z′)
[k(z, z′)] + E

q(z)·q(z′)
[k(z, z′)] (9)

In Equation (9), k(z, z′) represents a positive semi-definite kernel matrix [Steinwart and Christmann,
2008]. D2

MMD(q||p) measures the distance between the sample distribution z and true distribution
z′ ∼ N (0, I) and λ > 0 is a scaling coefficeint [Zhao et al., 2018].

3 Generalized-Controllable VAE

3.1 Alternate formulation of ELBO, β-VAE and InfoVAE objective

We consider an alternate formulation of the InfoVAE objective based on mutual information max-
imization. Let Ip(x′, z) be the mutual information between the reconstructed data x′ and z under
joint distribution pθ(x′|z)pθ(z), where pθ(z) ∼ N (0, I). Iq(x, z) is the mutual information between
x and z under joint distribution qφ(z|x)pD(x). Since the objective of the VAE is to minimize a
certain reconstruction loss, and considering that this loss is an l2-norm, we assume that the expected
log-likelihood E[ln pθ(x

′|z)] is approximately equal to E[ln pθ(x|z)] and pD(x′) ≈ pD(x) at the
optimal point for n-number of experiments.

Proposition 1. Let x ∈ X and z ∈ Z be random variables with qφ(x) and qφ(z) corresponding
to their marginal probability density distribution. We denote the joint probability density function
between x and z as qφ(x, z) where qφ(z) ∼ N (µφ, σ

2
φI) and pθ(x) ∼ N (µθ, σ

2
θI). For known

parameters of x and z, the mutual information between x and z for the inference network is expressed
as

Iq(x, z) =

∫
x

∫
z

qφ(x, z) ln
qφ(x, z)

qφ(z)qφ(x)
dx dz = DKL(qφ(x, z)pθ(z)||qφ(z)qφ(x)pθ(z)) (10)

= DKL(qφ(z|x)||pθ(z))−DKL(qφ(z)||pθ(z)) (11)

Furthermore, we can reformulate Equation (10) by introducing the joint generative distribution so
that,

Iq(x, z) = DKL(qφ(z|x)pθ(x, z)||qφ(z)pθ(x, z)) (12)
= DKL(qφ(z|x)||pθ(z))−DKL(qφ(z)||pθ(z))− E

z∼qφ(z|x)
[ln pθ(x|z)] + ln pθ(x) (13)

The complete derivation is found in the Appendix (section A.2). This maximization is also known
to improve reconstruction of generative models, as seen for GANs [Belghazi et al., 2018] while the
minimized term ensures an effective information bottleneck. The constraint optimization formulation
used here will be applied in a later section.

Mutual information from the generative network is given as,
Ip(x

′, z) = DKL(pθ(x
′, z)||pθ(z)pθ(x′)) = E

z∼qφ(z|x)
[ln pθ(x

′|z)]− ln pθ(x
′) (14)

The marginal log-likelihood ln pθ(x
′), given as

∫
z
pθ(x

′|z)pθ(z)dz with an integral over z is com-
putationally intractable for a large number of z-variables. We can drop the marginal since it does
not significantly impact the likelihood term. We reformulate the objective function of a family of
InfoVAE (Equation 8) as a function of the mutual information of both generative and reconstruction
processes as follows,

max
φ,θ

Ip(x
′, z)− Iq(x, z) (15)

We call this formulation (Equation 15), the total mutual information of a VAE, which is further
explained in Figure 1. This implies therefore, that accurately reconstructing the original distribution
pD(x) requires us to maximize the mutual information Ip(x′, z) in the reconstructed space while
reducing information loss Iq(x, z) during inference. The constraint optimization formulation of
Equation (15) can be written as,

max
φ,θ

Ip(x
′, z)

s.t DKL(qφ(z|x)||pθ(z)) ≤ ξ1
s.t DKL(qφ(z)||pθ(z)) ≤ ξ2

ξ1, ξ2 ≥ 0 (16)
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ξ1 and ξ2 in (16) are permissible error terms. We apply the Karush–Kuhn–Tucker (KKT) conditions
[Karush, 1939, Kuhn and Tucker, 1951] and solve for optimality, by applying the Lagrangian
multipliers to obtain the following,

max
φ,θ

L(φ, θ, λ, β) (17)

max
φ,θ

E
z∼qφ(z|x)

[ln pθ(x|z)]− βDKL(qφ(z|x)||pθ(z))− λDKL(qφ(z)||pθ(z)) (18)

L(φ, θ, λ, β) =


ELBO if β = 1, λ = 0

β − V AE if β > 1, λ = 0

InfoV AE if β = 0, λ ≥ 1

FactorV AE if β = 1, λ = −1

(19)

We derive from Equation (15), that maximizing mutual information under reasonable constraints in
the generative network of VAE is equivalent to mutual information minimization in the inference
network. Hence, maximizing Ip(x′, z) subject to inference constraints is equivalent to maximizing
the total mutual information. The constraints to which mutual information is subjected in the InfoVAE
optimization framework does not simultaneously balance the high disentanglement-low reconstruction
error trade-off. In the next section, we propose an optimization framework based on information
maximization in a generative network, that simultaneously manages the trade-off between high
disentanglement and loss reconstruction error.

3.2 GCVAE: Generalized-Controllable VAE

Figure 1: GCVAE framework. αt, βt and γt respectively provide automatic balancing of the log-
likelihood and KL divergences for optimal reconstruction and disentanglement. The feed-ins At, Bt
and Ct are expectations of variational loss.

We propose a generalized framework for variational inference modeling, taking into account the
idea of information maximization in the reconstruction network. We prioritize the disentanglement
of the latent space and balancing the trade-off between disentanglement metric and reconstruction
loss by maximizing the mutual information between that reconstructed data x′ and latent space
z. Furthermore, we show that weighting the reconstruction term of this new lower bound by the
controllable weight of its KL-divergence significantly improves the disentangling factor. Under the
constraint optimization framework, we follow a similar reformulation, as shown in Equation (16), to
propose the following formal problem.

Proposition 2. Let x ∈ X and z ∈ Z be continuous spaces representing the input and latent
space respectively. Ip(x′, z) is the joint mutual information space between x′ and z generated from
the posterior pθ(x|z) after obtaining an inference posterior qφ(z|x). Let 0 ≤ βt ≤ αt ≤ 1 be
controllable optimizable hyperparameters (Lagrangian multipliers). We reach an optimum when
qφ(z|x) ≈ pθ(z|x). We maximize the mutual information in the reconstruction space subject to

5



inference constraints as follows,

max
θ,φ,ξ+,ξ−,ξp∈R

Ip(x
′, z)

s.t E
pD
DKL(qφ(z|x) ‖ pθ(z)) + Ip(x

′, z) ≤ ξ−

s.t − E
pD
DKL(qφ(z)||pθ(z)) ≤ ξ+

s.t Ip(x
′, z) ≤ ξp

s.t ξ+
i , ξ

−
i , ξip ≥ 0, ∀i = 1, . . . , n (20)

We apply the KKT conditions and solve for optimality as previously seen in section 3.1 (proof
provided in the Appendix A.3). Hence,

L(θ, φ, ξ+, ξ−, ξp, α, β, γ) = (1− αt − βt) E
pD

E
z∼qφ(z|x)

[ln pθ(x|z)]− βt E
pD
DKL(qφ(z|x)||pθ(z))

+ γt E
pD
DKL(qφ(z)||pθ(z)) (21)

αt, βt and γt and Lagrangian multipliers and are used here as controllable hyperparameters. The
controllable weight on the reconstruction loss 1−αt−βt, implies the effect of the KL-divergence loss
on the reconstruction loss, which simultaneously control the disentanglement in the latent space with
respect to the reconstruction quality. Empirical results show that this new lower bound is free from
the vanishing KL-divergence problem even for fixed β (β � 1) and does not overfit during training.
Exponentially small values of α, β → 0 penalize reconstruction error and KL divergence respectively.
The last term in (21), DKL(qφ(z)||pθ(z)) is the expected Mahalanobis distance (MD) denoted as
ED2

MAH(q||p) between the density function of two continuous variables p and q as opposed to MMD
used in InfoVAE. MD is a positive semi-definite distance and obeys the triangle inequality. We show
that MD distance is a better disentangling metric than MMD with better reconstruction quality.

Proposition 3. Let x ∈ X be independent random variables with distribution p(x) and similarly
y ∈ Y ∼ q(y). x′ and y′ are transposes of x and y respectively. We suppose that x and y are
mapped to a Reproducing Kernel Hilbert Space (RKHS) denoted as H [Aronszajn, 1950] so that
x ∼ ϕ(x) and y ∼ ϕ(y) with a common covariance matrix Σd×d. Let z := {xi, yi}ni=1 ∈ Z be n
i.i.d random samples drawn from a distribution Dz . The expected squared Mahalanobis distance
between distributions p and q in a reproducing kernel Hilbert space is given by Σ−1D2

MMD(q||p),
where Σ−1 is the diagonal covariance.

ED2
MAH(q||p) = E[(ϕ(x)− ϕ(y))′Σ−1(ϕ(x)− ϕ(y))]

≥ E[tr(Σ−1(ϕ(x)− ϕ(y))′(ϕ(x)− ϕ(y)))]

≥ tr
(
‖ E
x∼p

ϕ(x)− E
y∼q

ϕ(y) ‖2Σ−1,H

)
≥ tr(Σ−1D2

MMD(q||p))
(22)

The expectation of the right is ≥ tr(EΣ−1D2
MMD(q||p)). The proof of Equation (22) is given in

Appendix A.4. ED2
MAH(q||p) is a measure of the average dissimilarity between the distributions p

and q in the Hilbert space, as it normalizes the similarity with feature variances, therefore encouraging
class discrimination. ED2

MAH(q||p) reduces to D2
MMD(q||p) when Σ−1 is identity. We note that x

is zero-centered before it is projected into the Hilbert space.
We deduce other variants of VAE from GCVAE loss as follows,

L(θ, φ, ξ+, ξ−, ξ, α, β, γ) =


ELBO if αt = α = −1, βt = β = 1, γ = 0

ControlV AE if αt = α = 0, βt > 0, γ = 0

InfoV AE if αt = α = 0, βt = β = 0, γt > 1

FactorV AE if αt = α = −1, βt = β = 1, γ = −1

(23)

While the above models focus on penalizing KL-divergence to induce disentanglement, GCVAE
takes a parameter into account to control reconstruction loss (αt) while gradually improving disen-
tanglement. GCVAE achieves optimality for αt ∈ [0, 1− βt], βt ∈ [0, 1− αt], γt ∈ [0, 1]. This new
objective function allows us to significantly control the amount of meaningful information encoded
in the latent space.
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4 Experiment

4.1 Experimental setup and parameter optimization

We design and select an experimental setup that places emphasis on the relevance of disentanglement
without overlooking the issue of reconstruction trade-off encountered by some state-of-the art
models. We validate the performance of the proposed model both qualitatively (reconstruction)
and quantitatively (disentanglement), using a simplified version of [Kim and Mnih, 2019] neural
architecture. We train for 250K epochs with batch of 64 and a learning rate of 1e−3. The number of
dimensions of the latent z is 10 for the DSprites dataset and 6D for the 3D Shapes dataset. We prefer
dimension 2 to analyze the reconstruction and generative quality of the model. In all cases, the Adam
optimizer is used for training the models.
Model architecture. The preferred model is a 4-layer, 2D convolutional neural network with (2, 2)
filters. A full description of the network architecture is available in Appendix B.1 of this paper.
Parameter optimization. The GCVAE lower bound can be reduced to the ELBO of other variational
models, while the choice of values for the hyperparameters can be selected according to the original
papers for the training phase. InfoVAE only enables the λ weight on the MMD to be optimized
(λ = 1000 is used in our experiment). The value of β = 10 is used for training β-VAE. ControlVAE
optimizes the β and we set an expected β = 10 for training. However, the GCVAE model requires
the optimization of three PID-controllable parameters αt, βt and γt. The expected α, β and γ
hyperparameters for GCVAE are set to 10, 30, 0.1 before training. These set points are selected after
extensive trial and errors. To evaluate the strength of disentanglement and the quality of reconstruction,
we propose three families of GCVAE according to the metric selected for the DKL(qφ(z)||pθ(z)):
(1) GCVAE-I: DKL(qφ(z)||pθ(z)) = D2

MMD(q||p);
(2) GCVAE-II: DKL(qφ(z)||pθ(z)) = D2

MAH(q||p)
(3) GCVAE-III: DKL(qφ(z)||pθ(z)) = EΣ−1D2

MMD(q||p).

4.2 Dataset

MNIST [Deng, 2012] is a 28× 28-dimensional image data set with 70, 000 observation. The data
set is split into training observations (60, 000) and testing observations (10, 000) and contains images
of numbers between 0− 9 values together with their labels.
DSprites 2D Shapes DSprites [Matthey et al., 2017] is a data set of 2D 64× 64-dimensional image
data set with 737,280 binary observations. Five ground truth factors are available with properties
(shape: 3; scale: 6; orientation: 40; x-position: 32; y-position: 32).

4.3 Evaluation metric

Mutual Information Gap (MIG) score [Chen et al., 2019]. Normalized mutual information gap
between the top two latent factors (I(yk, zI) − I(yk, zII))/(

∑d
j=1 I(yi, zj)). The average MIG

score is taken by normalizing the total mutual information. The score reports the compactness of
the latent code by ensuring that the information contained in a fixed ground truth yk is expressed
by only one latent factor zj at a time. High values imply a high level of disentanglement in the
latent space. Joint Entropy Minus Mutual Information Gap (JEMMIG) score [Do and Tran,
2021]. This indirectly measures the modularity in latent space, since a single latent factor may
explain more than one ground truth factor. It is expressed as H(yk, zI)− I(yk, zI) + I(yk, zII). A
lower JEMMIG score is preferred or a high (1− JEMMMIG) score. The average JEMMIG score
( 1
K

∑K−1
k=0 JEMMIG(yk)) quantifies the interpretability of the latent variables, measuring both

its compactness and its explicitness. Modularity score [Ridgeway and Mozer, 2018] expresses the
number of latent factors zj with high mutual information and explains the ground truth factors.

4.4 Quantitative and Qualitative Evaluation

Improving disentanglement in latent space without compromising reconstruction, interpretatbility
and informativeness is challenging yet achievable. We present a generalized controllable model that
automatically adjusts to learning parameters seeking to increase disentanglement, while reducing
reconstruction error. We also demonstrate the strength of this model for generative tasks, using
well-known data sets and comparing it with benchmark models. In the rest of this paper, we focus
on information-based metrics like MIG (compactness), JEMMIG (explicitness) and Modularity
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MIG ↑ Modularity ↑ JEMMIG ↑ Reconstruction loss ↓ KL loss↗
VAE 0.1268 0.798 0.233 3.339 3.0025
β-VAE 0.0778 0.881 0.238 0.012 35.0295

ControVAE 0.1213 0.782 0.312 0.016 24.3809
InfoVAE 0.1501 0.757 0.188 0.079 10.0621
GCVAE-I 0.1507 0.844 0.236 0.012 24.3739
GCVAE-II 0.2793 0.858 0.312 0.012 24.4316
GCVAE-III 0.1337 0.825 0.294 0.015 24.2937

Table 1: Performance comparison of different models on DSprites after training on 737 samples.
Comparison metrics MIG [Chen et al., 2019], Modularity [Ridgeway and Mozer, 2018] and JEMMIG
[Do and Tran, 2021] for 10-D Latent representation. The direction of the arrow indicates the best
performing model. Higher is better for MIG, Modularity and JEMMIG(1− JEMMIG). GCVAE-
II performs best on MIG disentanglement metric, robustness and interpretability; plus having the
lowest reconstruction error. GCVAE-I, III and ControlVAE also measure up in disentanglement
compared to other benchmark models. GCVAEs have the least reconstruction error partly due to the
normalization introduced by the inverse precision matrix in DKL(qφ(z))||pθ(z)) and the weight on
the first term of the GCVAE loss 21

(robustness) scores, as they are more robust for unsupervised scenarios. The information based
performance metric from Table 1 measures the quality of disentanglement per model. The MIG
metric indicates the best performing model is GCVAE-II and GCVAE-I respectively.

The GCVAE-II and III both require more computational time per epoch as a result of the approximate
cubic time O(n3) of inverting the precision matrix Σ. The conditional independence of variables
i, j in z noted Σzij > 0 given a third variable increases the precision when estimating the partial
correlation of i, j given the rest of the variables. The higher the diagonal covariance, the more stable
the approximation of DKL(qφ(z))||pθ(z)) and robust estimate of I(yk, z), hence, an 85% increase
in estimation of MIG for GCVAE-II compared to I. This represents an advantage over other models,
as we now know that a robust estimation of the conditional independence of variables in latent z
induces disentanglement.

The reconstruction quality for GCVAE-II is shown to the the least indicating high level of clarity in
the reconstruction of the observation.

4.5 Generation

Figure 2: Generative process comparison for the different models on DSprites after training on less
than 800 samples. Model GCVAE-I, II and ControlVAE clearly outperformed other models. The
reconstruction error of GCVAE-II is the lowest from Table 1

We evaluate the quality of generation by considering the explicitness and coherency of the encoded
latent variables. The generation by GCVAE-I, II and III far outperformed those of the benchmark
models (especially on the MNIST dataset). It is worthy of mention that, increasing KL-divergence
does not directly correlate to increasing the MIG disentanglement metric (Table 1). While the
Mahalanobis correlation metric is not entirely responsible for disentanglement, it serves as a good
heuristic for improving generative quality as well as disentanglement observed in GCVAE-II.

4.6 Comparing GCVAE-1, II & III

We compare performance of GCVAEs both on reconstruction and disentanglement using a stopping
criteria algorithm. Using a fixed ε for αt = 10e − 5 and βt = 10e − 4, we obtain reasonably low
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Figure 3: Generative process comparison for the different models after training the MNIST dataset
for 500 epochs. GCVAE-II and ELBO (VAE) have a similar reconstruction quality with better
interpretation. GCVAE-II clearly outperformed the benchmark models in generating clear and
meaningful representations of the original data. β-VAE is the least performing in terms of gener-
ating an interpretable image of the original data. ControlVEA and InfoVAE generate meaningful
representations.

Figure 4: Model performance comparison on 737 samples of DSprites data. Arrows indicate
direction of best performing model. Top: Comparison of reconstruction error against KL divergence
, DKL(qφ(z|x))||pθ(z)) and correlation, DKL(qφ(z))||pθ(z)). High KL-Low reconstruction error
observed for Latent-10. Low reconstruction error implies high disentanglement, while high KL
does not. High disentanglement using FactorVAE is observed on Latent-2 followed by Latent 10.
Bottom: Comparing disentanglement metrics with reconstruction loss. The highest disentanglement
on the MIG metric is observed for GCVAE-II on Latent-2, however, the best scores are observed for
GCVAE-II on Latent-10. JEMMIG is similar in behavior to MIG. RHS: Validating the statement
Latent disentanglement is not correlated to KL maximization.

reconstruction loss with high disentanglement without having to train for a lengthy period. The
average time required to train GCVAE using the stopping criterion is 6 hours while it takes more
than 3days to train for 250K iterations. The performance of the model compared for increasing latent
dimension is illustrated in Figure 4.

5 Conclusion

The challenge of latent space disentanglement for variational models often comes with finding
the right reconstruction trade-off. As a result, we propose a new lower bound we refer to as
Generalized-Controllable Variational Autoencoder (GCVAE: a model built from a constraint opti-
mization perspective to maximize mutual information in the generative phase, subject to inference
constraints to encourage disentanglement in latent space. We use the Mahalanobis distance metric as
a heuristic to encourage independence between latent space variables and show that the representation
obtained GCVAE is both meaningful and interpretable, with low reconstruction loss. GCVAE-II
demonstrates notable strength in disentangling latent space and reconstructing with minimal mutual
information loss compared to other variants.
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A Proof

A.1 Maximizing Negative KL-divergence

Proof that maximizing the negative KL-divergence is equivalent to maximizing the ELBO.

L(θ, φ) = − E
pD

[DKL(qφ(z|x)||pθ(z|x))] (24)

= − E
pD

E
z∼qφ(z|x)

[
ln
qφ(z|x)

pθ(z|x)

]
(25)

= − E
pD

E
z∼qφ(z|x)

[
ln
qφ(z|x)

pθ(z)
· 1

pθ(x|z)
· pθ(x)

]
(26)

ln pθ(x) ≥ E
pD

[
ln pθ(x|z)−DKL(qφ(z|x)||pθ(z))

]
(27)

A.2 Minimizing Iq(x, z)

We demonstrate that minimizing the mutual information between x and latent z equivalently maxi-
mizes components of the ELBO and consequently, Ip(x′, z) subject to inference constraints.

min
θ,φ∈R

Iq(x, z) (28)

Iq(x, z) = DKL(qφ(z|x)||qφ(z)) (29)

= E
z∼qφ(z|x)

[
ln
qφ(z|x)

qφ(z)
· pθ(x, z)
pθ(x, z)

]
(30)

= E
z∼qφ(z|x)

[
ln

qφ(z|x)

pθ(x|z)pθ(z)
· pθ(z|x)pθ(x)

qφ(z)

]
(31)

= E
z∼qφ(z|x)

[
ln
qφ(z|x)

pθ(z)
· pθ(z|x)

qφ(z)
· pθ(x)

pθ(x|z)

]
(32)

= DKL(qφ(z|x)||pθ(z))−DKL(qφ(z)||pθ(z))
− E
z∼qφ(z|x)

[ln pθ(x|z)] + ln pθ(x) (33)

Note that pθ(z|x) ∼ pθ(z) so that,

ln pθ(x) ≥ E
z∼qφ(z|x)

[ln pθ(x|z)]−DKL(qφ(z|x)||pθ(z))

+DKL(qφ(z)||pθ(z)) (34)

Therefore, minimizing Iq(x, z) is equivalent to maximizing terms on the Right Hand Side (R.H.S) of 34, which
is a lower bound.

A.3 GCVAE: Proof of proposition

We recall the constraint optimization loss presented in section (3) and prove it accordingly. Given the maximiza-
tion problem,

max
θ,φ,ξ+,ξ−,ξp∈R

Ip(x
′, z)

s.t E
pD
DKL(qφ(z|x) ‖ pθ(z)) + Ip(x

′, z) ≤ ξ−

s.t − E
pD
DKL(qφ(z)||pθ(z)) ≤ ξ+

s.t Ip(x
′, z) ≤ ξp

s.t ξ+
i , ξ

−
i , ξip ≥ 0, ∀i = 1, . . . , n (35)
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The expand of the above equations using sets of Lagrangian multipliers is as follows,

L(x, z; θ, φ, ξ+, ξ−, ξ, α, β, γ,η, τ ,ν)

= Ip(x
′, z)− β( E

pD
DKL(qφ(z|x)||pθ(z)) + Ip(x

′, z)−
n∑
i=1

ξ−i )

+ γ( E
pD
DKL(qφ(z)||pθ(z)) +

n∑
i=1

ξ+
i )− α(I(x′; z)−

n∑
i=1

ξip)

+

n∑
i=1

ηiξ
+
i +

n∑
i=1

τiξ
−
i +

n∑
i=1

νiξip (36)

L(x, z; θ, φ, ξ+, ξ−, ξ, α, β, γ,η, τ ,ν)

= (1− α− β)Ip(x
′, z)− β E

pD
DKL(qφ(z|x)||pθ(z))

+ γDKL(qφ(z)||pθ(z)) + (β − τ )

n∑
i=1

ξ−i + (γ − η)

n∑
i=1

ξ+
i

+ (α− ν)

n∑
i=1

ξip (37)

We take the gradient over the loss, OL for ξ−, ξ+, ξp and apply KKT optimality conditions to obtain,

L(x, z; θ, φ, ξ+, ξ−, ξp, α, β, γ)

= (1− α− β)Ip(x
′, z)− β E

pD
DKL(qφ(z|x)||pθ(z))

+ γDKL(qφ(z)||pθ(z)) (38)
= (1− α− β) E

z∼qφ(z|x)
[ln pθ(x|z)]

− β E
pD
DKL(qφ(z|x)||pθ(z))

+ γDKL(qφ(z)||pθ(z)) (39)

We set the Lagrangian adaptive hyperparameters following [Shao et al., 2020] as follows,

L(x, z; θ, φ, α,β, γ)

= (1− αt − βt) E
z∼qφ(z|x)

[ln pθ(x|z)]

− βt E
pD
DKL(qφ(z|x)||pθ(z))

+ γtDKL(qφ(z)||pθ(z)) (40)

The adaptive weight αt controls the reconstruction error while βt ensures the posterior latent factor
qφ(z|x) does not deviate significantly from its prior pθ(z). Varying both terms gives us better
control of the degree of disentanglement and helps us to understand the parameters affecting density
disentanglement.

A.4 Expected Squared Mahalanobis distance: ED2
MAH(q||p)

Suppose that a data x ∈ X with probability p(x) is projected into a reproducing kernel Hilbert space
< ϕ(x) >H, the expectation of the squared Mahalanobis distance is as follows,
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Figure 5: Comparison of metrics for DSprites 2D shapes dataset. Top: Comparison of GCVAE-I,
II & III losses over increasing latent dimensions. The lowest reconstruction error is observed for
GCVAE-I on Latent-10 and is monotone increasing thereafter. −DKL(qφ(z|x))||pθ(z)) is stable,
increasing above z = 10 dimensions and highest for GCVAE-II and III on Latent-50. Note that the
original values of DKL(qφ(z))||pθ(z)) are scaled to [0, 1].
Bottom: Disentanglement metric over different dimensions. FactorVAE metric is monotone decreas-
ing for latent space greater than 2. MIG is similar in behavior to FactorVAE metric and best for
GCVAE-II on Latent-2.

ED2
MAH(q(z)||p(z))
≥‖ E

x∼p
ϕ(x)− E

y∼q
ϕ(y) ‖2Σ−1,H (41)

≥ ( E
x∼p

ϕ(x)− E
y∼q

ϕ(y))′Σ−1( E
x∼p

ϕ(x)− E
y∼q

ϕ(y)) (42)

≥ Σ−1( E
x∼p

ϕ(x)− E
y∼q

ϕ(y))′( E
x∼p

ϕ(x)− E
y∼q

ϕ(y)) (43)

≥ Σ−1[ E
x′∼p,x∼p

〈ϕ(x′), ϕ(x)〉H − 2E
x′∼p,y∼q

〈ϕ(x′), ϕ(y)〉H

+ E
y′∼q,y∼q

〈ϕ(y′), ϕ(y)〉H] (44)

We suppose that the feature map ϕ(x) takes the canonical form k(x, ·), so that 〈ϕ(x′), ϕ(x)〉H =
k(x′, x) [Steinwart and Christmann, 2008], where k(x′, x) represents a positive semi-definite kernel
(for instance the Gaussian kernel, exp(−‖x

′−x‖2
2σ2 )). Hence,

ED2
MAH(q(z)||p(z))
≥ Σ−1[ E

x′∼p,x∼p
k(x′, x)− 2 E

x′∼p,y∼q
k(x′, y)

+ E
y′∼q,y∼q

k(y′, y)]

≥ Σ−1[ E
z′∼p,z∼p

k(z′, z)− 2 E
z′∼p,z∼q

k(z′, z)

+ E
z′∼q,z∼q

k(z′, z)]

= Σ−1D2
MMD(q(z)||p(z))

(45)
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B Performance comparison of GCVAE

We compare the performance of GCVAE-I, II & III using a stopping criterion. We design a stopping
criterion using the adaptive convergence of α and β below a certain threshold ε. εa for stopping
reconstruction loss and εb stops KL divergence, −DKL(qφ(z|x))||pθ(z)) at the optimum point.

Algorithm 1: GCVAE stopping criteria
Input :L(φ, θ, . . . ), αt, βt, γt, εa, εb
Output :Optimal parameters of loss L

1 begin
2 Compute gradient: ∇L(φ, θ, αt, βt, γt, . . . );
3 Perform back propagation;
4 if αt - αt−1 < εa && βt - βt−1 < εb then
5 return optimal L, αt, βt, γt;
6 end if
7 end

The stopping criteria reduces the constraint of stopping the algorithm at a specific learning epoch,
serving to assist the model to conclude the final epoch, when the optimal reconstruction and KL diver-
gences are obtained. The optimal parameters yield the best disentanglement with low reconstruction
error. We observe that reconstruction error is not usually as low as when run for N-iterations, but the
representations results are reasonably comparable.

Figure 5 illustrates the result of using the stopping criterion on the DSprites 2D data set. We observe
in the very top right-hand corner of this figure that the number of iterations required to reach optimum
point is below 300 for all latent spaces. The singular downside to using stopping criteria is with
regards to reconstruction error. Minimum reconstruction error and maximum disentanglement are
observed for GCVAE-III on Latent-10 and GCVAE-II on Latent-2 respectively.

We present an elaborate representation of the results of GCVAE for N-number of iterations in Figure
6. The running time is better represented in Figure 5 while 6 details reasons for why a GCVAE model
obtains a lower MIG disentanglement metric over the other. This is evident in DKL(qφ(z))||pθ(z)).
We observe a collapse of the DKL(qφ(z))||pθ(z)) when DKL(qφ(z))||pθ(z)) = 0, which reduces
the GCVAE model to ControlVAE. This is demonstrable, since αt and βt are usually very low. This
effect corresponds to the lowest MIG disentanglement metric observed in Latent-50 and 200 for
GCVAE-II. A GCVAE model whose posterior qφ(z)) ≈ pθ(z) returns better disentanglement, since
the second DKL(qφ(z|x))||pθ(z)) > 0.

Secondly, we identify another reason for the collapse of the correlation term, DKL(qφ(z))||pθ(z))
. Given an inverse covariance matrix (Σ−1) whose diagonals are infinitesimally small, this could
in fact collapse the correlation and subsequently return low disentanglement score. This is indeed
evident, since the generated factors of the latent z have a different posterior, pθ(x|z) from the original
factors of the given distribution.

Despite the emphasis on disentanglement as opposed to reconstruction, we observe that GCVAE
with a stopping criteria running for very low number of iterations is capable of achieving reasonable
reconstruction of the original data as well as generating meaningful data from an unseen sample.

B.1 Architecture

We use similar architecture to train GCVAE-I, II, III and all benchmark models. The proposed
convolutional 2D convolutional architecture is given in the table below,
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Figure 6: A visual comparison of the reconstruction, −DKL(qφ(z|x))||pθ(z)) and
DKL(qφ(z))||pθ(z)) losses for GCVAE-I, II & III over different latent space. Behavior of re-
construction error per latent is relatively close and indistinguishable. In all cases of latents experi-
mented with except for Latent-2, −DKL(qφ(z|x))||pθ(z)) is comparable. GCVAE-I is unstable in
DKL(qφ(z))||pθ(z)) during training across all latents. While a lower value of DKL(qφ(z))||pθ(z))
is preferred, we observe correlation with MIG disentanglement metric in Figure 5.

Figure 7: Generated samples from training with 737 observations and stopping after less than 300
iterations. The generated samples especially for GCVAE-II.
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Encoder Decoder
Input 64 x 64 binary image Input R10

4 × 4 conv. 64 ReLU. stride 2 FC 25; FC 200 ReLU
4 × 4 conv. 64 ReLU. stride 2 4 × 4 upconv. 32 ReLU. stride 2
4 × 4 conv. 32 ReLU. stride 2 4 × 4 upconv. 32 ReLU. stride 2
4 × 4 conv. 32 ReLU. stride 2 4 × 4 upconv. 64 ReLU. stride 2
FC 200; FC 25; FC 2 X 10 4 × 4 upconv. 64 ReLU. stride 2

4 × 4 upconv. 1. stride 2
Table 2: Encoder-Decoder architecture for 2D DSprites and MNIST data. We use a 2D MaxPooling
and Batch normalization for the encoder while size 2 Upsampling with Batch normalization is used
for the decoder.
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