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Abstract

This paper presents a new sequential method to calibrate a material model in the presence of significant
material variability. Material variability is handled in the mixed-effects framework. In this approach,
material variability is described by a probability distribution calibrated by maximizing a likelihood.
Yet, when the number of model parameters or the computational time of a single run of the models
increases (for multiaxial models for instance), the maximization of the likelihood of mixed-effects is
more difficult to perform. Furthermore, the parameters do not have the same influence on the material
model depending on the nature of the test. The proposed procedure enables to calibrate the model on
multiple experiments. It relies on the definition of a sequence of calibration subproblems. Associated to
the relevant experimental data, each subproblem allows to calibrate the joint distribution of a subset of
the model parameters. The maximization of the attached likelihood is eased as the number of unknown
parameters is reduced compared to full problem. The subproblems are solved sequentially. To ensure
consistency of the global process, the research space for the distribution parameters already estimated
with a previous calibration is restricted to a trust region. The proposed calibration process is applied to
an orthotropic elastic model with laminates made from T700GC/M21 base ply material. The ability of
the procedure to sequentially estimate the model parameters distribution is investigated. Its capability
to ensure consistency throughout the calibration process is discussed. Results show that the proposed
procedure is a promising methodology to handle the calibration of complex material models in the
mixed-effects framework.

Keywords : Mixed-effects models, Model Calibration, Composites Material,
Sequential Calibration

1 Introduction
Following the increase of numerical facilities, virtual testing is now widely used in order to partially
substitute numerical simulations to experimental campaigns because of time and costs considerations.
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These numerical simulations require the use of material models which describe different phenomena
such as elasticity, viscosity, damage, etc. These models involve several parameters that need to be cali-
brated. Calibrating model parameters consists in finding the parameters value that allow to best fit the
experimental responses of interest. Yet, this task is challenging because the model may not be able to
fully reproduce the observations, the experimental data can be noisy and the material properties subject
to inherent variability. Consequently, a faithful calibration of the model parameters requires to take into
account the different sources of uncertainty in the identification process.

The properties of composite materials are known to be subjected to a significant variability because
of the complexity of the production process. To characterize this variability, international standards
impose to perform test repetitions [7] to determine the model parameters distribution. The model pa-
rameters are calibrated independently on several specimens by minimizing a fitting criterion [27] before
inferring the model parameters distribution by maximizing a likelihood [29]. Yet, this procedure is not
fully satisfying because the fitting criterion (e.g., least-square, log-likelihood [1, 29]) does not consider
material variability in its definition. To overcome this difficulty, Laboulfie et al. [18] proposed the use
of mixed-effects models [8, 20], a population-based approach, to characterize material variability. The
mixed-effects notion comes from the fact that there are “fixed” effects that are shared by the entire pop-
ulation of individuals (i.e. specimen) and “random” effects that are specific to each individual of the
population. For instance, the Young’s modulus measured on a tensile test specimen can be considered as
the combination of a reference value (the average value given by the manufacturer for a material batch)
and of a deviation due to the variability of the production process. The mixed-effects approach assumes
that the model parameters describing the different specimens, known as the individual parameters, are
distributed according to a joint probability distribution (e.g., a multivariate Gaussian distribution). This
distribution represents the impact of material variability on the model parameters. The parameters of
this distribution are determined by a likelihood maximization. This kind of approaches has already been
applied successfully to calibrate simple material models [18].

More complex models involve the combination of several phenomena (elasticity, failure, damage vis-
cosity, etc.) to which are attached specific parameters. They also describe in-plane and out-of-plane
behaviors. Thus, the model to calibrate usually involves many parameters, increasing the size of the
research space and making the optimization of the likelihood more difficult. Furthermore, the com-
putation of the likelihood of the mixed-effects is challenging as this likelihood expresses as a product
of multivariate integrals. Given the computational time of a single run of those models (especially for
multi-scale non-linear models), the estimation of the likelihood requires to set up appropriate strategies
(e.g. meta-modeling). Therefore, in order to decrease the complexity of the calibration in the presence
of uncertainty, it could be interesting to take advantage of the decomposition of the model to transform
the large calibration problem into a sequence of appropriate smaller calibration sub-problems, corre-
sponding to the different test configurations (e.g. different load profiles and stacking sequences). In
addition to decrease the number of parameters to be identified, it alleviates the computational costs as it
allows to not to take into account all the phenomena at the same time.

To calibrate the material parameters, often, we dispose of experimental tests of different natures ei-
ther in terms of loads (e.g., traction, compression or shear tests) or in terms of stacking sequences (
e.g. uni-directional laminate 0◦ or quasi-isotropic laminates). Nevertheless, the sensitivity of the model
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output with respect to the model parameters depends on the nature of the test [4] and all model param-
eters characterizing a given phenomenon (elasticity for instance) cannot always be estimated with the
same type of test. Consequently, if it is decided to calibrate sub-problems, the choice of the relevant
parameters must be performed carefully to avoid ill-posed problems.

To solve such problems, we propose in this paper a sequential procedure to calibrate mechanical mod-
els compliant with the mixed-effects framework. This procedure aims to calibrate the same orthotropic
elastic model on multiple experiments with different stacking sequences. Prior to calibration, for each
available specimen, the parameters to which the model output is sensitive are determined from expert
knowledge. This allows to define a sequence of calibration problems with a separation of the calibrated
parameters. Note that the separation is not strict as some parameters may be sensitive on several tests.
For a given calibration sub-problem (transformed into an optimization problem) attached to the appro-
priate experimental data, only the joint distribution and the realizations corresponding to the relevant
parameters is estimated. To ensure consistency between the different steps of the sequential calibration
process, for a given step, the research space of the distribution parameters already estimated with pre-
vious calibrations is limited to a trust region. The distribution parameters of the model coefficients that
are not sensitive are fixed during the resolution of this calibration sub-problem.

This paper is organized as follows. Section 2 introduces mixed-effects for model calibration, with a
focus on the treatment of multivariate data. In Section 3, the proposed sequential calibration process is
presented in details. In order to illustrate the performance of the calibration technique, the methodology
is applied to the calibration of a orthotropic elastic model with laminates made from T700GC/M21 base
ply material in Section 4 before concluding in Section 5.

2 Mixed-effects for calibration
First, let us recall that the material model calibration aims, for a given a material modelF(·,θ), to find a
set of model parameters labeled θ ∈ Rd (d standing for the number of parameters to be calibrated) which
allows to mimic the experimental data. The calibration problem in the presence of uncertainty can be
formalized as follows [11, 15]. Let us note the random vector of the output data Y and y = (yj)j∈J1,NK

its outcome, with N the number of observations, considering one specimen. Classically, the following
decomposition applies : [11, 15]

y ∼ F(·,θ) + ξ , (1)

where ξ stands for the random vector of the errors which represents the experimental noise and themodel
bias. The outcomes of ξ can be different from one measure to the other and are labeled (ξj)j∈J1,NK.
Eq.(1) can be further detailed :

yj := F(tj ,θ) + ξj , (2)

with tj the jth input measure, which is deterministic.

Mixed-effects models are a population-based approach that explicitly models the variability between
individuals within a population. Figure 1 illustrates this fundamental difference with respect to the
classical approaches summarized previously.

In the classical approaches (Figure 1.a), individual variability is neglected and combinedwith other types
of uncertainties, which allows to describe all the specimens by the same vector of model parameters. In
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a) repetitions of specimens

θglobal

sample 1 θ1 sample n θn

b) θi ∼ fΘ and θi 6= θj .

Figure 1: Difference between the population and the classical approaches. On the left, a), usual methods
with a single parameter vector for all specimens. On the right, b), population-based approach in the
mixed-models effects framework.

the mixed-effects approach (Figure 1.b), each sample is assigned a specific parameter vector value called
the individual parameters. It is assumed that there exists an underlying probability distribution fΘ whose
outcomes are the individual parameters (θi)i∈J1,nK with n the number of individuals [8, 20]. Both the
underlying probability distribution of the model parameters and the value of the individual parameters
are determined. In addition, it remains possible to take into account other sources of uncertainty, such
as measurement noise. Thus, mixed-effects models are particularly well suited to situations in which
individual variability cannot be neglected with respect to other sources of uncertainty.

2.1 Formalization
The mixed-effects framework [8, 20] assumes that there exists a probability distribution fΘ whose out-
comes are the individual parameters:

∀i ∈ J1, nK, θi ∼
i.i.d.

fΘ . (3)

Both fΘ and the θi are unknown and the aim is to determine them. In addition, if fΘ is parametric
(a Gaussian distribution for instance), let Π be its parameters and fΘ = fΘ,Π. Identifying fΘ,Π is
tantamount to determining Π. Given Π and θi ∼ fΘ,Π ∀i ∈ J1, nK, the model output yi can be written
as

∀i ∈ J1, nK, yi ∼
i.i.d.
F(·,θi) + ξi . (4)

Without any other hypothesis, the outcomes of ξi (labeled (ξij)j∈J1,NiK) are different for each individual
and for each observation, with Ni the number of observations points of the i-th specimen. The global
mixed-effects models for the jth output measure of the ith individual yij reads as

yij = F(tij , θi) + ξij . (5)

For the sake of simplicity, fΘ,Π is chosen to be a multivariate Gaussian distribution of dimension d:

fΘ,Π := N (µ,Σ) , (6)

with µ ∈ Rd the mean vector and Σ ∈ Md(R) the covariance matrix. The individual parameters can
be written

θi := µ+ bi , (7)
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with bi ∼
i.i.d.
N (0,Σ). Here, µ stands for the fixed effects (the same for the whole population) and bi

the random effects (different for each individual). The second hypothesis is that for each individual and
each measure, the error term is a Gaussian white noise (no bias, no correlation):

ξij ∼
i.i.d.
N (0, ω2

ij) , (8)

with ωij the standard deviation of the noise of the jth output measure of the ith individual. Furthermore,
the noise is supposed to be homoscedastic, i.e. ωij = ωi ∀ j ∈ J1, NiK.

Finally, the vector of parameters to be calibrated is denoted Ψ:

Ψ :=
(
µ, Σ, Ω

)
,

withΩ = diag(ω2
1, . . . , ω

2
n). The mixed-effects models seekΨ and provide an estimate of the individual

parameters (θi)i∈J1,nK as a by-product.

2.2 Likelihood of the mixed-effects
The calibration is often achieved by maximizing the likelihood of Ψ, L(Ψ) := f(y1, . . . ,yn|Ψ) (f is a
generic letter for probability density functions or PDFs), even if other methods can be found to estimate
Ψ [6] . The step-by-step derivation of the likelihood function can be found in [18]. Under the assumption
of independent individuals, it reads as the product of all the individual likelihoods Li(Ψ) := f(yi|Ψ),

L(Ψ) :=

n∏
i=1

Li(Ψ) . (9)

Because the θi’s are not observed, the likelihood of the ith individual Li(Ψ) is the integral of the
marginal likelihood (i.e. the density of the output data yi given individual parameters θi and parameters
Ψ) f(yi|θi,Ψ) with respect to all possible θi over Rd :

Li(Ψ) :=

∫
Rd

f(yi|θi,Ψ)f(θi|Ψ)dθi . (10)

In Eq. (10), f(θi|Ψ) refers to the PDF of the model parameters distribution computed for the individual
parameters.

The maximum likelihood estimator Ψ̂ is the result of the following maximization problem over the set
of all the possible parameters Ξ:

Ψ̂ := arg max
Ψ∈Ξ

L(Ψ) . (11)

In practice, the logarithm of the likelihood is computed to ease the numerical optimization [10].

2.3 Mixed-effects for multivariate models
The calibration of mixed-effects for univariate models has been extensively discussed [8, 20, 25]. This
happens when only onemeasure is available on each specimen. Yet, sometimes, one has access to several
measures on the same specimen (with longitudinal and transverse gauges or digital image correlation
for instance). Then, the model to be calibrated becomes multivariate in the sense that the output is no
longer a scalar but rather a vector, requiring to adapt the equation governing mixed-effects.
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Let us notemi the number of output measures of the i-th individual and k ∈ J1,miK the corresponding
index. In the following, all specimens are supposed to have the same number of output measures, so
mi = m ∀i ∈ J1, nK. All measures are supposed to have the same number of observation points Ni.
The main difference with Section 2.1 is that the model output of each observation point is no longer a
scalar yij but a vector yij ∈ Rm. The same occurs for the error term, now labeled ξij .

The equations governing the mixed-effects are [8, 20, 25]:


∀(i, j) ∈ J1, nK× J1, NiK ,yij = F(tij ,θi) + ξij ,

∀i ∈ J1, nK,θi ∼
i.i.d.

fΘ,Π ,

∀(i, j) ∈ J1, nK× J1, NiK , ξij ∼i.i.d. N (0Rm ,Ωij) ,

(12a)

(12b)

(12c)

with 0Rm the zero vector ofRm andΩij the covariance matrix of the error termwhich describes both the
errors of the different sensors and the possible correlations between the errors on two different sensors.
As in [21], the observations are supposed serially uncorrelated, meaning that the measurement errors at
two different observation times are independent :

∀i ∈ J1, nK, ∀(j1, j2) ∈ J1, NiK2, j1 6= j2 ⇒ Cov(ξij1 , ξij2) = 0 . (13)

Furthermore, for all specimens, the noise is supposed to be homoscedastic, that is to say : Ωij =

Ωi ∀ j ∈ J1, NiK. Note that the only difference between Eqs. (5) and (12a) is that all terms are now
vectors rather than scalars and that Eq. (12c) is the analogous of Eq. (8) for vectors instead of scalars.

Let us define for all individuals Yi, the matrix of the output data of the i-th specimen with Yi :=

(yi1, . . . ,yiNi) ∈ Mm,Ni(R). The rows of Yi correspond to yk
i = (ykij)j∈J1,NiK, that is to say the Ni

observations of the k-th measure of the i-th specimen. Similarly, it is possible to define the matrix of the
errors as ξi := (ξi1, . . . , ξiNi

) ∈ Mm,Ni(R). The rows of ξi matrix correspond to ξki = (ξkij)j∈J1,NiK

and can be understood as the Ni measurement errors of the k-th measure for the i-th specimen. Let us
define Ỹi the flattened array by row of the matrix of the output data Yi and the same for the matrix of
the error term ξ̃i. Then, Ỹi and ξ̃i belong to RmNi . This allows to transform Eq. (12) into


∀i ∈ J1, nK, Ỹi = F(ti,θi) + ξ̃i ,

∀i ∈ J1, nK,θi ∼
i.i.d.

fΘ,Π ,

∀i ∈ J1, nK, ξ̃i ∼i.i.d. N (0RmNi , Ω̃i) .

(14a)

(14b)

(14c)

with Ω̃i = Ωi ⊗ INi where ⊗ denotes the Kronecker product, INi the identity matrix ofMNi(R) and
0RmNi the zero vector of RmNi . Hence, the set of the model parameters to be calibrated, labeled Ψ is
defined as :

Ψ :=
(
µ, σ, Ω1, . . . , Ωm

)
.

Finally, the likelihood of the mixed-effects simply becomes f(Ỹ1, . . . , Ỹn|Ψ). Eq. (10) remains the
same except for yi that becomes Ỹi.
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2.4 Likelihood estimation with Laplace approximation
The evaluation of the likelihood function requires to compute the individual likelihoods, which implies
to estimate the multidimensional integral of Eq.(10). A fundamental method to compute the integral is
the Monte-Carlo method [22]. However, such an approach requires too many model evaluations to keep
the computational time reasonable. Thus, we rely on an alternative approach, the Laplace approximation
[25].

The Laplace approximation [2, 25] applies to integrals of the type

A :=

∫
Rd

exp(−h(x))dx ,

where h(·) is a function which must satisfy the following constraints:

1. h(·) admits a global minimum x0 that belongs to the integration interval,

2. h(·) is a twice-differentiable function,

3. its Hessian matrixH(h) computed at x = x0 is a symmetric definite positive matrix.

The main idea is to assume that only points close to x0 significantly contribute to the integral, leading
to the following Laplace approximation of A:

A ≈ exp(−h(x0)))
(2π)

d
2√

|H(h)(x0)|
. (15)

Given the modeling choices (Eq.(14)), the individual likelihoods read as :

Li(Ψ) =

∫
Rd

f(Ỹi|θi,Ψ)f(θi|Ψ)dθi

=

∫
Rd

1√
|Ω̃i||Σ|(2π)d+mNi

exp

(
−gi(µ,∆,Λi, Ỹi,bi)

2

)
dbi .

(16)

Here, ∆ is the transpose of the result of the Cholesky decomposition of Σ−1 (so Σ−1 = ∆T∆), Λi

is the transpose of the Cholesky decomposition of Ω̃
−1

i (so Ω̃
−1

i = ΛT
i Λi) and the function gi(·) is

defined by

gi(µ,∆,Λi, Ỹi,bi) := ‖Λi(Ỹi −F(ti,µ+ bi))‖2 + ‖∆bi‖2 . (17)

The Laplace method is applied in two steps:

1. Search for the individual parameters (or rather the deviations), b̂i, minimizing gi(·) Eq. (17),

2. Computation of the Laplace approximation with Eq.(15).

To finalize the approximation of the likelihood, it remains to estimate the Hessian matrix of gi(·) at b̂i

[25]:

H(gi)(b̂i) =
∂2F(µ, ti, b̂i)

∂bi∂bT
i

ΛT
i Λi(Ỹi −F(µ, ti, b̂i))

+
∂F(µ, ti, b̂i)

∂bi

T

ΛT
i Λi

∂F(µ, ti, b̂i)

∂bi
+ ∆T∆ .

(18)
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In practice, ∂2F(µ,ti,b̂i)

∂bi∂bT
i

ΛT
i Λi(Ỹi−F(µ, ti, b̂i)) can be neglected if the model F(·) is close enough to

the experiment Ỹi [3]. The term ∂F(µ,ti,b̂i)
∂bi

is evaluated using a finite difference scheme. As a result,
the negative log-likelihood is finally expressed as

− ln(L(Ψ)) = −
n∑

i=1

ln (Li(Ψ)) = −
n∑

i=1

ln

(∫
Rd

f(Ỹi|θi,Ψ)f(θi|Ψ)dθi

)

≈
n∑

i=1

(
1

2
ln(|H(gi)(b̂i)|) +

gi(µ,∆,Λi, Ỹi, b̂i)

2
+

1

2
ln(|Ω̃i|(2π)mNi)

)
+
n

2
ln(|Σ|) .

(19)

2.5 Individual parameters estimation
The mixed-effects model also allows to infer the individual parameters. With the Laplace method, indi-
vidual parameters are by-products of the likelihood function calculation givenΨ. OnceΨ is chosen, the
random effects bi are estimated by looking for the dominating contribution in the individual likelihood
Li (Eq. (16)) through the minimization of function gi(·) (Eq.(17))

b̂i = arg min
bi∈Ξ

gi(µ,∆,Λi, Ỹi,bi) , (20)

with Ξ the research for the individual parameters. The individual deviations are then simply computed
as θi = µ+ bi .

2.6 Likelihood maximization estimate
Now that the expression of the likelihood for a mixed-effects model has been established, the model
parameters can be identified by minimizing the opposite of the log-likelihood,

Ψ̂ = arg min
Ψ∈Ξ

− ln(L(Ψ)) . (21)

Remember that, as computing the likelihood is numerically challenging, the Laplace approximation of
the likelihood is used instead in the optimization process. To solve the minimization problem (Eq. (21)),
the first possibility would be to rely on gradient-based algorithms, which need either the gradient or an
approximation of the gradient of the objective function. Here, the gradient of− ln(L(Ψ)) expressedwith
Eq.(19) with respect to Ψ is difficult to compute analytically. Indeed the differentiation with respect to
the population parameters of function gi(·) requires to differentiate the individual deviations bi defined
in (20) with respect to the population parameters (i.e., µ and Σ via ∆).

A second possibility is to use gradient-free optimization algorithms, and in particular evolutionary al-
gorithms. Though they require many likelihood estimations, they exhibit a greater ability to reach the
global maximum of the likelihood, Ψ̂, despite the possible presence of local minima. The algorithm
chosen here is the CMA-ES algorithm [12]. Given that a multivariate Gaussian distribution of dimen-
sion d (d stands for the number of parameters to be calibrated) is parametrized by at least d means and
d variance parameters, and that mixed-effects models allow to estimate the variance of the error term,
there is always at least 2d+ 1 to be estimated and thus ` > 2d+ 1.

The auxiliary optimization problemwhich identifies the individual parameters (the minimization of gi(·)



25ème Congrès Français de Mécanique Nantes, 29 août au 2 septembre 2022

in Eq.(17)) is performed using the SLSQP algorithm [13].

3 Sequential calibration process
Advancedmechanical models characterize different aspects of the behavior of thematerial they describe,
among which elasticity, viscosity, damage, etc. Each of these phenomena may be described by its own
set of model parameters, which finally makes the number of parameters to be calibrated large (21 for the
3 − d anisotropic elastic model for instance [4]). Consequently, a common practice [9, 23] in classical
calibration consists into dividing the full calibration problem into calibration sub-problems that allow
to identify different subsets of the complete parameters vector [14, 31]. In these works, the different
sub-problems are associated with a specific part of the model parameters. The method consists into
solving a sequence of calibration problems taking advantage in each step of the knowledge acquired so
far. To be more precise, for a given step, in a frequentist framework, the coefficients calibrated in the
previous steps are either taken as fixed inputs or severely bounded. In a Bayesian fashion, the identified
posterior probability density on one step becomes a prior density for the next stages [28, 30].

The sequential approach requires to define a sequence of calibration sub-problems, which must be per-
formed carefully. Indeed, as each step depends on the previous ones, an error on one step may flaw
the whole calibration process. In some cases, the decomposition in sub-problems can be rather easy to
perform with the help of expert knowledge [14, 31]. For example, [14] chooses to separate the model
parameters between those that describe the electrical and mechanical behaviors of an energy harvester.
Yet, in some cases, such a decomposition is not available. Consequently, not to depend on an arbitrary
choice, another option consists into relying on a statistical criterion. For instance, given the available
experiences, it can be decided to select the parameters to which the model output is sensitive following
the analysis of the Fisher Information Matrix (the Hessian matrix of the log-likelihood) [16] resulting
from the maximum likelihood estimation to define the sequence of interest.

In the mixed-effects framework, the objective is to characterize the material variability observed on
a population of specimens modeled by the model parameters distribution. Following the decomposition
of any PDF between marginals and copulas ([26]), the model parameters distribution fΘ,Ψ reads as :

f(θi|Ψ) = c(F1(θ1
i ), . . . , Fd(θdi )|Ψcop)

d∏
a=1

fk(θai |Ψmarg) , (22)

with fa the marginal of θa, a ∈ J1, dK, Fa the cumulative density function of θa, a ∈ J1, dK, c(·)
the copula density function, Ψmarg the parameters of the marginals (here mean and variance param-
eters) and Ψcop the parameters of the copula density (here the correlation coefficients) verifying Ψ =

(Ψmarg,Ψcop). The decomposition of Eq.(22) allows to calibrate separately the different terms allow-
ing a sequential calibration of fΘ,Ψ. The sequential calibration process consists in defining a sequence
of subsets of indices Sp ⊂ J1, dK corresponding to the sensitive parameters defining the marginals and
correlations parameters Ψp to be calibrated in step p, leading to the definition of a specific likelihood
function Lp. Once these parameters are estimated, a trust regionRp is defined. For the next stages, the
parameters already estimated are limited to their trust region Rp. This allows to ease the optimization
as it focuses on a specific region of the parameter space, but also enables to make sure that the calibrated
distribution remains consistent with the data used in the previous stages. The definition of the sequence
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of calibration relies on the observation that the identification of a given marginal requires the model out-
put to be enough sensitive to the corresponding parameter. This allows to design relevant experiments
to estimate properly the PDF of interest. Figure 2 sums up the different stages of the method.

Parameters of interest : S1

research space : R#S1

estimated trust region : R1

Parameters of interest : S2

research space : R#S2 ∩R1

estimated trust region : R2

Parameters of interest : Sl
research space : R#Sl ∩

⋂l−1
p=1Rp

estimated trust region : Rl

Step 1 Step 2 Step l
Figure 2: Different stages of the calibration process. A first calibration is performed to define trust region
S1. In the second calibration problem, these parameters are identified again but limited to their trust
region R1. The same procedure is repeated up to the complete identification of the model parameters
distribution fΘ. #E denotes the cardinality of set E.

4 Applications
This section presents the application of the considered sequential calibration to the identification of the
orthotropic elastic model. After a brief description of the model in Section 4.1, the applied sequential
strategy is exposed in Section 4.2 before describing the assessment protocol of the proposed method in
Section 4.3 and presenting results in Section 4.5.

4.1 Orthotropic elastic model
This section aims to present the orthotropic elastic behavior of elementary unidirectional (UD) ply under
the assumption of plane stress [4]. Let us note σ :=

(
σ11, σ22, σ12

)
the Cauchy stress (in MPa) and

ε :=
(
ε11, ε22, 2ε12

)
the observed strain (without units). The orthotropic elastic model can be

written in the material axis :

 ε11

ε22

2ε12

 = S

σ11

σ22

σ12

 =

S11 S21 0

S12 S22 0

0 0 S66


σ11

σ22

σ12

 , (23)

with S the stiffness matrix. S is a symmetric matrix so S12 = S21. For pratical interpretations, the
coefficients of the stiffness matrix can be related to the elastic moduli, that is to say the longitudinal
modulus E11, the transverse modulus E22, the shear modulus G12 and the Poisson’s ratios ν12 and ν21

[4]. Finally, there are 4 parameters to be calibrated S11, S22, S12 and S66.

4.2 Applying the sequential strategy
Given the modeling choices, the model parameters distribution is described by 14 parameters, namely
4 mean parameters, 4 variance parameters and 6 covariance parameters. Assuming that the elastic be-
havior in the fiber direction and in the matrix direction (described by S11 and S22) are independent, we
finally have 13 parameters to calibrate. The distribution parameters can be summed up into
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µ =


µS11

µS22

µS12

µS66

 Σ =



S11 S22 S12 S66

S11 V(S11) ∗ ∗ ∗
S22 0 V(S22) ∗ ∗
S12 Cov(S11, S12) Cov(S22, S12) V(S12) ∗
S66 Cov(S11, S66) Cov(S22, S66) Cov(S12, S66) V(S66)

 , (24)

where the ∗ indicate for the symmetric coefficient of the covariance matrix.

First, let us noticing that the orthotropic elastic model defined in Eq. (23) is characterized by 4model pa-
rameters that may be identified from at most 3 strain profiles. Consequently, if the chosen load activates
all model parameters (for instance σ = σ01R3 , with 1R3 the unitary vector of R3), the identification of
the individual deviations bi will be an ill-posed problem (Eq. (20)). This is of prime importance as it
will impair the calibration results. Indeed, in the mixed-effects, the parameters of fΘ,Π are set to best fit
the empirical distribution of the individual parameters. Nevertheless, the identifiability of the individual
deviations bi can be ensured when the model output is sensitive to only 3 of the 4 model parameters.
Yet, only three of four coefficients can be identified at once, implying to set up a sequential strategy to
get all non-zero coefficients detailed in Eq. (24)

Let us recall that to estimate a given marginal, it is necessary to have a proper estimation of the given
parameter which requires the model output to be sensitive enough to the parameter in question. The
same occurs for the estimation of the correlations that requires the model output to be sensitive enough
to both the involved parameters.

For 0◦ UD laminate, let us consider the following load σ =
(
σ11, 0, σ12

)
. Such experiments cor-

respond to multiaxial tests on tubular specimens combining both tension and torsion loads [5]. Then,
following Eq. (23), the model output is determined by S11, S12, S66. The application of previous re-
marks shows that it is possible to calibrate the parameters highlighted in red in Eq.(25):

µ =


µS11

µS22

µS12

µS66




S11 S22 S12 S66

S11 V(S11) ∗ ∗ ∗
S22 0 V(S22) ∗ ∗
S12 Cov(S11, S12) Cov(S22, S12) V(S12) ∗
S66 Cov(S11, S66) Cov(S22, S66) Cov(S12, S66) V(S66)

 . (25)

This allows to estimate a first trust region : R1. Let us now consider another loadσ =
(

0, σ22, σ12

)
.

Such experiments correspond to multiaxial tests on tubular specimens combining both internal pressure
and torsion loads [5]. Then, following Eq. (23), the model output is determined by S22, S12, S66. The
application of previous remarks shows that it is possible to calibrate the parameters highlighted in blue
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in Eq.(25):

µ =


µS11

µS22

µS12

µS66




S11 S22 S12 S66

S11 V(S11) ∗ ∗ ∗
S22 0 V(S22) ∗ ∗
S12 Cov(S11, S12) Cov(S22, S12) V(S12) ∗
S66 Cov(S11, S66) Cov(S22, S66) Cov(S12, S66) V(S66)

 . (26)

Note that µS12 , µS66 ,V(S12), Cov(S12, S66) and V(S66) are limited to trust region R1. This allows to
estimate a second trust region (R2) for the calibrated parameters. All the distribution parameters of the
model are now estimated through these two steps.

4.3 Testing the sequential strategy in themixed-effects framework
To test the ability of the proposed methodology to calibrate the elastic model with mixed-effects, we
choose to calibrate the model with synthetic data. Both the distribution parameters and the individual
parameters are estimated.
A multivariate Gaussian distribution, defined by a mean vector µ and a covariance matrix Σ is chosen
to generate the synthetic data. This set of parameters will be denoted Ψexact in the following. Individ-
ual parameters θi,exact are sampled from this distribution to compute, for each of these specimens the
elastic model outputs εi,exact. The mixed-effects approach is applied to the synthetic data and the results
obtained are confronted to their exact counterpart.
The results are first compared at the population level to ensure that the model parameters distribution is
properly estimated, using the relative error on the distribution parameters E(Ψ̂), defined as

E(Ψ̂) :=
(
E(Ψ̂1), . . . , E(Ψ̂`)

)
with E(Ψ̂q) :=

|Ψexact,q − Ψ̂q|
Ψexact,q

,∀q ∈ J1, `K , (27)

noting ` the number of distribution parameters, and theKullback-Leibler divergence [17] KL(fΨexact , fΨ̂
)

between the exact fΨexact and the calibrated distribution fΨ̂
:

KL(fΨexact , fΨ̂
) :=

∫
Rd

fΨexact(θ) ln

(
fΨexact(θ)

f
Ψ̂

(θ)

)
dθ . (28)

The adequation between the calibrated and the synthetic data can also be evaluated for each individual.
To verify that the different specimens are correctly identified either in terms of calibrated individual
parameters θ̂i or estimated output F(ti, θ̂i), the averaged relative error on the individual parameters
e(θ̂1, . . . , θ̂n) is defined as:

e(θ̂1, . . . , θ̂n) :=
1

n

n∑
i=1

ei(θ̂i) with ei(θ̂i) =
(
ei(θ̂

1
i ), . . . , ei(θ̂

d
i )
)

ei(θ̂
a
i ) =

|θai,exact − θ̂ai |
θai,exact

∀a ∈ J1, dK,

(29)

and the average error between the exact and estimated outputs d(θ̂1, . . . , θ̂n) for each strain component
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d(θ̂1, . . . , θ̂n) :=
(
d1(θ̂1, . . . , θ̂n), . . . , dm(θ̂1, . . . , θ̂n)

)
with dk(θ̂1, . . . , θ̂n) :=

1

n

n∑
i=1

1

Ni
‖εki,exact −Fk(ti, θ̂i)‖2 ∀k ∈ J1,mK ,

(30)

are computed. Furthermore, to account for the specificity of the sampled specimens, the calibration is
repeated 20 times with different individuals. The above indicators are averaged over the repetitions and
their dispersion is characterized by the coefficient of variation COV(X) defined for any non-zero quantity
X as COV(X) =

√
V̂ (X)

M̂(X)
with M̂(X) the empirical mean of X and V̂ (X) its empirical variance.

Finally, the maximum likelihood estimates (MLE) also enables to determine the variance of the error
term. To keep the number of parameters reasonable and ease the minimization of the log-likelihood, it
is decided here to assign to each specimen and measure the same covariance matrix of error term :

∀i ∈ J1, nK Ωi = Ω .

4.4 Generating virtual data
The targeted means and standard deviations of the parameters are described in Table 1. Mean values are

Table 1: Exact values of the parameters distribution.
S11 [MPa−1] S22 [MPa−1] S12 [MPa−1] S66 [MPa−1]

Mean 8.52× 10−6 1.13× 10−4 −3.20× 10−6 2.37× 10−4

Standard deviation 6.09× 10−7 2.46× 10−5 5.27× 10−7 6.81× 10−5

consistent with material properties of T700M21 described in [19]. Standard deviations are chosen to
allowmaterial variability to express strongly. Yet, note that the dispersion of thematerial properties char-
acterized by the selected standard deviations is greater than the variability observed on the experimental
data. Several correlations scenarios are considered : independence (between S11 and S22), positive
correlation : ρ(S11, S12) = 0.54, ρ(S11, S66) = 0.60, ρ(S12, S66) = 0.91 and negative correlations
ρ(S22, S12) = −0.84, ρ(S22, S66) = −0.70 noting ρ the correlation.

For each of the 20 repetitions, 50 independent identically distributed vectors of parameters correspond-
ing to 50 virtual specimens are sampled from fΨexact to achieve statistical consistency of the estimators.
For each of these samples and given a stress profile (here a constant stress rate σ̇1 = ∂σ1

∂t equal to(
6.64, 0, 0.664

)
MPa.s−1 and σ̇2 = ∂σ2

∂t equal to
(

0, 5.18, 0.518
)
MPa.s−1), the correspond-

ing model outputs (εi,exact)i∈J1,nK are computed. An heteroscedastic noise is added to the experimental
data:

εji,noisy = εji,exact × (1R3 + βζ) with ζ ∼ N (0R3 , I3) and β = 0.02 , (31)

with 1R3 the unitary vector of R3, 0R3 the zero vector of R3 and I3 the identity matrix ofM3(R). Yet,
in the calibration process, the noise is considered as homoscedastic for all measures (cf. Eq.(8)). Exact
and noisy data are depicted in Figure 3 for the first load profile.
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Figure 3: Example of a set of 50 synthetic stress-strain curves, without and with added noise (lines and
dots, respectively).

4.5 Results
This section is dedicated to the presentation of the calibration results in the mixed-effects approach.
First, the calibration results of step 1 are proposed to check that the joint distribution of S11, S12 and
S66 is properly estimated. Then, the results of the second stage are analyzed to assess the ability of the
sequential procedure to estimate the full joint probability distribution.

4.5.1 Calibration of the joint distribution of S11, S12 and S66

Given the modeling assumptions described in Sections 4.2 and 4.4, there are ` = 12 parameters to be
calibrated : 3 mean parameters, 3 standard deviation parameters, 3 correlation parameters and 3 noise
parameters. The calibration of the dependence structure is performed using the Cholesky decomposi-
tion of the covariance matrix [24], to make sure that the calibrated covariance matrix remains positive-
definite. The optimization variables, Ψ are normalized between 0 and 1. 600 iterations of the CMA-ES
algorithm are carried out to maximize the likelihood. The population of the CMA-ES algorithm is set
to 12 following setting recommendations from [12]. For the determination of the individual parameters,
10 different initialization points are considered not to depend on the starting point.

The calibrated means, standard deviations and correlations are described in Table 4. These results in-
dicate that all the distribution parameters are properly calibrated as the average relative error remains
below 15% for all parameters in average over all repetitions. Furthermore, the coefficients of variation of
the distribution parameters reach at most 20%, indicating that their range of variation is limited around
the exact value. This is coherent with the low range of variation of the KL divergence displayed on
Figure 4. These observations suggest that, regardless of the sampled specimens, for 50 individuals, the
model parameters distribution is well estimated.

To check the consistency of the calibration, it is mandatory to study the calibration of the individual
parameters as they influence the determination of the population parameters. Table 2 shows that all
individual parameters are well estimated. This is confirmed by the magnitude of the error between the
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Figure 4: Boxplot of KL divergences of the calibrated distributions with respect to the exact distribution
for the 20 repetitions.

exact data and model output for the calibrated parameters when compared to the range of values of the
strain profile.

Thus, these different indicators allow to validate the calibration of joint distribution of S11, S12 and
S66 either at the population or specimen levels. Consequently, the first stage of the methodology is
completed.

Table 2: Relative errors on the estimation of the individual parameters e(θ̂1, . . . , θ̂n) averaged over
20 repetitions of the calibration process. The corresponding coefficients of variation in % are indicated
between brackets.

S11 [MPa−1] S12 [MPa−1] S66 [MPa−1]

Relative error (%) 0.4(11) 0.4(10) 0.4(14)

Table 3: Error in model space d(θ̂1, . . . , θ̂n) for each strain component.

Strain Component ε11 ε22 ε12

Order of magnitude of the mean strain value 10−4 10−4 10−3

Distance in model space 3.54× 10−10 5.18× 10−11 1.10× 10−8

4.5.2 Calibration of the joint distribution of S22, S12 and S66

In the second stage of the methodology, the objective is to identify the joint distribution of S22, S12 and
S66. Furthermore, the parameters of the joint distribution of S12 and S66 (µS12 , µS66 ,V(S12),V(S66)

and Cov(S12, S66)), already estimated in the previous step will be limited to a trust region correspond-
ing to R1 = [0.8Ψ1, 1.2Ψ1]. To implement bounds on Cov(S12, S66), a spherical decomposition of
the covariance matrix is used [24]. The number of parameters remain the same (12), with 6 parameters
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Table 4: Averaged calibrated mean, standard deviations and correlations Ψ1,mean and averaged error
Emean(Ψ̂1) over 20 repetitions of the calibration process with samples of 50 specimens each. The coef-
ficients of variation COV in % are indicated between brackets.

S11 [MPa−1] S12 [MPa−1] S66 [MPa−1]

Exact Means 8.52× 10−6 −3.20× 10−6 2.37× 10−4

Averaged Calibrated
Means

8.52× 10−6(2) −3.24× 10−6(4) 2.26× 10−4(4)

Averaged Errors
On Calibrated Means (%) 1(79) 3(78) 5(70)

Exact Standard Deviations 6.09× 10−7 5.27× 10−7 6.81× 10−5

Averaged Calibrated
Stan-
dard Deviations

5.99× 10−7(10) 5.21× 10−7(10) 6.68× 10−5(8)

Averaged Errors On Cali-
brated
Standard-Deviations (%)

9(49) 8(75) 8(45)

Correlations ρ(S11, S12) ρ(S11, S66) ρ(S12, S66)

Exact Correlations 0.54 0.60 0.91

Averaged Calibrated
Correlations

0.51(19) 0.58(15) 0.88(7)

Averaged Errors On Cali-
brated
Correlations (%)

14(79) 11(85) 5(110)

already limited toR1.

The calibrated means, standard deviations and correlations are described in Table 5. First, one can notice
that the distribution parameters involving S22 (not calibrated in step 1) are well estimated. Indeed, the
average relative error remains below 12% for all the coefficients in average over all the repetitions. Fur-
thermore, the coefficients of variation of the distribution parameters reach at most 13%, indicating that
their range of variation is limited around the exact value. Table 2 shows that all individual parameters
are well estimated. This is confirmed by the magnitude of the error between the exact data and model
output for the calibrated parameters when compared to the range of values of the strain profile.

It is important to notice that the estimation of the joint distribution of S12 and S66 (noted f(S12, S66) in
the following) is not downgraded in the second stage. As a matter of fact, the average relative error of
the corresponding parameters is comparable to its counterpart in the first step : the average relative error
of µS66 reaches 5% in the first stage and 6% in the second stage for instance. The same occurs for all
parameters defining f(S12, S66). This can also be assessed by comparing the KL divergence between the
exact joint distribution of S12, S66 (fexact(S12, S66)) and the calibrated distribution (fcalibrated(S12, S66))
in the two stages as depicted Figure 5 for the 20 repetitions. It shows that the second estimation the joint
distribution of S12 and S66 is not downgraded as the median of the KL divergences are comparable and
that its estimation is slightly more accurate.
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Figure 5: KL divergences of the calibrated and exact joint distribution S12 and S66 for the 20 repetitions
in the two stages.

5 Conclusion
This article presents a sequential calibration procedure that aims to calibrate complex material models
compliant with the mixed-effects framework using multivariate data. The method consists in defining a
sequence of calibration sub-problems, each one corresponding to a subset of the available experimental
data. The subdivision of the complete problem into sub-problems can be based on the choice of the
expert and on sensitivity analyses. Indeed, well-chosen tests can activate different parts of the model,
i.e. different subsets of the model parameters. Thus, each type of test makes it possible to define a
sub-problem whose objective is to identify the joint distribution of a subset of the model parameters.
A parameter can be involved in several sub-problems. In this case, it is identified once and the de-
sign domain of the corresponding distribution parameters is reduced to a trust region in the subsequent
calibrations, to ensure consistency between the different sub-problems.

The method is applied to a virtual test case to the calibration of the orthotropic elastic model in plane
stress. A first analysis of the material model shows the need to use such approaches because of the
ill-posed nature of the full calibration problem. The joint distribution of the stiffness is sequentially
estimated in two stages, using experiments performed on tubular specimens. The consistency of the
results throughout the calibration process is ensured by bounding the parameters estimated twice. The
results demonstrate the ability of the proposed procedure to estimate properly the model parameters
distribution in the presence of significant material variability. Above all, this work shows that sequential
calibration is compatible with mixed-effects models, allowing the calibration of complex non-linear
models with mixed-effects for future works.
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