# Quantization applied to the visualization of low-probability flooding events

#### Charlie SIRE<sup>1,2,3</sup>

Supervisors: R. LE RICHE<sup>3</sup>, D. RULLIERE<sup>3</sup>, J. ROHMER<sup>2</sup>, L. PHEULPIN<sup>1</sup>, Y. RICHET<sup>1</sup>

<sup>1</sup>IRSN

<sup>2</sup>BRGM

<sup>3</sup>CNRS,LIMOS

ECCOMAS 2022, June 8



## Content

- Introduction
- Quantization
- Importance Sampling
- 4 Metamodeling
- 6 Applications

## Hydraulic simulators



One simulation  $\sim$  several hours

#### Output: Flooding map



Charlie SIRE ECCOMAS 2022, Oslo

3 / 26

## Visualization problem

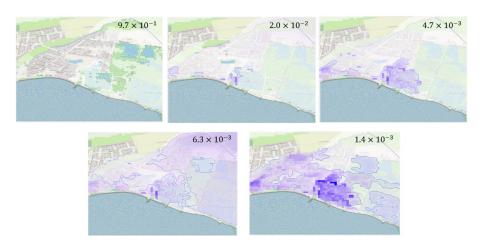
Flooding map: easy to understand for everyone (Urban Planners, Decision makers)

But how to show a set of flooding maps that best represent the probability law associated to the flooding event ?

⇒ K-Means Clustering : Identify K Voronoi cells such that the mean distance between an observation and its nearest cell centroid is minimized

4 / 26

# Objective



#### Problem formulation I

Input space =  $\chi = \mbox{Natural Phenoma parameters} \times \mbox{Breach parameters}$ 

Output space  $=\mathcal{Y}$  the space of pixelated maps, with inner product  $\langle .,. \rangle_{\mathcal{Y}}$ 

We introduce the random field Y:

$$Y: D \to \mathcal{Y}, \langle ., . \rangle_{\mathcal{Y}}$$
  
 $x \mapsto Y(x).$ 



#### Problem formulation II

**Quantization problem** : Find for a given  $\ell \in \mathbb{N}$ ,  $\Gamma = \{\gamma_1, \gamma_2, ..., \gamma_\ell\} \in \mathcal{E}^\ell$  representatives of Y(X)

Closest representative map function:

$$q_{\Gamma} \colon \mathcal{Y} \to \Gamma$$

$$y \mapsto q_{\Gamma}(y) = \underset{\gamma_i \in \Gamma}{\operatorname{arg \, min}} \|y - \gamma_i\|_{\mathcal{Y}}$$

Quantization error:  $e(\Gamma) = \left[\mathbb{E}\left[\|Y(X) - q_{\Gamma}(Y(X))\|_{\mathcal{Y}}^{2}\right]\right]^{\frac{1}{2}}$ 

Objective: Find

$$\begin{split} \Gamma^{\star} &= \{\gamma_{1}^{\star},..,\gamma_{\ell}^{\star}\} = \underset{\Gamma \in \mathcal{Y}^{\ell}}{\arg\min} \left(e(\Gamma)\right) \\ &= \underset{\Gamma \in \mathcal{Y}^{\ell}}{\arg\min} \left[\mathbb{E}\left[\underset{i \in \{1..\ell\}}{\min} \left\|Y(X) - \gamma_{i}\right\|_{\mathcal{Y}}^{2}\right]\right]^{\frac{1}{2}} \end{split}$$

## Key points

Quantization is performed in a specific context :

- Expensive-to-evaluate simulators : metamodels adapted to spatial output
- 2 Low probability event : standard Monte Carlo sampling approach inefficient
- Quantization in a space of maps (Adapted metamodel, storage)

## Content

- Introduction
- Quantization
- Importance Sampling
- 4 Metamodeling
- 6 Applications



9 / 26

## Theorem Kieffer, Cuesta-Albertos

#### $\mathsf{Theorem}$

lf

- $\mathcal{Y}$  is of finite dimension q
- $\forall z, y \in \mathcal{Y}, \langle z, y \rangle_{\mathcal{Y}} = \sum_{i=1}^{n} \lambda_i z_i y_i \text{ with } \forall i, \lambda_i > 0$
- $\mathbb{E}\left[\|Y(X)\|_{\mathcal{V}}^2\right] < +\infty$

then 
$$\forall i \in \{1 \dots \ell\}, \mathbb{E}\left[Y(X) \mid Y(X) \in C_i^{\Gamma^*}\right] = \gamma_i^*$$

by defining  $C_i^1$  the Voronoi cells associated with a quantization  $\Gamma$  $: C_i^{\Gamma} = \{ y \in \mathcal{Y}, q_{\Gamma}(y) = \gamma_i \}.$ 

This means that the representatives of an optimal quantification coincide with the cells centroids.

June 8, 2022

# Lloyd's algorithm

#### Algorithm Lloyd's algorithm

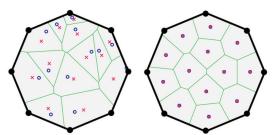
$$\Gamma^{[0]} \leftarrow \{\gamma_0^{[0]}, \dots, \gamma_\ell^{[0]}\}$$

1: while not stopping criterion do

$$\forall j \in \{1, \dots, \ell\}, \gamma_j^{[k+1]} \leftarrow \mathbb{E}\left[Y(X) \mid Y(X) \in C_j^{\lceil k \rceil}\right]$$

$$k \leftarrow k + 1$$

2: end while



## Lloyd in our case

The main point is to compute at each iteration the conditional expectation  $\mathbb{E}\left[Y(X)\mid Y(X)\in C_j^{\lceil k \rceil}\right]$ 

Problem here: In the flooding case, one prevailing Voronoi cell of empty maps (ie without water).

 $\Rightarrow$  Monte Carlo sampling techniques not adapted for other clusters

#### Content

- Introduction
- Quantization
- Importance Sampling
- 4 Metamodeling
- 6 Applications



# Principle of Importance Sampling

Objective : Estimate  $\mathbb{E}\left[g(Y(X))\right]$  with  $g\colon \mathcal{Y}\to\mathbb{R}^p$  such as  $\mathbb{E}\left[g(Y(X))^2\right]<+\infty$ 

Main idea : The representation of  $\mathbb{E}\left[g(Y(X))\right]$  as an expectation is not unique :

$$\mathbb{E}\left[g(Y(X))\right] = \mathbb{E}\left[g(Y(\tilde{X}))\frac{f_X(\tilde{X})}{\nu(\tilde{X})}\right]$$

with  $\tilde{X}$  a random variable with density function  $\nu$  with  $supp(f_X) \subset supp(\nu)$ 



## Estimator with importance sampling

From this last representation:

$$\hat{E}_n^{IS} = \frac{1}{n} \sum_{k=1}^n g(Y(\tilde{X}^{(k)})) \frac{f_X(\tilde{X}^{(k)})}{\nu(\tilde{X}_k)}$$

with  $(\tilde{X}^{(k)})_{k=1}^n$  be a *n*-sample of  $\tilde{X}$ 

Its covariance matrix is :  $\mathbb{V}(\hat{E}_n^{IS}) = \frac{1}{n} \mathbb{V}(g(Y(\tilde{X})) \frac{f_X(\tilde{X})}{\nu(\tilde{X})})$ 

In comparison to  $\frac{1}{n}\mathbb{V}(g(Y(X)))$  in a classical MC

Idea : Choose  $\nu$  that minimises variance

## Importance sampling combined with quantization

$$\mathbb{E}\left[Y(X)\mid Y(X)\in C_j^{\Gamma}\right]=\frac{\mathbb{E}\left[Y(X)\mathbb{1}_{Y(X)\in C_j^{\Gamma}}\right]}{\mathbb{E}\left[\mathbb{1}_{Y(X)\in C_j^{\Gamma}}\right]}$$

And an estimator of  $\mathbb{E}\left[Y(X)\mid Y(X)\in C_i^{\Gamma}\right]$ :

$$\hat{E}_{n}^{IS}(\Gamma,j) = \frac{\frac{1}{n} \sum_{k=1}^{n} Y(\tilde{X}^{(k)}) \mathbb{1}_{Y(\tilde{X}^{(k)}) \in C_{j}^{\Gamma}} \frac{f_{X}(\tilde{X}^{(k)})}{\nu(\tilde{X}_{k})}}{\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{Y(\tilde{X}^{(k)}) \in C_{j}^{\Gamma}} \frac{f_{X}(\tilde{X}^{(k)})}{\nu(\tilde{X}_{k})}}$$

Density function  $\nu$ : Uniform distribution

Charlie SIRE ECCOMAS 2022, Oslo 16 / 26

#### Content

- Introduction
- Quantization
- Importance Sampling
- Metamodeling
- 6 Applications



# Method [Perrin et al, 2021]

**1** FPCA: Write every map Y(x) as a linear combination of  $n_{pc}$  maps:

$$Y(x) = t_1(x)Y_1^{\mathrm{pca}} + \cdots + t_{n_{pc}}(x)Y^{\mathrm{pca}_{n_{pc}}}$$

- ② Gaussian process regression on every axis to predict  $(\hat{t}_1(x^*), \dots, \hat{t}_{n_{pc}}(x^*))$  for a new  $x^*$ 
  - $\implies$  Work with a large sample of predicted maps  $\hat{Y}( ilde{X}^{(k)})_{k=1}^n$

## Content

- Introduction
- Quantization
- Importance Sampling
- 4 Metamodeling
- 6 Applications



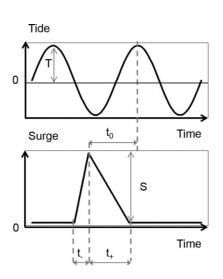
#### Les Boucholeurs

- French Atlantic Coast near La Rochelle
- Hit by the storm Xynthia (27-28 February 2010)



## Natural phenomena variables

- High-tide level
- Surge peak amplitude
- Phase difference
- Time duration of the rising part
- Time duration of the falling part

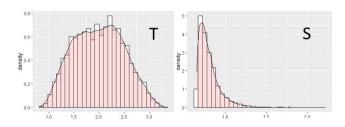


#### Breach variables

- Location of the breaches : 10 different locations
  - 6 natural protections based on historical observations
  - 4 artificial dykes near vulnerable zones
- Erosion rate : topographic level after failure as a fraction of initial crest level



## Density function



Offshore conditions: Historical observations Important offset added to the Surge that models the rise of the sea level

Breach variables:

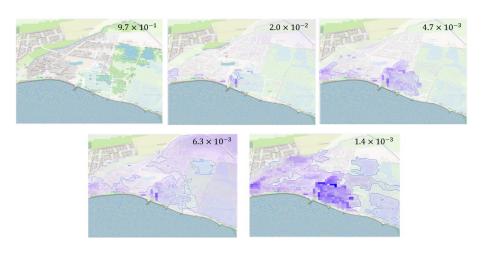
- Probability of failure :  $p_{fail}$  function of  $T, S, t0, t_-, t_+$
- If failure: Uniform probability law

#### Data

#### 1300 flood maps simulated as follows:

- Natural phenomena variables sampled as the beginning of the Sobol Sequence
- 500 simulations without breach
- 800 breaches simulated uniformly ( $\mathcal{U}_{\{1,\dots,10\}}$  for the breach location and  $\mathcal{U}_{[0,1]}$  for the erosion rate)

## Results



#### Future work

- Adapt the number of prototype maps
- $\bullet \ \, {\rm Biaised \ density} \,\, \nu \\$
- Add a study of the input space