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Hydraulic simulators

One simulation � several hours This is . Output : Flooding map
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Visualization problem

Flooding map : easy to understand for everyone (Urban Planners,
Decision makers)

This is .
But how to show a set of 
ooding maps that best

represent the probability law associated to the 
ooding event
?

This is .
) K-Means Clustering : Identify K Voronoi cells such that the

mean distance between an observation and its nearest cell centroid is
minimized
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Objective
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Problem formulation I

Input space =� = Natural Phenoma parameters� Breach
parameters

This is .
Output space =Y the space of pixelated maps, with inner

producth:; :i Y

This is .
We introduce the random �eldY :

Y : D ! Y ; h:; :i Y

x 7! Y (x):
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Problem formulation II
Quantization problem : Find for a giveǹ 2 N, � = f 
 1; 
 2; :::; 
 ` g 2 E` `

representatives ofY (X )
This is .
Closest representative map function :

q� : Y ! �

y 7! q� (y) = arg min

 i 2 �

ky � 
 i kY

.
Quantization error : e(�) =

�
E

�
kY (X ) � q� (Y (X ))k2

Y

�� 1
2

This is .
Objective : Find

� ? = f 
 ?
1 ; ::; 
 ?

` g = arg min
� 2Y `

(e(�))

= arg min
� 2Y `

�
E

�
min

i 2f 1::` g
kY (X) � 
 i k2

Y

�� 1
2
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Key points

Quantization is performed in a specific context :

1 Expensive-to-evaluate simulators : metamodels adapted to
spatial output

2 Low probability event : standard Monte Carlo sampling approach
inefficient

3 Quantization in a space of maps (Adapted metamodel, storage)
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Theorem Kieffer, Cuesta-Albertos

Theorem
If

Y is of finite dimension q

8z ; y 2 Y ; hz ; yiY =
Pn

i=1 �iziyi with 8i ; �i > 0

E
�
kY (X )k2Y

�
< +1

then 8i 2 f1 : : : ‘g;E
�
Y (X ) j Y (X ) 2 C Γ⋆

i

�
= 
?i

by defining C Γ
j the Voronoi cells associated with a quantization Γ

: C Γ
j = fy 2 Y ; qΓ(y) = 
jg.
This means that the representatives of an optimal quantification

coincide with the cells centroids.
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Lloyd's algorithm

Algorithm Lloyd's algorithm

� [0]  f 
 [0]
0 ; : : : ; 
 [0]

` g
1: while not stopping criteriondo

8j 2 f 1; : : : ; `g; 
 [k+1]
j  E

h
Y (X) j Y (X) 2 C� [k ]

j

i

k  k + 1
2: end while
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Lloyd in our case

The main point is to compute at each iteration the conditional
expectationE

h
Y (X) j Y (X) 2 C� [k ]

j

i

This is .
Problem here : In the 
ooding case, one prevailing Voronoi cell of

empty maps (ie without water).
This is .
) Monte Carlo sampling techniques not adapted for other

clusters
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Principle of Importance Sampling

Objective : EstimateE [g(Y (X))] with g : Y ! Rp such as
E [g(Y (X))2] < + 1

This is .
Main idea : The representation ofE [g(Y (X))] as an expectation

is not unique :

E [g(Y (X))] = E

"

g(Y ( ~X))
fX ( ~X)

� ( ~X)

#

with ~X a random variable with density function� with
supp(fX ) � supp(� )
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Estimator with importance sampling

From this last representation :

ÊIS
n =

1
n

nX

k=1

g(Y ( ~X (k)))
fX ( ~X (k))

� ( ~Xk )

with ( ~X (k))n
k=1 be an-sample of~X

Its covariance matrix is :V(ÊIS
n ) = 1

nV(g(Y ( ~X)) fX ( ~X )
� ( ~X )

)

In comparison to1
nV(g(Y (X))) in a classical MC

Idea : Choose� that minimises variance
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Importance sampling combined with quantization

E
�
Y (X) j Y (X) 2 C�

j

�
=

E
�

Y (X )1
Y (X )2 C�

j

�

E
�

1
Y (X )2 C�

j

�

And an estimator ofE
�
Y (X) j Y (X) 2 C�

j

�
:

ÊIS
n (� ; j ) =

1
n

P n
k=1 Y ( ~X (k))1Y ( ~X (k) )2 C �

j

fX ( ~X (k) )
� ( ~Xk )

1
n

P n
k=1 1Y ( ~X (k) )2 C �

j

fX ( ~X (k) )
� ( ~Xk )

Density function� : Uniform distribution
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Method [Perrin et al, 2021]

1 FPCA : Write every mapY (x) as a linear combination ofnpc

maps :
Y (x) = t1(x)Y pca

1 + � � � + tnpc (x)Y pcanpc

2 Gaussian process regression on every axis to predict
(t̂1(x?); : : : ; t̂npc (x

?)) for a newx?

=) Work with a large sample of predicted mapsŶ ( ~X (k))n
k=1
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Les Boucholeurs

French Atlantic Coast near La Rochelle

Hit by the storm Xynthia (27-28 February 2010)
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Natural phenomena variables

High-tide level

Surge peak amplitude

Phase di�erence

Time duration of the
rising part

Time duration of the
falling part
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