Quantization applied to the visualization of low-probability flooding events

Charlie SIRE^{1,2,3}

Supervisors: R. LE RICHE³, D. RULLIERE³, J. ROHMER², L. PHEULPIN¹, Y. RICHET¹

¹IRSN

²BRGM

³CNRS,LIMOS

ECCOMAS 2022, June 8

Content

- Introduction
- Quantization
- Importance Sampling
- 4 Metamodeling
- 6 Applications

Hydraulic simulators

One simulation \sim several hours

Output: Flooding map

Charlie SIRE ECCOMAS 2022, Oslo

3 / 26

Visualization problem

Flooding map: easy to understand for everyone (Urban Planners, Decision makers)

But how to show a set of flooding maps that best represent the probability law associated to the flooding event ?

⇒ K-Means Clustering : Identify K Voronoi cells such that the mean distance between an observation and its nearest cell centroid is minimized

4 / 26

Objective

Problem formulation I

Input space = $\chi = \mbox{Natural Phenoma parameters} \times \mbox{Breach parameters}$

Output space $=\mathcal{Y}$ the space of pixelated maps, with inner product $\langle .,. \rangle_{\mathcal{Y}}$

We introduce the random field Y:

$$Y: D \to \mathcal{Y}, \langle ., . \rangle_{\mathcal{Y}}$$

 $x \mapsto Y(x).$

Problem formulation II

Quantization problem : Find for a given $\ell \in \mathbb{N}$, $\Gamma = \{\gamma_1, \gamma_2, ..., \gamma_\ell\} \in \mathcal{E}^\ell$ representatives of Y(X)

Closest representative map function:

$$q_{\Gamma} \colon \mathcal{Y} \to \Gamma$$

$$y \mapsto q_{\Gamma}(y) = \underset{\gamma_i \in \Gamma}{\operatorname{arg \, min}} \|y - \gamma_i\|_{\mathcal{Y}}$$

Quantization error: $e(\Gamma) = \left[\mathbb{E}\left[\|Y(X) - q_{\Gamma}(Y(X))\|_{\mathcal{Y}}^{2}\right]\right]^{\frac{1}{2}}$

Objective: Find

$$\begin{split} \Gamma^{\star} &= \{\gamma_{1}^{\star},..,\gamma_{\ell}^{\star}\} = \underset{\Gamma \in \mathcal{Y}^{\ell}}{\arg\min} \left(e(\Gamma)\right) \\ &= \underset{\Gamma \in \mathcal{Y}^{\ell}}{\arg\min} \left[\mathbb{E}\left[\underset{i \in \{1..\ell\}}{\min} \left\|Y(X) - \gamma_{i}\right\|_{\mathcal{Y}}^{2}\right]\right]^{\frac{1}{2}} \end{split}$$

Key points

Quantization is performed in a specific context :

- Expensive-to-evaluate simulators : metamodels adapted to spatial output
- 2 Low probability event : standard Monte Carlo sampling approach inefficient
- Quantization in a space of maps (Adapted metamodel, storage)

Content

- Introduction
- Quantization
- Importance Sampling
- 4 Metamodeling
- 6 Applications

9 / 26

Theorem Kieffer, Cuesta-Albertos

$\mathsf{Theorem}$

lf

- \mathcal{Y} is of finite dimension q
- $\forall z, y \in \mathcal{Y}, \langle z, y \rangle_{\mathcal{Y}} = \sum_{i=1}^{n} \lambda_i z_i y_i \text{ with } \forall i, \lambda_i > 0$
- $\mathbb{E}\left[\|Y(X)\|_{\mathcal{V}}^2\right] < +\infty$

then
$$\forall i \in \{1 \dots \ell\}, \mathbb{E}\left[Y(X) \mid Y(X) \in C_i^{\Gamma^*}\right] = \gamma_i^*$$

by defining C_i^1 the Voronoi cells associated with a quantization Γ $: C_i^{\Gamma} = \{ y \in \mathcal{Y}, q_{\Gamma}(y) = \gamma_i \}.$

This means that the representatives of an optimal quantification coincide with the cells centroids.

June 8, 2022

Lloyd's algorithm

Algorithm Lloyd's algorithm

$$\Gamma^{[0]} \leftarrow \{\gamma_0^{[0]}, \dots, \gamma_\ell^{[0]}\}$$

1: while not stopping criterion do

$$\forall j \in \{1, \dots, \ell\}, \gamma_j^{[k+1]} \leftarrow \mathbb{E}\left[Y(X) \mid Y(X) \in C_j^{\lceil k \rceil}\right]$$

$$k \leftarrow k + 1$$

2: end while

Lloyd in our case

The main point is to compute at each iteration the conditional expectation $\mathbb{E}\left[Y(X)\mid Y(X)\in C_j^{\lceil k \rceil}\right]$

Problem here: In the flooding case, one prevailing Voronoi cell of empty maps (ie without water).

 \Rightarrow Monte Carlo sampling techniques not adapted for other clusters

Content

- Introduction
- Quantization
- Importance Sampling
- 4 Metamodeling
- 6 Applications

Principle of Importance Sampling

Objective : Estimate $\mathbb{E}\left[g(Y(X))\right]$ with $g\colon \mathcal{Y}\to\mathbb{R}^p$ such as $\mathbb{E}\left[g(Y(X))^2\right]<+\infty$

Main idea : The representation of $\mathbb{E}\left[g(Y(X))\right]$ as an expectation is not unique :

$$\mathbb{E}\left[g(Y(X))\right] = \mathbb{E}\left[g(Y(\tilde{X}))\frac{f_X(\tilde{X})}{\nu(\tilde{X})}\right]$$

with \tilde{X} a random variable with density function ν with $supp(f_X) \subset supp(\nu)$

Estimator with importance sampling

From this last representation:

$$\hat{E}_n^{IS} = \frac{1}{n} \sum_{k=1}^n g(Y(\tilde{X}^{(k)})) \frac{f_X(\tilde{X}^{(k)})}{\nu(\tilde{X}_k)}$$

with $(\tilde{X}^{(k)})_{k=1}^n$ be a *n*-sample of \tilde{X}

Its covariance matrix is : $\mathbb{V}(\hat{E}_n^{IS}) = \frac{1}{n} \mathbb{V}(g(Y(\tilde{X})) \frac{f_X(\tilde{X})}{\nu(\tilde{X})})$

In comparison to $\frac{1}{n}\mathbb{V}(g(Y(X)))$ in a classical MC

Idea : Choose ν that minimises variance

Importance sampling combined with quantization

$$\mathbb{E}\left[Y(X)\mid Y(X)\in C_j^{\Gamma}\right]=\frac{\mathbb{E}\left[Y(X)\mathbb{1}_{Y(X)\in C_j^{\Gamma}}\right]}{\mathbb{E}\left[\mathbb{1}_{Y(X)\in C_j^{\Gamma}}\right]}$$

And an estimator of $\mathbb{E}\left[Y(X)\mid Y(X)\in C_i^{\Gamma}\right]$:

$$\hat{E}_{n}^{IS}(\Gamma,j) = \frac{\frac{1}{n} \sum_{k=1}^{n} Y(\tilde{X}^{(k)}) \mathbb{1}_{Y(\tilde{X}^{(k)}) \in C_{j}^{\Gamma}} \frac{f_{X}(\tilde{X}^{(k)})}{\nu(\tilde{X}_{k})}}{\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{Y(\tilde{X}^{(k)}) \in C_{j}^{\Gamma}} \frac{f_{X}(\tilde{X}^{(k)})}{\nu(\tilde{X}_{k})}}$$

Density function ν : Uniform distribution

Charlie SIRE ECCOMAS 2022, Oslo 16 / 26

Content

- Introduction
- Quantization
- Importance Sampling
- Metamodeling
- 6 Applications

Method [Perrin et al, 2021]

1 FPCA: Write every map Y(x) as a linear combination of n_{pc} maps:

$$Y(x) = t_1(x)Y_1^{\mathrm{pca}} + \cdots + t_{n_{pc}}(x)Y^{\mathrm{pca}_{n_{pc}}}$$

- ② Gaussian process regression on every axis to predict $(\hat{t}_1(x^*), \dots, \hat{t}_{n_{pc}}(x^*))$ for a new x^*
 - \implies Work with a large sample of predicted maps $\hat{Y}(ilde{X}^{(k)})_{k=1}^n$

Content

- Introduction
- Quantization
- Importance Sampling
- 4 Metamodeling
- 6 Applications

Les Boucholeurs

- French Atlantic Coast near La Rochelle
- Hit by the storm Xynthia (27-28 February 2010)

Natural phenomena variables

- High-tide level
- Surge peak amplitude
- Phase difference
- Time duration of the rising part
- Time duration of the falling part

Breach variables

- Location of the breaches : 10 different locations
 - 6 natural protections based on historical observations
 - 4 artificial dykes near vulnerable zones
- Erosion rate : topographic level after failure as a fraction of initial crest level

Density function

Offshore conditions: Historical observations Important offset added to the Surge that models the rise of the sea level

Breach variables:

- Probability of failure : p_{fail} function of $T, S, t0, t_-, t_+$
- If failure: Uniform probability law

Data

1300 flood maps simulated as follows:

- Natural phenomena variables sampled as the beginning of the Sobol Sequence
- 500 simulations without breach
- 800 breaches simulated uniformly ($\mathcal{U}_{\{1,\dots,10\}}$ for the breach location and $\mathcal{U}_{[0,1]}$ for the erosion rate)

Results

Future work

- Adapt the number of prototype maps
- $\bullet \ \, {\rm Biaised \ density} \,\, \nu \\$
- Add a study of the input space