Gaussian Processes Indexed by Clouds of Points: a study Babacar SOW (EMSE, LIMOS), Rodolphe LE RICHE (CNRS, LIMOS)
Babacar Sow, Rodolphe Le Riche, Julien Pelamatti, Sanaa Zannane, Merlin Keller

To cite this version:
Babacar Sow, Rodolphe Le Riche, Julien Pelamatti, Sanaa Zannane, Merlin Keller. Gaussian Processes Indexed by Clouds of Points: a study Babacar SOW (EMSE, LIMOS), Rodolphe LE RICHE (CNRS, LIMOS). MASCOT-NUM, Jun 2022, Clermont Ferrand, France. emse-03720276

HAL Id: emse-03720276
https://hal-emse.ccsd.cnrs.fr/emse-03720276
Submitted on 11 Jul 2022
Gaussian Processes Indexed by Clouds of Points: a study

Julien PELAMATTI (EDF R&D), Sanaa ZANNANE (EDF R&D), Merlin KELLER (EDF R&D)

Universités: École Nationale Supérieure des Mines de Saint-Etienne (EMSE), Université Clermont Auvergne (UCA)

Laboratoire: LIMOS

Email of contact: babacar.sow@emse.fr

Context And Problematic

Context And Problematic

- Metamodel a function over clouds of points using Gaussian process.
- A cloud is a set of points invariant under permutation \(\{x_1, \ldots, x_n\} \) with \(x_i \in \mathbb{R}^{d \times m} \).

Test Function

The following test function mimics a wind-farm production:

\[
F(\{x_1, \ldots, x_n\}) = \sum_{i=1}^{n} \sum_{j} f_p(x_j, x_i) f_0(x_i)
\]

where \(f_p(x_j, x_i) \) expresses the energy loss over \(x_i \) that is caused by \(x_j \) and \(f_0 \) is a constant.

Kernels

Substitution kernel with MMD

- We want to construct a kernel between two clouds \(X \) and \(Y \) with a characteristic kernel such as \(k(x, \cdot) = \exp(-\frac{d^2(x, \cdot)}{\sigma^2}) \).
- The characteristic nature guarantees the injectivity of the embedding map [1]: \(P_X \mapsto \mu_X = \int P_X(x) k_X(x, \cdot) \, dx \).
- \(\text{MMD}^2(P_X, P_Y) = \| \mu_X - \mu_Y \|_H^2 \)
- For any kernel \(k_H \) of the RKHS, the uniform empirical laws of the RKHS, the uniform empirical laws gives \(\text{MMD}^2(P_X, P_Y) = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} k_H(x_i, x_j) + \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} k_H(y_i, y_j) - \frac{2}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} k_H(x_i, y_j) \)
- The correlation kernel \(k_{\text{sub}, \text{mmd}}(X, Y) = \sigma \exp(-\frac{d^2(x, \cdot)}{\sigma^2}) \) is symmetric and definite positive.

Geometrical Properties of the kernels

- Below is represented the correlation between a cloud and its image by a geometric transformation. Considered transformations are rotations and translations.
- We compare two scenarios: centered clouds and non-centered ones.
- The different kernels of the Hilbertian Space are the Exponential, the Gaussian(Squared Exponential), the Matern32 and the Matern52.

Prediction Results on the Analytical Function \(F \)

- We metamodel the wind-farm proxy function \(F \) with a Gaussian process of kernel \(K_{\text{sub}, \text{mmd}} \).
- We consider a set of 1000 clouds of 10 points each.
- Each point of a cloud is drawn uniformly in a square.
- The kernel parameters are learned using 200 clouds by maximizing log-likelihood with BFGS.
- On each plot, we represent predicted values vs. true ones on the remaining clouds, obtained with the different kernels.
- The corresponding Q2, MAE and MSE are also displayed.

References
