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Abstract: The local binary model is a straightforward, dependable, and effective method for extracting
relevant local information from images. However, because it only uses sign information in the
local region, the local binary pattern (LBP) is ineffective at capturing discriminating characteristics.
Furthermore, most LBP variants select a region with one specific center pixel to fill all neighborhoods.
In this paper, a new variant of a LBP is proposed for texture classification, known as corner rhombus-
shape LBP (CRSLBP). In the CRSLBP approach, we first use three methods to threshold the pixel’s
neighbors and center to obtain four center pixels by using sign and magnitude information with
respect to a chosen region of an even block. This helps determine not just the relationship between
neighbors and the pixel center but also between the center and the neighbor pixels of neighborhood
center pixels. We evaluated the performance of our descriptors using four challenging texture
databases: Outex (TC10,TC12), Brodatz, KTH-TIPSb2, and UMD. Various extensive experiments were
performed that demonstrated the effectiveness and robustness of our descriptor in comparison with
the available state of the art (SOTA).

Keywords: feature extraction; local binary pattern; texture classification

1. Introduction

Texture, as a significant characteristic, can be depicted as part of the large ambit
of an object surface or set of object images, comprising size, illumination, organization,
color, and other physical or natural features. In 2002, a new statistical method for image
processing and pattern recognition was proposed by [1,2], which was the first to introduce
local binary patterns (LBPs). The main purpose of this new method is to process a textured
image using a particular kernel function that constitutes the statistical relationship between
neighbors and the center and allows one to compute the transformation value by capturing
local structural patterns. The simplicity, robustness, and rapidity of the LBP calculation
has attracted attention from researchers looking to create their own local operators by
developing other variants.

The authors of [3] remarked that the high frequency of occurrences counted by an
LBP could achieve predominant texture information by introducing dominant local binary
patterns (DLBPs). The original LBP method was extended by [4] to solve noise limitation by
using three rather than two valued codes, which they called a local ternary pattern (LTP).
Guo et al. [5] introduced completed LBP (CLBP) modeling, which took into consideration
both magnitude (CLBP-magnitude) and sign (CLBP-sign). Furthermore, the CLBP-center
contained the same information as an LBP. To overcome the high sensitivity to noise of
CLBP and dimensionality, Liu et al. [6] proposed binary rotation invariant and noise
tolerant (BRINT) texture classification, which combines three descriptors—BRINT S, BRINT
M, and BRINT C—which enhance noise tolerance by quantizing the average gray pixel
value. A scale-selective LBP (SSLBP) was suggested by [7] to take the pre-learned dominant
LBP pattern at variant scale spaces. To maintain good discriminant features, Liu et al. [8]
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proposed a median robust Extended LBP (MRELBP) that uses regional image medians
rather than raw image intensities. This method combines three descriptors: MRELBP NI,
MRELBP RD, and MRELBP CI. A radial mean LBP (RMLBP) was suggested by [9] to solve
the problem of noise sensitivity by using the mean of points over each radial instead of
employing angular neighbor points. In [10] a cross-complementary LBP (CCLBP) was
proposed to enhance the robustness to scale, viewpoint, and number of training samples by
diversifying two parameters accordingly. Recently, many other interesting modifications
and improvements to LBPs have been developed: LOOP [11], ACS-LBP and RCS-LBP [12],
MLD-CBP [13], CLSP [14], LCvMSP [15], Hess-ACS-LBP [16], ACPS [17], and LDT [18].

In texture classification, many descriptors and extensions of an LBP use just one center
as a reference to threshold the neighboring pixels. Therefore, the relationship between
the center pixels is loosened. Furthermore, a LBP uses bilinear interpolation, which has
many limitations such as the loss of sharpness, inaccuracy of the gray value, and high
computational complexity. A new LBP version is proposed in this article to overcome
these weaknesses: the corner rhombus-shaped LBP (CRSLBP). In fact, the CRSLBP is
an improved version of the LBP method because it takes into consideration sign and
magnitude information and uses a single parameter (radius) with the addition of the
chosen even block, which permits the thresholding of four center pixels. This serves to
obtain relationships not only between neighbors, but also between the centers and the
neighbor of centers. Three different processes are used to obtain three descriptors that
give a better characterization of images. The histogram of each image is extracted and
concatenated with the others to obtain discriminant and robust features. Specifically, to
obtain more than one center, the CRSLBP uses 4 × 4 blocks to select four center pixels at
the same time. From this, the relationship between the center pixels and between the center
and neighbors of the neighboring center pixels can be determined. Furthermore, bilinear
interpolation is eliminated, so all focus is on information from the block and exploiting it
using various thresholding methods that have been adaptively computed by examining
local structures and their properties.

This study is structured as follows: Sections 2 and 3 introduce a brief related work
and the proposed texture analysis descriptor: the corner rhombus-shaped LBP (CRSLBP),
respectively. Section 4 discuses the performance of the proposed method by using classifiers
compared to SOTA approaches. The paper is concluded in Section 5.

2. Related Work

Before going into our proposed approach, we first need to present a brief review of
the main works in the literature that inspired us. We start with the original LBP and then
present the motivation that gave us the idea for our new method.

2.1. Local Binary Pattern (LBP)

The original LBP was created by [1,2] with 3 × 3 blocks containing eight neighbors
with a center to capture important local information. The LBP code feature is generated by
the following equation:

LBPR,P(c) =
P−1

∑
i=0

s(gi − gc)2i, s(x) =
{

1 x ≥ 0
0 otherwise

, (1)

where gc and gi represent, respectively, the center pixel and its neighbors on the i-th position
with radius R; P is the number of samples; and s() is the sign function.

2.2. Research Motivation

By recovering the publications of LBP variants from this year, we discovered that most
approaches used one center as a reference to threshold all neighbors and replaced it with
LBP code. Consequently, the relationship between the centers is loosened. On the other
hand, the bilinear interpolation that the LBP used made possible the calculation of the
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value, which is supposed to be placed at the same distance from the central pixel (gray
circle). However, it has many weaknesses such as the loss of sharpness, inaccuracy of the
gray value, imprecise texture information, and high computational complexity.

To avoid these issues and limitations, we created a new LBP variant with big differ-
ences in the form, shape, and code of the extracted local pattern. The problems were solved
by mapping the code LBP with even blocks, as opposed to most LBP variants that use odd
blocks to select one center with their neighbors. In this way, we had the chance to work with
four centers at the same time, allowing us not only to obtain the interconnection between
the center pixels, but also each center pixel with its neighbors. Furthermore, each center
pixel gained a relationship with the neighbor pixels of the center neighborhood pixels. Ad-
ditionally, the new proposed descriptor eliminated bilinear interpolation and exploited all
the information provided by the neighboring pixels in the block using multiple thresholds
computed adaptively by examining different local structures and their properties.

On the other hand, we extracted information from the relationship between neighbors
based on the center pixels. As provided in CLBP, and to preserve more intrinsic features,
two important vectors were extracted from the image: sign and magnitude. However,
of the two, the sign was the most influential. Based on this idea, we extracted the sign
from the rib pixels of the rhombus-shaped neighbor pixels. In addition, to obtain a depth
relationship between the center and its neighbors, each pixel center was thresholded with
the neighbors of the neighboring center.

Based on the preceding, this new encoding was useful for acquiring more intrinsic
information, which allowed for a significant improvement in classification accuracy.

3. Proposed Methodology

In this section, we present our new LBP variant for texture classification to solve the
weaknesses of the original LBP and to obtain more robust features with low complexity. In
general, the CRSLBP is constructed in the following major steps. Contrary to the LBP and
most of its variants, our input data were divided into even blocks of 4 × 4 pixels, making
it possible to select four center pixels in each block hcenter(i) (see Figure 1f, the green one),
and to exploit the relationship between the four centers and their neighbor pixels. These
were partitioned into corner hcorner(i) and rhombus-shaped neighbor pixels hrhombus(j) and
are marked by pink and orange circles, respectively, in Figure 1.

After extracting all the required pixels, we began the construction of the binary en-
coded pattern as follows:

Step 1: The four selected corner pixels were compared by the mean of all center pixels,
which gave four binary patterns (Figure 1b). (1) The corner neighbor pixels of the block
hcorner(i) were given by the following equation:

CRSLBPriu2
corner(r, N) =

N−1

∑
i=0

s(hcorner(i) − hMcenter), s(x) =

{
1 x ≥ 0
0 x < 0

(2)

where r represent the radius and in our proposed method radius {1,2,3} is respectively the
block of {(4× 4), (6× 6), (8× 8)}; hMcenter represent the mean of all centers pixels; and s() is
the sign function.

Step 2: As shown in (Figure 1c) each specific rib of the rhombus contains two pixels.
First, we took the maximum of the two pixels and compared it with the horizontal switching
of the center pixels. This gave us four new binary patterns. Formally, the first process of
the rhombus-shaped neighbor pixels is defined as:

CRSLBPriu2
rhombus1(r, N) =

(N∗2)−1

∑
j=0

s(max(hrhombus(2j + 1), hrhombus(2j + 2))− hcenter),

s(x) =
{

1 x ≥ 0
0 x < 0

(3)
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Figure 1. (a) The 4 × 4 sub-block of the image. (b) The corner processing. The process of the first (c),
second (d), and third (e) generated CRSLBP code. (f) mathematical representation of the block.

Step 3: We extracted the minimum and maximum numbers from each specific rib
of the rhombus pixels and compared them with the horizontal switching of the center
pixels, which created a relationship between each center and its far neighbors. Next, we
calculated the C value, which is used to threshold the neighbors by subtracting the mean of
all maximum numbers with the average of all the minimum numbers. We then subtracted
the maximum numbers of each specific rhombus rib from the horizontal switching of the
center pixels and compared them with the C value to generate another four binary-encoded
patterns (Figure 1d). The second process of the rhombus-shaped neighbor pixels is given by:

CRSLBPriu2
rhombus2(r, N) =

(N∗2)−1

∑
j=0

B(max(hrhombus(2j + 1), hrhombus(2j + 2))− hcenter),

B(x) =
{

1 x ≥ C
0 x < C

(4)

where B(x) is the sign function based on the contrast value. The C value, which is used to
improve the quality of the image based on operations such as contrast enhancement and
the reduction or removal of noise is calculated as follows:

C = 1/N(
(N∗2)−1

∑
j=0

max(hrhombus(2j + 1), hrhombus(2j + 2))

−
(N∗2)−1

∑
j=0

min(hrhombus(2j + 1), hrhombus(2j + 2))). (5)

Step 4: For each specific rib of rhombus pixels following a particular direction as
presented in (Figure 1e) the ratio of every two pixels was calculated, and the entire value
was captured to extract four additional binary patterns. The last equation is defined
as follows:
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CRSLBPriu2
rhombus3(r, N) =

(N∗2)−1

∑
j=0

s(hrhombus(2j + 1)/hrhombus(2j + 2)),

s(x) =
{

1 x ≥ 1
0 x < 1

(6)

In Equations (3) and (4), the center hcenter (presented in Figure 1f) for thresholding
each of rib rhombus shape neighbor pixel is organized as follows:

hcenter = {hcenter2, hcenter1, hcenter4, hcenter3}.
Step 5: Equations (2–4) and (6) generated four binary patterns. After extracting all of

them, we formed three decimal codes by concatenating two four-binary patterns pixel by
pixel, as follows:

(1) Step 1 with Step 2

CRSLBP1riu2(r, N) =
(N−1)

∑
i=0

(N−1)

∑
j=2i+1

(CRSLBPriu2
corner(i)2

(j−1) + CRSLBPriu2
rhombus1(r,N)(i))2

j (7)

(2) Step 1 with Step 3

CRSLBP2riu2(r, N) =
(N−1)

∑
i=0

(N−1)

∑
j=2i+1

(CRSLBPriu2
corner(i)2

(j−1) + CRSLBPriu2
rhombus2(i))2

j (8)

(3) Step 1 with Step 4

CRSLBP3riu2(r, N) =
(N−1)

∑
i=0

(N−1)

∑
j=2i+1

(CRSLBPriu2
corner(i)2

(j−1) + CRSLBPriu2
rhombus3(i))2

j (9)

The total process of the CRSLBP explained above is illustrated in Figure 1.
To increase the discrimination and effectiveness of the feature representation, the three

encoded pattern processes CRSLBP 1–3, given in Equations (7)–(9) are grouped into a
hybrid distribution named CRSLBP Equation (10), which allowed us to create a robust
model with reduced noise sensitivity and improved effectiveness. In addition, by using a
linear combination of several characteristics generated from different processes of pattern
encoding, a multi-scale approach was used to capture coarse and fine information. The
CRSLBP is presented as follows:

CRSLBPriu2(r, N) = 〈CRSLBP1riu2(r, N), CRSLBP2riu2(r, N), CRSLBP3riu2(r, N)〉 (10)

Figure 2 shows the texture features after CRSLBP extraction.
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Figure 2. The concatenation histogram of all CRSLBP processes.

4. Experiment Results

This section concerns a series of experiments with various databases conducted to
verify the effectiveness of the CRSLBP strategy.

4.1. Texture Datasets

Datasets from the Outex [19], KTH-TIPS2b [20], UMD [21] and Brodatz [22] represen-
tation databases were used in our experiments to evaluate the robustness and effectiveness
of the proposed CRSLBP. Table 1 summarizes the information from each database. The
suggested method is compared with other LBP variants, some of which are classified in the
same category, “combining with complementary features”, as our method.

Table 1. Summary of the characteristics of the texture databases used in our experiments.

Number Name Classes Samples Per
Class Total Samples

Sample
Resolution

(Pixels)
Image Format
(Monochrome) Challenges

1 Brodatz 112 9 1008 512× 512 JPG Various texture types
2 KTH-TIPS2b 11 4 × 108 4752 200 × 200 BMP illumination, scale, pose changes
3 OuTeX_TC_00010 24 180 4320 128 × 128 RAS Rotation changes (0◦) for training

and other degrees for test
4 OuTeX_TC_00012 24 200 4800 128 × 128 RAS Rotation and illumination

(“Tl84”, “horizon”) changes
5 UMD 25 40 1000 1280 × 960 PNG Small illumination changes and strong scale,

rotation, and viewpoint changes

In the experiments in this paper, all descriptors were considered as parameters setting
the rotation invariant and uniform (riu2) with normalized features to decrease the number
of features, thereby reducing processing time and providing discriminating features. The
suggested method was tested using a support vector machine (SVM) and neural network
(NN) and compared to other LBP variants, some of which are classified in the same category,
“combining with complementary features”, as our method. For a comparative result, the
SVM classifier was trained with a radial basis function (RBF) kernel, which is one of the
most widely used due to its similarity to the Gaussian distribution. The RBF kernel support
vector machine depends highly on two hyperparameters: C for SVM and γ for the RBF
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Kernel, whereas the optimum value of C and gamma (γ) had been selected by the grid
search method using 10-fold cross-validation.

4.2. Experimental Results of Outex Database

The classification results of this experiment are illustrated in Table 2.
First, we compared our descriptor with the original LBP method. Remarkably, the

performance of the CRSLBP was much higher for all resolutions: various Outex (TC10
and TC12), the classifiers (SVM, NN), and the radius. The average classification accuracy
was 99.76 and 99.79% for Outex TC10 SVM and NN, respectively. Additionally, we com-
pared the CRSLBP with a homogeneous LBP (HLBP), homogeneous rotated LBP (HRLBP)
and circular part LBP (CPLBP), which were introduced by [23–25]. As can be seen, our
proposed method improved upon the HLBP, HRLBP and CPLBP descriptors, with higher
classification accuracies in various illuminations of Outex (Inca, T184 and horizon) and for
each proposed resolution (classifier, Outex databases, radius and homogeneity tolerance).
Furthermore, we achieved the best results even though HLBP+LBP and HRLBP+RLBP were
concatenated, demonstrating the robustness and high performance of our method: first,
from the four center pixels extracted from the block; second, from the relationship derived
from each center and neighbor of center pixels. Last, we compared our approach with
SOTA approaches. As shown in the table, the average performance of the CRSLBP with
both SVM and NN classifiers for all Outex types (TC10, TC12) was higher than the SOTA,
apart from MRELBP [8]. It is normal to obtain small differences in classification accuracies
between the two approaches (MRELBP and CRSLBP) owing to the set of four radius values
used in MRELBP to generate a code that enables multiple scales at the same time.

4.3. Experimental Results with the KTH-TIPS2b Database

The KTH-TIPS2b [20] database is primarily designed to assess the impact of real-world
imaging conditions on material classification. Table 3 displays its classification accuracy in
evaluating the performance of our descriptor using SVM and NN classifiers

It can be seen that the CRSLBP outperformed the original LBP with various radius
values and classifiers by over 8.87% for SVM and 10% for NN. Similarly, the CRSLBP had
an average classification accuracy 5–10% higher than those presented by [23,24] for HLBP
and HRLBP and their concatenation with LBP and RLBP, respectively. To further evaluate
the performance of the CRSLBP, we made another comparison with some SOTA methods,
as shown in the table. The CRSLBP achieved much better classification accuracies than
LBP: 96.89, 96.76, and 97.19% for the SVM classifier and 94.81, 95.37, and 95.65% for NN
classifier (radius R = 1, R = 2, and R = 3, respectively). Just like the Outex database, CRSLBP
did not obtain better results on KTH-TIPS2b compared to the MRELBP.
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Table 2. Classification accuracy (%) of the CRSLBP for different R on the Outex dataset and (SVM, NN) classifier.

Classification Accuracy (%) Outex (SVM) Classification Accuracy (%) (NN)

Outex_TC10 Outex_TC12 Outex_TC10

Inca T184 Horizon Inca

R = 1 R = 2 R = 3 Average R = 1 R = 2 R = 3 Average R = 1 R = 2 R = 3 Average R = 1 R = 2 R = 3 Average

LBP classic 96.26 97.10 97.94 97.1 77.83 79.25 78.83 78.64 81.98 82.50 78.69 81.06 96.91 97.38 98.76 97.68
HLBP 92.48 98.40 98.17 96.35 72.52 78.37 74.81 75.23 76.17 79.21 76.02 77.13 93.06 99.23 98.15 96.81

HRLBP 92.69 98.31 98.31 96.43 73.52 78.46 74.58 75.52 75.08 79.42 75.92 76.80 94.60 99.23 98.76 97.53
HLBP+LBP 98.59 99.54 99.70 99.27 84.60 84.50 82.50 83.86 86.65 85.06 82.67 84.79 99.08 99.54 99.69 99.43

HRLBP+RLBP 98.59 99.56 99.72 99.29 85.29 84.60 82.42 84.10 86.83 85.21 82.62 84.88 98.92 100 100 99.64
CPLBP 95.30 96.06 98.01 96.45 76.31 78.04 77.52 77.29 79.94 78.52 79.29 79.25 — — — —

LTP 99.21 99.56 99.42 99.40 85.71 83.92 83.42 84.35 85.92 85.23 82.21 84.45 99.53 99.69 99.84 99.69
CLBP S/M 98.70 99.40 99.49 99.20 85.60 85.62 83.27 84.83 86.98 85.77 82.67 85.14 99.22 99.84 99.69 99.58

CLBP S 96.08 97.13 97.99 97.07 77.92 79.85 78.56 78.78 81.48 82.75 78.35 80.86 95.98 97.99 98.77 97.58
CLBP M 94.40 97.08 98.14 96.54 73.10 76.50 75.00 74.87 77.54 77.58 76.10 77.07 95.37 97.99 98.61 97.32

CLDP 96.23 77.10 71.06 81.46 78.40 59.85 53.40 63.88 81.79 64.81 56.00 67.53 96.23 77.10 71.06 81.46
RLBP 96.32 97.27 97.89 97.16 78.40 78.94 78.40 78.58 81.73 82.60 78.75 81.03 95.98 97.68 98.30 97.32
LBPV 78.75 90.72 93.56 87.67 63.69 78.79 82.96 75.15 70.67 83.42 84.42 79.50 81.01 90.12 92.28 87.80

CRSLBP 99.65 99.84 99.79 99.76 94.23 94.50 93.17 93.97 95.42 94.45 93.87 94.58 99.69 99.84 99.84 99.79
MRELBP 99.90 99.90 87.02 87.02 87.04 87.04 100 100
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Table 3. Classification accuracy (%) of the CRSLBP for different R on the KTH-TIPS2b, UMD and
Brodatz dataset and the SVM and NN classifiers.

(a) Using SVM Classifier

Classification Accuracy (%) Outex (SVM)

KTH-TIPS2b UMD Brodatz

R = 1 R = 2 R = 3 Average R = 1 R = 2 R = 3 Average R = 1 R = 2 R = 3 Average

LBP classic 89.67 88.62 85.94 88.07 97.7 97.6 96.1 97.13 90.77 92.16 91.27 91.40
HLBP 89.41 90.51 89.29 89.74 94.90 95.20 95.30 95.13 84.23 84.33 84.72 84.43

HRLBP 89.44 91.35 89.26 90.02 94.50 94.80 95.00 94.77 83.43 85.02 84.73 84.39
HLBP+LBP 96.00 96.76 96.27 96.34 98.70 99.00 98.60 98.77 93.55 94.35 93.95 93.95

HRLBP+RLBP 96.11 96.55 96.06 96.24 99.00 98.70 98.20 98.63 93.45 94.25 93.75 93.81
LTP 95.73 96.46 95.75 95.98 98.9 98.2 98.3 98.47 93.65 94.84 94.94 94.47

CLBP S/M 94.93 96.14 95.18 95.42 98.8 98.2 98.00 98.33 93.65 94.84 94.94 94.47
CLBP S 89.14 89.27 85.69 80.03 97.60 97.00 96.30 94.20 90.67 93.65 91.47 91.93
CLBP M 85.69 88.15 85.65 86.50 94.70 94.50 93.40 94.20 81.65 84.42 83.63 83.23

CLDP 96.23 77.10 71.06 81.46 97.60 87.10 80.10 88.27 91.07 69.35 56.45 72.29
RLBP 89.58 89.16 85.69 88.14 97.50 97.90 96.60 97.33 91.07 93.06 91.67 91.93
LBPV 78.24 83.12 84.41 81.92 88.40 92.70 92 91.03 64.48 76.49 75.00 71.99

CRSLBP 96.89 96.76 97.19 96.94 98.50 98.40 98.80 98.56 94.15 95.54 95.44 95.04
MRELBP 98.55 98.55 99.60 99.60 97.02 97.02

(b) Using NN Classifier

Classification Accuracy (%) Outex (SVM)

KTH-TIPS2b UMD Brodatz

R = 1 R = 2 R = 3 Average R = 1 R = 2 R = 3 Average R = 1 R = 2 R = 3 Average

LBP classic 87.08 84.85 83.59 85.17 96.00 92.67 94.00 94.22 87.42 90.07 90.73 89.40
HLBP 81.77 89.34 89.29 86.8 96.67 95.33 92.66 94.89 87.42 86.09 83.44 85.65

HRLBP 81.62 86.26 89.26 85.71 94.64 94.00 96.67 95.10 84.11 84.11 90.07 86.10
HLBP+LBP 94.25 95.79 96.27 95.44 98.00 99.33 100 99.11 95.37 96.03 94.04 95.15

HRLBP+RLBP 95.23 94.53 96.06 95.23 98.64 99.33 99.33 99.1 93.38 95.37 92.05 93.6
LTP 93.68 94.68 92.70 93.69 98.00 98.66 97.33 98.00 94.04 93.38 94.04 93.82

CLBP S/M 92.15 93.40 91.72 92.42 97.33 98.00 98.00 97.78 92.05 92.71 94.04 92.93
CLBP S 85.97 85.41 81.90 84.43 95.33 96.66 91.33 94.44 89.40 93.38 92.72 91.83
CLBP M 82.60 82.18 82.32 82.37 89.33 92.66 86.66 89.55 84.77 83.44 87.42 85.21

CLDP 96.23 77.10 71.06 81.46 96.66 83.33 75.33 85.11 85.43 60.26 58.94 68.21
RLBP 87.79 83.59 80.78 84.05 94.66 92.66 93.33 93.55 93.38 92.72 90.06 92.05
LBPV 71.39 79.95 72.37 74.57 65.33 84.00 87.33 78.88 59.60 78.15 74.83 70.86

CRSLBP 94.81 95.37 95.65 95.28 99.33 100 98.67 99.33 95.37 98.68 100 98.01
MRELBP 96.49 96.49 100 100 97.35 97.35

4.4. Experimental Results with the UMD Database

The experimental results with the UMD dataset [21] are listed in Table 3 for both the
SVM and NN classifiers. We primarily examined the CRSLBP in comparison with the
original LBP. Despite the high resolution, arbitrary rotation, large changes in viewpoint.
and different scales within the UMD dataset, the proposed approach obtained the highest
accuracy: 100% for R = 2 with NN. For both classifiers, the CRSLBP was much more robust
than the LBP. Our second experiment, tested it in comparison to HLBP and HRLBP. and
CRSLBP displayed higher classification accuracy: 98.5, 98.4, and 98.80% with the SVM
classier and 99.33, 100, and 98.67% with NN (radius R = 1, R = 2, and R = 3, respectively).
Moreover, the CRSLBP demonstrated its robustness in comparison to the HLBP reinforced
by the LBP and HRLBP reinforced by the RLBP. The last experiment showed the potential of
the CRSLBP in comparison to SOTA approaches. As we can see, the average classification
accuracy of our descriptor was much higher than the others across different resolutions
(radius and classifier), except for the MRELBP, as explained before.

4.5. Experimental Results with Brodatz Database

The Brodatz [22] database, despite being relatively old, is still widely used. The
experiment results with the Brodatz dataset are presented in Table 3. Using the CRSLBP, we
obtained a 95.04 and 98.01% average classification accuracy, outperforming the original LBP,
which had a 91.40 and 89.40% accuracy with SVM and NN, respectively, demonstrating the
performance of the CRSLBP. On the other hand, we evaluated the robustness of the CRSLBP
in comparison with the HLBP, HRLBP, HLBP+LBP and HRLBP+HRLBP, As shown in the
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tables, the highest accuracies were achieved by the CRSLBP, and SOTA methods, which
yielded classification accuracies lower than ours with the exception of the MRELBP.

4.6. Experimental Results of CRSLBP with MRELBP

Concerning the low classification accuracy of our descriptor compared to the MRELBP
method, it was normal to obtain small differences in classification accuracy between the two
approaches owing to the set of four radius values used in the MRELBP to generate a code
to enable multiple scales at the same time. To avoid this illegality between CRSLBP and
MRELBP, we performed another experiment with lawful parameters. For both descriptors,
the select parameters were a set of radius values (2, 4, 6, 8) with an SVM classifier. Table 4
shows the results of this experiment.

Table 4. Classification accuracy (%) of CRSLBP compared with MRELBP using a set of R and SVM
classifier.

Outex
(TC10,TC12) KTH-TIPS2b UMD Brodatz

Inca T184 Horizon

MRELBP 99.9% 87.02% 87.04% 98.55% 99.6% 97.02%
CRSLBP 99.88% 94.77% 95.56% 99.22% 99.1% 95.84%

Based on the analysis of the table, our method performed better than the MRELBP,
with higher classification accuracies for most of the datasets (Outex TC12 and KTH-TIPSb2).
Furthermore, the differences in results with the other databases is very small if we look at
the large difference in dimension between the two: 120 (30 × 4) and 800 for the CRSLBP
and MRELBP.

5. Conclusions

This work proposed a new approach for texture classification images: “corner rhombus-
shaped LBP” (CRSLBP). In fact, it is an improved version of the LBP method that took
into consideration sign and magnitude with the addition of the chosen even block, which
allowed us to threshold four center pixels. In this way, we obtained relationships not only
between neighbors, but also between the center. A variety of challenging texture databases
(Outex [TC10, TC12], Brodatz, UMD, and KTH-TIPSb2) and two classifier approaches (SVM
and NN) were used to evaluate the proposed method.

The experimental results showed that the CRSLBP outperformed the LBP and its
new variants: the HLBP, HRLBP, HLBP + LBP, HRLBP + RLBP and CPLBP. On the other
hand, we evaluated the CRSLBP with other SOTA methods, and generally the experimental
results show that the CRSLBP largely outperformed these methods in classification accuracy
against various classification challenges, including strong scale, changes in rotation, scale,
illumination, and viewpoint. However, the CRSLBP was expected to be robust for noise
data using a variety of noises, which should be investigated in future work.

Our future work will consist also of testing our method with color image databases.
However, this operator tends to produce high-dimensional feature vectors. Thus, to address
this problem, we will focus on the application of feature selection methods to CRSLBP-
based features. Another upcoming project will also include analyzing and comparing the
many ways presented in the literature for exploiting the features of several color spaces at
the same time.
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