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ABSTRACT 

The drag coefficient and hydrodynamic radius of particles are important parameters needed in 

crystallisation science. Small aggregates of micronic primary particles are mainly produced in 

stirred crystallisers. We present experimental results on the drag coefficient of macroscopic 

aggregates consisting in glass beads in the number range [2,100]. The drag coefficient is 

calculated from settling measurements in glycerol in order to keep the Stokesian nature of 

typical flow around particles in a crystalliser. We show that the hydrodynamic radius of these 

aggregates is almost the radius based on the average projected area over all orientation. This 

result is extended to larger and more porous aggregates. 

 

 

 

 

KEYWORDS :  aggregate, sedimentation, Stokesian motion, drag coefficient, hydrodynamic 

radius 
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INTRODUCTION 

Aggregation of  micronic particles, grains or crystals occurs in stirred tank due to turbulence. 

The higher the number of primary particles in aggregates, the looser the aggregates. Local 

shear, then, breaks large aggregates. Fragmentation competes with aggregation resulting in a 

steady state [1]. In this case it is characterized by a limit size for aggregates in terms of 

primary particles number. The limit size is often smaller than one hundred [2]. At the same 

time, sedimentation of aggregates occurs during stirring. Hence, information about aggregates 

sedimentation is needed in order to understand the evolution of their population in the tank. 

These data are particularly missing for small aggregates. 

In this paper we present results about measurements for settling velocity of several small 

aggregates. This paper is organised as follows : after a brief review of the background 

connected with morphology and hydrodynamic resistance of aggregates, we introduce the 

experimental methodology to study the sedimentation of small aggregates. Then we show the 

experimental data followed by a short discussion based on comparison with other 

experimental results and existing theories. 

 

FUNDAMENTALS 

morphology 

 Large aggregates often have a fractal structure [1]. An aggregate containing i primary 

particles of radius a1 is characterised by its fractal dimension Df , its outer radius ai , its 

hydrodynamic radius aHi , its gyration radius aGi ; as the structure of the aggregates is non-

uniform, their local volume density  ,i a r  depends on the distance r from the centre of mass 

of the aggregate ; the average volume density is denoted ,i a . These different characteristics 

are correlated by the following equations :    
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where S is a structure factor. 

From computer simulations, Gmachowski [3,4] found the following correlation between S 

and Df  : 
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or for Df >1.5 

S  0.42 Df - 0.22            (5b) 

The equation (4) is coming from equation (1) for high value of i. 

According to Gmachowski equations 1 and 5b are compatible with equations 6a and 6b. 
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This representation is quantitatively supported by simulation results from Chen [5], 

Kyriakidis [6], Sorensen [7], Rogak [8] and experimental ones from Pusey [9] and 

Takayasu [10]. 

Several authors have shown that only large aggregates (i > ilim) have fractal structure. For 

small aggregates, standard relations, which express the relationship between their size and 

the number of monomers in which they exist, have to be carefully used. However 

researchers do not agree on the limit value ilim : for instance, this value, based on the radius 

of gyration, is nearly 50 for Kyriakidis [6], Sorensen [7], Adachi [11], while it is close to 1 

from the hydrodynamic radius measurements of Takayasu [10] by using a technique of 

sedimentation in density gradient. 

In aggregation and sedimentation theories, the relevant parameter is the projected area Sp 

of the moving object on a plane. We can thus define the radius ai,e of the equivalent sphere 

for an aggregate through : 

Opei Sa 2

,            (7) 

Where 
OpS  is the average of the projected area on all aggregate orientations. 

Meakin [12] used computer simulations to investigate collisions between point masses and 

fractal aggregates (Df = 1.80 ; 1.95 ; 2.09 ; 2.12). He showed that the projected area of 

aggregates, i.e. the collision cross section, can be written as : 

 2

14p O
S a i i     41 10i         (8) 

The positive parameters   depend on the fractal dimension. It can be seen that 

ie Hi ia a a   with ,ie Hi ia a and a  respectively calculated from equations 8, 6a and 1. 

The corresponding average volume density, then, is : 
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Then, by using equation (3) for the relationship between ,i ea  and 
,i e

 , one can define a weak 

(in the mathematical sense of the word) fractal dimension Dwf. This new definition [2] can 

only be applied to aggregates with high (quasi spherical) symmetry. It is particularly suitable 

for small aggregates which contain accurately located primary particles. Hence this 

description is more realistic than an extrapolation of the fractal one to small aggregates. 

It has been shown that aggregates in a stirred tank are small and slightly porous. Weak fractal 

dimension was found in the range [2.35-2.45]. In this case it will be expected that 

,ie Hi ia a and a will have similar values. 

 

Hydrodynamic resistance and settling 

The forces balance applied to one settling particle (aggregate) takes into account the weight, 

the buoyancy and the drag force : 

21
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m, Sp, v, L , S, g, CD are, respectively, the aggregate mass, projected area, velocity, liquid 

density, solid density, gravity and drag coefficient. The drag coefficient depends on the 

aggregate permeability, external rugosity and shape.  

If the settling particle is a sphere with radius a and the motion is Stokesian, the drag 

coefficient obeys the classical relation : 

24

Re
DC             (11) 

where Re is the Reynolds number. Equation 10 becomes : 
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 is the dynamic viscosity. 

In the case of geometrically complex particles, equation 11 must be modified by introducing 

the drag corrective coefficient  : 

24

Re
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Equations 12 and 13 can be rewritten as : 
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We shall briefly describe the different cases found in practice. For each case, relevant 

expressions for a and  will be used. 

- non spherical impermeable particle :  

For any isometric sphere [13,14], the drag coefficient is calculated by the following procedure 

:  The Reynolds number is defined as 

Re Re L V
V

vd


            (15) 

where dV is the volume equivalent diameter, 3

6
VdV


 . V is the solid mass volume. 

For isometric particles the corrective factor  is a function of the sphericity factor  : 

065.0
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with 
2

22

S

VV

d

d

S

d



  where S is the particle area.. 

Ro (14) expresses Ks as : 

S

V

S
d

d
K             (17) 



 8 

The two expressions for KS give the same results if 0.5  . 

For other, non spherical shapes, the particle takes a preferential orientation depending on the 

Reynolds number. Then, the moving particle is characterized by its projected area Sp on the 

plane perpendicular to the sedimentation direction. Coulson [15] proposed to take : 

Re Re L P
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Given equations 18 and 16, the drag coefficient can be expressed as : 
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The equivalent diameter pd being the relevant parameter. 

 

- spherical permeable particles :  

The drag corrective coefficient was calculated for large aggregates or porous spheres. Neale et 

al. [16] compared different models for aggregates with uniform porosity. Veerapaneni [17] 

and Kusters [18] consider fractal aggregates (consisting in i primary particles ; ia a ) for 

which i    is a function of Df and ai/a1. By using Neale and Veerapaneni’s work, Vanni 

[19] shows that a good approximation for i(Df > 2) is  
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where k  is the aggregate permeability at the aggregate surface. Vanni proposes to use the 

permeability expression of a material with uniform porosity which is a function of the 

porosity or the inner solids volume fraction  : 

E
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where L() and E are respectively the Happel’s function [20] and the shielding factor [19] :   
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106.01  eE           (23b) 

 

Rigorous models of Veerapaneni [17] and  Vanni [19] rests on the same assumptions. i  

values are slightly different because the description of aggregates by Vanni is more realistic 

than Veerapaneni’s one. It is not possible to find such a simple expression for i  for Df < 2 ; 

Some authors assume that i  only depends on the fractal dimension. Thus, Gmachowski, [3], 

from different considerations suggests the following expression : 

1/ Df

i S              (24) 

 

Johnson [21] carried out experiments on the sedimentation of large aggregates in water. Each 

aggregate contains at least 105 micronic primary particles. Settling velocity, projected area 

(and its equivalent diameter) and primary particles number per aggregate are measured. 

Results are expressed as drag coefficient : 

Re
D b

p

c
C            (25) 

If Df >2 (2.19 ; 2.25) then c= 0.6 and b= 1.04 
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If Df <2 (1.79) then c= 0.14 and b= 1.31 

It seems that errors appear in the Johnson’s paper :  figure 7 is not consistent with the data of 

table 3. We think that the c value for Df >2 is 6 instead of 0.6. Thus, for Df > 2, 

 fluid resistance obeys Stokes’ law with an  coefficient equal to 0.25. However, calculations 

using equations [1,3,21,22,23] lead to  = 0.98. Although the fractal dimension was 

incorporated into the calculations to account for the change of aggregate porosity with size, 

permeability functions are still based on the same assumption –that an aggregate is a porous 

object with an uniform distribution of small spherical particles. Thus, the single-particle-

fractal approach underestimates the permeability of aggregates and fails to obtain a correct 

value for . The same research group [21] proposes an explanation to this experimental 

result. The single-particle-fractal model (Equations 1,3) is replaced by the cluster-fractal 

model where an aggregate is composed of primary particles separated into individual clusters 

that are less permeable than the aggregate. The overall permeability of the aggregate depends 

on the number j and sizes ac of these clusters. Then equation 1 is replaced by : 

fD

ci
S

j
aa 








            (1b) 

Porosity and permeability are calculated in the cluster-fractal model by using (1b). Then,  is 

obtained from equations (21-23). It should be pointed out that S is a constant, equal to 0.25 for 

Li [22].  values predicted using the cluster-fractal model compare well to other experimental 

results for large aggregates [23] :  = 0.37 for Df = 1.81 and  = 0.5 for Df = 2.33. For dense 

aggregates, improved predictions [24] of  are obtained with Gmachowski’s equation [25] for 

L() (23c) in place of Happel’s function. Gmachowski’s equation was proved to be suitable 

for small aggregates. It well approximates the Ergun equation in the porosity range 

characteristic for stationary beds and its limit value is 1 for very dilute disperse system. 
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The range of validity of all these theories [19] is 
1

8ia

a
 ,i.e  i > 150  for Df = 2.5, i > 90 for Df 

= 2.3, i > 50 for  Df = 2.1.  

Few researchers paid attention to the behaviour of small aggregates (i<100). As the 

impermeable sphere model seems more suitable as the aggregate porosity decreases, it is 

likewise for small aggregates, which are often compact. Gmachowski [26] shows that for 

small or embryonic aggregates,  can be calculated from (1,21,22,23c) with a shielding factor 

equal to 1. Calculated values are in agreement (5%) with cited experimental results for 

aggregates with i<14. The same agreement is found with equation (24) for i<100. This 

calculation was used [26] to estimate  values for aggregate with a self similar structure. 

 

EXPERIMENTAL PART 

Principle 

In order to accurately and easily determine the friction coefficient for small aggregates with i 

primary particles, we build them at a macroscopic scale. However, in order to keep a similar 

flow around these obstacles (Re << 1), the suspending medium for sedimentation experiments 

is a high viscosity liquid as glycerol. The forces balance applied to one settling aggregate 

takes into account the weight, the buoyancy and the drag force. One can easily deduce the 

drag corrective coefficient : 
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where i, H are respectively the settling time and the settling distance. 
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Construction of macroscopic aggregates 

Aggregates consist in one millimetre diameter glass beads (type mag : 40B, Merck Eurolab). 

In order to obtain a narrow size distribution, glass beads were sifted : the diameter is  

0.97  0.07mm. The density of glass is equal to 2500 kg.m-3 . In order to bind the beads 

together, two binding agents were used : an organic binder sticks and maintains the beads in 

place, while an inorganic agent strongly binds their after heating. The organic binder (type 

400 – A) was purchased from E.S.L Europe. The inorganic binder (Fondant S334) was 

purchased from Cerdec France SA. 

Glass beads are covered with a mixture of the two binders and then, placed on a grid in order 

to build  2D aggregates. 3D aggregates consist in several 2D aggregates. Rigidity is obtained 

by heating : the organic binder evaporates and the inorganic one sticks the glass beads to each 

other as the temperature exceeds 565°C. The mass ratio of inorganic binders in the aggregates 

is lower than 3%.   

The heating parameters are the following : 

- Heating rate : 8°C / min 

- temperature : 650 °C 

- heating duration : 2 H 

- cooling rate : 5°C / min 

1D, 2D and 3D aggregates containing a primary particles number in the range [2,100] was 

built by this procedure. 

 

Calculation of the equivalent radius of aggregate 

Aggregate will be characterized by its equivalent radius ,i ea  following Eq (7) or by the 

dimensionless equivalent radius 
1

,

a

a ei

i  . i  is evaluated by direct calculation for very small 
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aggregate (i≤8) and/or by image analysis (i>8). The weak fractal dimension [2] of 

intermediate aggregates (30< i <100) was equal to 2.5 0.05. 

 

Measurement of settling velocity 

Settling velocity is obtained from settling time measurements in a cylindrical container. 

Containers with two different diameters were used , D = 33mm and 60mm. Each container 

was filled with glycerol. The temperature was measured with an accuracy of 0.1°C. Glycerol 

density is equal to 1260 Kg/m3 , as the temperature is in the range [20°C-25°C]. Dynamic 

viscosity  strongly depends on the temperature ; in order to determine it, following 

relationship [27] could be used : 

 

16739
ln 237.03 31.734lnT

T
            (27) 

However, due to the high sensitivity of glycerol viscosity to temperature and contaminants, 

one proceeds by comparing the sedimentation velocity of an aggregate with that of a primary 

particle under the same operating conditions. Hence, the ratio 
1

 i of drag corrective 

coefficients for the aggregate and primary particle will be calculated from Eq. (26). As 1=1, 

i is immediately deduced. 

First, we made sure of the wetting of aggregates by glycerol and we verified that steady 

motion was reached. 

Accuracy over the deduced drag corrective coefficient is about 7%.   

 

RESULTS 



 14 

Preliminaries 

Most of the trajectories are rectilinear along the container axis. However, in a few cases, the 

aggregate trajectory is not rectilinear : aggregates may move towards the wall and settle along 

it. In this case the settling velocity is about 10% smaller than the ones along axis. It is not easy 

to foresee orientation of aggregate during settling.  Trends are the following : the 1D 

aggregates axis is vertical during sedimentation, the 2D aggregate plan is horizontal, while 3D 

aggregates settle without preferred orientation. 

The container walls exert a retarding effect known as the wall effect. This is taken into 

consideration in the case of rigid spherical particles by multiplying the terminal velocity as 

computed from Stokes’s law by the factor K. The factor K depends on the ratio d/D. Francis 

[28] proposed the following expression : 

4

1

1 0.475

d

DK
d

D

 
 

  
 
 

          (28) 

Francis’ equation produces predictions on the terminal velocity pratically coincident with the 

more complicated relationship described by Clift [29]. The relative deviation is smaller than 

0.5% in the range 0 0.2
d

D
  . 

Aggregates sedimentation velocity was measured in the two containers. Settling data are 

given after wall effect correction by taking 2 ied a . As the two  values set are very close, 

only mean values will be given.   

  

Validation 

Plenty of data are available for doublets. The resistance of a pair of contacting particles is less 

than twice that of a single particle. According to Batchelor [30], the reduction factor for the 
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resistance due to the motion of two touching spheres along the line of centres is Fr║=0.645, 

while for motion across such line is Fr┬=0.725. With this definition, Fr and  are related by :  

2 2 2Fr    

We found experimentally (D=60mm) that Fr║=0.62 and Fr┬=0.71. This confirms the validity 

of the experimental methodology. 

 

Results and discussion 

Tables 1a and 1b contain, for the main oligomers, the normalized equivalent radius (from 

average projected area) i and  the drag corrective coefficient i. i is the average value from 

several velocity measurements, during which any orientation of aggregate is possible.  

Taking into account of the wall effect leads to  values which do not depend on D and i. 

This in particular is equal to 1.040.05.  

So, the hydrodynamic radius will be expressed as :   

,1.04Hi i ea a            (29) 

In other words the hydrodynamic radius is about the equivalent radius (from the average 

projected area).   

Figure 1 compares hydrodynamic radius values from this study (Equation (29) : 'Hia ) and the 

ones of Gmachowski [26] (equations (1,21,22,23c) : Hia ) as the relative deviation 

 ' '/Hi Hi Hia a a . Except for linear hexamer a systematic relative deviation equal to about 0.06 

occurs. 

Linear aggregates need special attention. Table 2 compares normalized hydrodynamic radius 

values 
,

1

H ia

a
 for linear aggregates from different authors : Rogak [8], Gmachowski [26] and 

present authors (Eq (29)). Rogak presents theoretical results in case of cross (┬) flow and 
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parallel (║) flow around spheres chains. Gmachowski and the present authors do not consider 

a particularly oriented flow. Gmachowski’s values are close to the ┬ values of Rogak. Our 

values are set in the middle of the [┬,║] range. 

For all aggregates considered in this study, the notion of porosity and permeability are not 

suitable, since they consist of a small number of primary particles and they are linear or rather 

compact. In this paper, we show that the diameter based on projected area plays a leading 

role. Then we propose to extend these results to any aggregate as follows. We have to take 

into account the geometrical cross section (projected area perpendicular to flow direction), 

roughness and permeability ; considering the previous relations (Eq (19,20,21,22)), we 

suggest to modify them as follows : 

24

Re ( ')
D perm

P S

C
K 

           (19b) 

or 16
( ')

perm

S

F a v
K







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P P

S

d d
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d a
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For a doublet, 1perm  . When the flow is perpendicular to the doublet axis : 1/ 22  , 1' , 

,2

1

1.414
Ha

a
  in place of 1.45 (exact value). When the flow is parallel to the doublet 

axis : 1  , 2/1' , 
,2

1

1.34
Ha

a
  in place of 1.29 (exact value). The experimental value 

(average value over all orientations) is 
,2

1

1.37
Ha

a
 . 

The results of this paper show that 
O

OSS KK











)'()'(
 (average value over all 

orientations). 
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For a porous aggregate, the contribution of perm will decrease the normalized hydrodynamic 

radius. The permeability needed will be that of a porous sphere with radius 1O
a . To 

summarize, we suggest to use to express the drag force acting over an aggregate from a fluid : 

16 ( , )permO O
F a v i            (30) 

 

CONCLUSION 

We measured the settling velocity of macroscopic aggregates consisting of few glass beads in 

glycerol. The Reynolds number was always smaller than one. We show that the 

hydrodynamic radius of the aggregates is almost the radius based on the average projected 

area over all orientation. Porosity and permeability are properties without real meaning for the 

smallest chosen aggregates (i<11). As the so built largest aggregates (30< i <100) are 

characterized by a weak fractal dimension close to 2.5, effect of porosity on drag coefficient is 

negligible. Hence the obtained results express the influence of external shape and roughness 

of the body on the drag coefficient. Effect of porosity, i.e permeability, should be only 

noticeable for large porous aggregates (i>100 ; Df<2.5). Making of such aggregates, which is 

more difficult to do, is in progress. It will be followed by the measurement of their drag 

coefficient.  
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LEGENDS OF FIGURES 

Figure1 : relative deviation  ' '/Hi Hi Hia a a  versus dimensionless radius  for aggregates 

with i<11. 
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Aggregate 

structure 
i dimension i i 

 1 1 1 1.00 
 2 1 1.366 1.00 
 3 1 1.653 1.056 
 

3 2 1.6 1.072 

 4 1 1.896 1.10 
 4 2 1.825 1.027 
 

4 3 1.766 1.00 

 5 1 2.11 0.963 
 5 2 2.02 1.00 
 

5 3 1.916 0.985 

 

5 3 1.93 1.00 

 6 1 2.31 0.96 
 6 2 2.23 1.092 
 6 2 2.24 1.104 
 6 2 2.19 1.053 
 

6 2 2.03 1.13 

 

6 3 2.03 0.943 

 7 2 2.42 0.968 
 

8 2 2.52 0.950 

 

8 3 2.35 0.984 

 

10 2 2.7 1.107 

 

 

 

Table 1a : structure, primary particles number, dimension, normalized radius (from 

projected area), drag corrective coefficient for i<11 aggregates 
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i Dimension i i 

12 3 2.74 1.039 

12 3 2.95 1.049 

16 3 3.45 1.12 

16 3 3.21 1.00 

16 3 3.234 1.05 

16 3 3.261 1.17 

16 3 3.34 0.906 

32 3 4.76 1.094 

32 3 4.53 1.18 

32 3 4.206 1.072 

32 3 4.69 1.093 

58 3 5.4 1.076 

62 3 5.72 1.012 

66 3 6.13 1.039 

 
Table 1b : structure, primary particles number, dimension, normalized radius (from 

projected area), drag corrective coefficient for i>11 aggregates 
 

 

i         ref. [8]  ┬ [8] ║ [26] 
Eq (29) 

2 1.45 1.26 1.445 1.42 

3 1.80 1.50 1.685 1.719 

4 2.11 1.745 2.027 1.976 

5 2.44 1.98 2.424 2.195 

6 2.78 2.18       2.85       2.402 

 
Table 2 : normalized hydrodynamic radius  for linear aggregates from Rogak [8], 

Gmachowski [26] and present authors 
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Figure1 : relative deviation  ' '/Hi Hi Hia a a  versus dimensionless radius  for aggregates 

with i<11. 

 

 

 


