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Abstract

In some manufacturing contexts, such as semiconductor manufacturing, machines must be qualified,

or eligible, to process a product, and machines cannot be qualified for all products. This paper

investigates the problem of optimizing a given number of new qualifications of products to machines

to maximize a flexibility measure that evaluates the balance of the qualification configuration of a work

center in terms of utilization rate of machines on a set of non-identical parallel machines. Motivated

by empirical observations, new solution approaches, notably inspired by heuristics for discrete location

problems and based on the analysis of dual variables, are proposed and compared on industrial data

from a semiconductor manufacturing facility and on randomly instances. The use of dual variables

leads to heuristics that are effective both in terms of solution quality and computational time. The best

proposed approach is currently used in the decision support system of a semiconductor manufacturing

facility.

Keywords: Flexible Manufacturing Systems; Qualification management; Non-identical parallel
machines; Optimization; Heuristics

1. Introduction

In some manufacturing contexts with a large variety of products, machines performing the same

type of operations are not always qualified (also called eligible in the literature) to process all products.

This is in particular the case in semiconductor manufacturing, where operations on many different

products (wafers in front-end manufacturing facilities and integrated circuits in back-end manufac-

turing facilities) at different stages of their manufacturing process need to be performed in different

work centers. Each work center may include more than 100 machines that are usually non identical,
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i.e. the process time on a machine differs from one product to another. This is because, to apply a

manufacturing process on a given product, a machine must follow a recipe that defines for instance

the pressure, the temperature conditions and the chemicals that must be used. Recipes can be very

different from one product to another, leading to very different process times. In manufacturing fa-

cilities with a large variety of products, the recipe count can be of several hundreds in a single work

center. In the remainder of the paper, we use the term product and not recipe.

Moreover, before being allowed to run a product, a machine must undergo a product-to-machine

qualification procedure. Hence, machines cannot process all products, i.e. a machine is only qual-

ified for a limited number of products. For new machines or products, qualification procedures are

expensive, time-consuming, can be energy-consuming and may sometimes take up to several months.

Once the qualification procedure is completed, the machine is qualified for the product. To maximize

manufacturing performances, in particular in terms of throughput and cycle time, an efficient design

and follow-up of the qualification configuration of each work center is required (see e.g., Johnzén et al.

(2007); Johnzén et al. (2011); Kabak et al. (2013); Rowshannahad et al. (2015); Chang and Dong

(2017) and Kopp et al. (2018)).

A machine qualified for a product does not remain qualified throughout its operation in the factory.

Qualifications are dynamic, i.e., time-varying. A machine no longer qualified for a product is said to

be disqualified for the product. A disqualification can occur for different reasons, in particular because

of unexpected events, e.g. a consumable becomes empty, or following a (scheduled or unscheduled)

maintenance operation. A product can also be disqualified on a machine because the product has not

been processed for a long time (qualification time window, Obeid et al. (2014) and Kopp et al. (2016)).

Contrary to the initial qualification procedures, re-qualification procedures are usually less expensive,

time-consuming and energy-consuming. Moreover, the machine is not necessarily down and can run

products that are still qualified. In a work center, disqualifications can be frequent and have serious

consequences on factory performances, if they are not managed properly or anticipated (Kopp et al.

(2018)).

In this paper, we are pursuing the work of Johnzén et al. (2011) and Rowshannahad et al. (2015)

on qualification management on non-identical parallel machines to optimize flexibility of work centers.

Johnzén et al. (2011) propose a nonlinear qualification management optimization model to determine

a single optimal qualification for a “time” flexibility measure that evaluates how balanced are the

workloads between the machines. This work is extended in Rowshannahad et al. (2015) by considering

the finite production capacity of machines to a capacitated time flexibility measure that evaluates how

balanced are the utilization rates of the machines. To our knowledge, the qualification management

optimization problem to optimize the capacitated “time” flexibility measure of Rowshannahad et al.

(2015) with multiple qualifications has never been considered.

In this paper, we put ourselves in the shoes of a work center manager who must decide the best

re-qualifications to perform. Therefore, we propose and evaluate new efficient optimization approaches

that determine in real time, i.e. in small computational times, the best re-qualifications of products in

a work center with non-identical parallel machines. The number of re-qualifications and the product

quantities to process are given, and the objective is to maximize the capacitated “time” flexibility

measure proposed by Rowshannahad et al. (2015). The most relevant approach has been implemented

in an operational decision support system, which determines and proposes effective qualification plans

to work center managers twenty minutes before every shift (every 8 hours).

The paper is organized as follows. In Section 2, the literature on qualification management is

reviewed. Our problem is formalized as a Mixed Integer NonLinear Program (MINLP) in Section 3,

and solution approaches are proposed in Section 4. In Section 5, respectively Section 6, numerical

results on industrial data, respectively randomly generated instances, are presented and discussed.
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Finally, we conclude and give perspectives in Section 7.

2. Literature review

From a general standpoint, little work has been done on qualification management to improve the

manufacturing performances of work centers in semiconductor manufacturing. This can be explained

by the fact that the semiconductor industry is a complex process industry and, because qualification

take time and can be expensive, changing qualifications or adding costly qualifications may have not

been of great importance in the past. However, with the normalization and development of custom

products, with the short life cycles of products, and because of the fierce competition, manufacturers

are more prone to change or add new qualifications on machines to keep or increase their competitive

advantage (Johnzén et al. (2007)). In the remainder of the section, closely related works are reviewed.

2.1. Assessing the qualification setting of a work center

The literature has studied the definition of Key Performance Indicators (KPIs) to measure the

quality of the qualification configuration of a work center and to guide qualification decisions, in par-

ticular for short-term operational decisions. Most KPIs in the literature concern flexibility measures,

and mathematical models are also introduced to optimize the KPIs.

Johnzén et al. (2011) propose “WIP”, “time” and “toolset” flexibility measures. The “WIP”,

standing for Work-In-Process, flexibility measure evaluates how balanced are the workloads, not in

number of time units but in number of product units, between the machines of the work center. Simi-

larly, the “time” flexibility measure evaluates the balance of the workloads on the machines in number

of time units. The “toolset” flexibility measure evaluates the risk of having too many products with

a small number of qualified machines. A system flexibility measure is also introduced, which is a

weighted sum of the three flexibility measures. Flexibility measures are used to identify bottlenecks,

the lack of flexibility and to assess the impact of a qualification or disqualification on the performance

of a work center. Johnzén et al. (2011) propose a nonlinear qualification management optimization

model to determine a single optimal qualification for “WIP” and “time” flexibility measures. Row-

shannahad et al. (2015) extends the uncapacitated time flexibility measure proposed by Johnzén et al.

(2011) to a capacitated time flexibility measures by considering the finite production capacity of each

machine. In this case, the utilization rate of the machine is considered instead of its workload. No

solution approach is proposed to solve the multi-qualification version of the capacitated qualification

management problem of Rowshannahad et al. (2015).

Rowshannahad and Dauzère-Pérès (2013) extend the “time” flexibility measure by considering

batch size constraint. Rowshannahad et al. (2014) propose another measure to assess the utilization

variability between machines in a work center. Numerical experiments show that reducing the utiliza-

tion variability between machines with additional qualifications significantly improves the utilization

balance. Finally, Pianne et al. (2016) introduce ideal and potential flexibility measures, and also

consider the work center robustness.

More recently, Perraudat et al. (2019) propose a bilevel optimization approach partly based on the

capacitated time flexibility measure introduced in Rowshannahad et al. (2015). The utilization balance

of the machines is optimized in the follower problem, as in Rowshannahad et al. (2015), and then the

throughput of the work center is computed from the utilization rates of the machines. Perraudat

et al. (2019) compare single and multi-period settings and conclude that considering multiple periods

may lead to more relevant qualification decisions due to production variability. Optimizing the time

flexibility measure is then also a way to optimize the throughput.
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2.2. Decision support systems

Interestingly, although the literature is rare on qualification management, there exist cooperation

projects on qualification management between academics and semiconductor manufacturers (Leach-

man et al. (2002); Johnzén et al. (2009); Liao et al. (2017)). Leachman et al. (2002) present a project

and a decision support system (DSS) that enabled a wafer manufacturing facility to significantly

reduce the mean cycle time and make substantial savings. A key element for this success was the

preparation of the right qualifications with respect to the production plan. Johnzén et al. (2009)

describe a qualification management software that implements the WIP, time, toolset and system

flexibility measures to recommend a single qualification decision to work center managers. Finally,

Liao et al. (2017) consider a strategic qualification management problem that consists in adding, or

modifying, qualifications to product sites in order to improve on time deliveries. The project and the

DSS are described in the paper. The qualification management problem is modeled as a MILP. A

greedy heuristic is used to solve the model and recommend new qualifications.

2.3. Contributions and practical relevance

In this paper, we are pursuing the work of Johnzén et al. (2011) and Rowshannahad et al. (2015) on

qualification management on non-identical parallel machines. To our knowledge, no efficient solution

approach has been proposed to solve the time flexibility measure with multiple qualifications and finite

production capacity. The time flexibility measure has several practical applications. It can be used

to identify poorly balanced work centers, therefore identify bottleneck work centers and machines.

Maximizing the time flexibility measure can be used to increase the throughput by maximizing the

machine utilization balance. Note that our objective differs and is complementary to the one in Christ

et al. (2019), where the utilization balance is optimized for a fixed set of qualifications, usually both the

qualified and qualifiable pairs (product, machine). Our approach aims at proposing new qualifications

at the operational level to improve the work center capacity.

We are particularly interested in embedding the optimization approach in a Decision Support

System, where numerous scenarios should be evaluated before taking a final decision. Highlighting

critical qualifications helps to improve manufacturing performances, and short computational times

are necessary to solve the optimization problem. In the remainder of the paper, re-qualifications will

be referred as qualifications for the sake of simplicity, as solution approaches cannot only be used for

determining re-qualifications on short horizons (one day to a few weeks) but also to determine new

qualifications on long horizons (a few months).

3. Problem definition and analysis

Let us consider a work center of M non-identical parallel machines which must process R different

products with a strictly positive demand. Machines are non-identical, both in terms of qualifications

and throughput rates. More precisely, machines are unrelated, i.e. there is no machine that is

systematically faster than another machine for all products. Machines performing the same type of

operations were most often not acquired together, and thus belong to different generations. In addition,

machines do not have the same core competencies, i.e. all machines do not process the same types of

products. A machine can only process qualified products, and a qualifiable product can be processed

on a machine if it is already qualified. The qualification matrix between products and machines

is known, and each product has a throughput rate on the machines on which it is qualifiable. Each

machine has a finite capacity, which can be different from other machines. Among the qualifiable pairs

(product, machine) not already qualified, the objective is to determine a qualification plan consisting

of k new feasible qualifications in order to maximize the capacitated time flexibility measure.
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The capacitated time flexibility measure, F T imeCapa , evaluates the balance of the qualification config-

uration of a work center in terms of utilization rates of machines. F T imeCapa is between 0% and 100% and

enables a decision maker to evaluate potential productivity gains induced by qualifiable pairs from an

initial situation. Concretely, maximizing the time flexibility measure improves the utilization balance

of the machines, and therefore improves productivity as more products can be produced in less time.

A better utilization balance of the machines means a better throughput and less backlog.

Finally, note that we are not interested in detailed scheduling decisions, as we focus on optimizing

the utilization balance of the machines.

3.1. Problem modeling

The notations used in the paper are listed below.

Sets and indices:

R = {1, ..., r, ..., R},
M = {1, ...,m, ...,M},
Q1 = {(r,m) | qr,m = 1},
Q2 = {(r,m) | qr,m = 2}.

Parameters:

qr,m ∈ {0, 1, 2}: Is equal to 1 if machine m is currently qualified for product r, is equal to 2 if machine

m is qualifiable for product r, and is equal to 0 if machine m cannot be qualified for product r,

k: Number of new qualifications,

ar,m: Throughput rate (in number of products per hour) of product r on machine m,

cm: Production availability or capacity (in hours) of machine m,

dr: Quantity of product r to produce,

γ: Utilization balancing parameter, which is strictly greater than 1.

Variables:

Yr,m ∈ {0, 1}: Is equal to 1 if product r should be qualified on machine m, and is equal to 0 otherwise,

Um: Utilization rate of machine m,

Pr,m: Quantity of product r assigned to machine m.

Let us introduce the following optimization problem:

f1(q, k,a, c,d, γ) = min
∑
m

(Um)γ (1)

s. t.
∑

r,m|(r,m)∈Q2

Yr,m ≤ k (2)

Um =
1

cm

∑
r|(r,m)∈Q1

Pr,m
ar,m

∀m (3)

∑
m|(r,m)∈Q1

Pr,m = dr ∀r (4)

Pr,m ≤ dr ∀(r,m) ∈ Q1 (5)

Pr,m ≤ drYr,m ∀(r,m) ∈ Q2 (6)

Pr,m ≥ 0 ∀(r,m) ∈ Q1 ∨Q2 (7)

Yr,m ∈ {0, 1} ∀(r,m) ∈ Q2 (8)

The objective function (1) aims at maximizing the utilization balance of the machines, i.e. at

minimizing the sum of the utilization rates of machines as defined in Constraints (3). Constraint (2)
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limits the number of new qualifications, i.e. the size of the optimized qualification plan, to at most

k. Constraints (3) compute the utilization rate for each machine in the work center. In this paper,

the machine utilization rate should be understood as the “implied” machine utilization rate by the

product quantities assigned to the the machine. A machine utilization rate is not necessarily lower

than or equal to 1 if the machine cannot process all its assigned product quantities on the horizon.

Constraints (4) ensure that the demand of each product is fully assigned to the machines. Constraints

(5)-(6) ensure that machine m can only process product r if r is currently qualified on m (qr,m = 1) or

is both qualifiable and proposed to be qualified (qr,m = 2 and Yr,m = 1). Note that the dual prices of

Constraints (5)-(6) indicate the potential gain in terms of utilization balance (Bazaraa et al. (2013)),

and will be used in some of the heuristics proposed in Section 4. Finally, Constraints (7) are the

non-negativity constraints, and Constraints (8) are the binary constraints.

Extending Rowshannahad et al. (2015), the capacitated time flexibility measure F T imeCapa is equal to
f1(q,∞,a,c,d,γ)
f1(q,k,a,c,d,γ)

∈ [0%, 100%]. As f1(q,∞,a, c,d, γ) is a constant term (computed by solving a nonlinear

optimization problem) because all possible qualification decisions are made, maximizing F T imeCapa then

requires to solve a Mixed Integer NonLinear (MINLP) optimization problem.

Let us discuss below some important characteristics of our problem:

• All qualifications require the same cost and time. This assumption comes from work center man-

agers that can hardly differentiate between re-qualifications at the operational level. On a longer

horizon of several weeks or months, where new qualifications need to be planned, considering

different costs and times for qualifications would be relevant, although the information might

not be easy to obtain.

• Demand and production capacity varying over time and disqualifications are not considered. This

is because the problem is solved regularly, once every shift of 8 hours for the next 24 hours, and

the qualifications are frequently updated given the current disqualifications and a new estimate

of the quantities of products to process. Including disqualifications and time varying demand

and production capacity in the problem on a longer planning horizon is left for future research.

3.2. Illustrative example: Influence of γ

γ is a critical parameter in the capacitated time flexibility measure that measures the distance

between the current utilization balance and the ideal utilization balance of the machines. Rowshan-

nahad et al. (2015) recommend adjusting γ according to the real workload distribution in the shop

floor, for instance by using historical data. In the considered manufacturing system, for an horizon of

24 hours, γ = 4 to γ = 6 are appropriate values. In the remainder of the paper, γ is set to 4.

In general, increasing γ leads to an increase of the total process time of machines and to a decrease

of the maximum process time of machines (see Rowshannahad et al. (2015)). When γ = 1, the

objective function does not maximize the utilization balance of the machines, and instead only leads

to the allocation of each product on its fastest qualified machine, which is not the goal in practice.

Let us consider the following example to illustrate the influence of γ on the utilization rates of

machines. Consider a work center consisting of four machines and seven products and the following
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parameters:

q =



1 0 2 0
0 1 1 2
0 1 1 2
1 2 2 0
2 0 1 0
1 0 0 0
0 1 0 1


, a =



1 0 0.2 0
0 0.8 0.2 0.8
0 0.2 0.8 0.7
1 0.1 0.8 0

0.5 0 0.2 0
1 0 0 0
0 0.2 0 1


d =

(
100 200 200 100 100 100 300

)
, c =

(
300 200 200 300

)
Figure 1 illustrates the influence of γ on the utilization rates of the machines. For instance, when

γ = 1, machine 4 is never used whereas, when γ = 6, the utilization rate of machine 4 is larger than

the one of machine 3.

(a) Machine utilization rates for γ = 1. (b) Machine utilization rates for γ = 2.

(c) Machine utilization rates for γ = 4. (d) Machine utilization rates for γ = 6.

Figure 1: Influence of γ on the utilization rates of machines.
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3.3. Computational complexity

Determining optimal qualification plans to maximize F T imeCapa , or equivalently to minimize f1, is

complex as the throughput rates significantly vary from one product to another and from one machine

to another, and the numbers of products and machines are large. Moreover, the effect of multiple

additional qualifications on the utilization balance of the machines is difficult to capture as an ini-

tially overloaded machine can become less loaded than an initially underloaded machine after several

qualifications.

Johnzén (2009) shows that optimizing the “WIP” flexibility measure is a strongly NP-Hard problem

by reduction from the 3-partition problem (Garey and Johnson (1979)). The proof is based on the

proof given in Aubry et al. (2008) for the Minimum Cost Load Balanced Configuration Problem

(MCLBCP). Optimizing the “WIP” flexibility measure is a special case of our problem, even when

ar,m = a ∀r, ∀m, and cm = 1 ∀m.

The studied optimization is NP-Hard. In addition, we want to tackle large scale industrial instances

(see Section 5.1). Efficient solution approaches must thus be designed to propose effective qualification

plans that can be used by work center managers in factories.

3.4. Outer linearization algorithm for solving the nonlinear program

In this paper, solving the continuous relaxation (or when k = 0) of the MINLP (1)-(8) is performed

by using an outer linearization algorithm, which can also be interpreted as a tangential approximation.

The outer linearization algorithm is motivated by the fact that the nonlinearity only comes from

the objective function. Hence, the objective function is separable on the decision variables Um, and it

is possible to give realistic bounds to Um. The outer linearization algorithm is used in all the solution

approaches proposed in Section 4.

Consider Figure 2 for a given machine m, which illustrates how f(Um) = (Um)γ can be linearized

using outer linearization. Outer linearization constraints of f(Um) = (Um)γ are given for Um = 0.5

and Um = 1.0. At uo, the outer linearization equation is equal to uγo + γuγ−1o (Um − uo). By adding

a sufficient number of outer linearization constraints, the continuous relaxation (or when k = 0) of

the MINLP (1)-(8) can be solved. Nevertheless, adding all possible outer linearization constraints is

unpractical, as it will lead to adding an infinite number of constraints. Adding the most relevant outer

linearization constraints is therefore critical to quickly solve the MINLP.

Figure 2: Outer linearization example for f(Um) = (Um)γ for machine m.
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The outer linearization is performed for all machines separately. Consider thatOm = maxo∈Om(uγo+

γuγ−1o (Um − uo)), where Om is the set of outer linearization points for machine m. Intuitively, Om
represents the value of (Um)γ when it is linearized by outer linearization. The objective function (1)

then becomes min
∑

mOm, where Om ≥ uγo + γuγ−1o (Um − uo) ∀m, ∀o ∈ Om. The linear program

(9)-(11) below provides a lower bound on the objective function:

min
∑
m

Om (9)

s. t. Om ≥ uγo + γuγ−1o (Um − uo) ∀m,∀o ∈ Om (10)

(2)− (8) (11)

Equation (9) is the objective function. Constraints (10) are the outer linearization constraints.

Constraints (11) are the qualification constraints, the utilization rate computation constraints, and

the constraints ensuring that the total demand of products must be assigned to qualified machines.

First, each set Om is initialized with 0 ≤ u ≤ 8. This is because, in industrial data and by

experience, it is very unlikely for Um to be larger than 8, even in a factory subject to high production

variability. Once the linear program (9)-(11) is solved, U can be extracted from the incumbent solution

to compute an upper bound on the objective function
∑

m(Um)γ . Then, additional outer linearization

constraints are added to the sets Om ∀m until the stopping condition, i.e. a small relative gap ε

between the lower and upper bounds, is met. The outer linearization is detailed in Algorithm 1.

Algorithm 1 Outer linearization algorithm

1: procedure Outer linearization algorithm
2: umin ← 0
3: umax ← 8
4: ustep ← 0.1
5: for m = 1 to M do
6: uo ← umin
7: while uo ≤ umax do
8: Om ← Om ∪ uo
9: uo ← uo + ustep

10: end while
11: end for
12: gap ←∞
13: while gap > ε do
14: Solve Linear Program (9)-(11) and compute LB ←

∑
mOm

15: L← U
16: UB ←

∑
m(Lm)γ

17: gap ← UB−LB
LB

18: for m = 1 to M do
19: Om ← Om ∪ Lm
20: end for
21: end while
22: end procedure

For γ = 4, a gap of 1.10−4 and the values of umin, umax and ustep in Algorithm 1, empirical

observations on the industrial instances of Section 5 show that the algorithm converges in less than

ten iterations. Comparing solution approaches to solve nonlinear programs could be valuable, but is

beyond the scope of this study and is left for future research.
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Note that, if γ = 1, then the outer linearization algorithm is unnecessary as the objective function

is linear. In this case, minimizing
∑

m Um subject to (2)-(8) is sufficient. However, as already discussed

in Section 3.2, when γ = 1, the objective function does not maximize the utilization balance of the

machines, and each product will be assigned to its fastest qualified machine.

4. Solution approaches

In this section, new solution approaches are proposed to solve the optimization problem with

multiple qualifications formalized in Section 3.

4.1. Constructive greedy heuristic

The first proposed algorithm is a greedy heuristic, which is inspired by the “ADD” heuristics

for discrete location problems (Daskin (2011)). The pseudo code of the algorithm can be found in

Algorithm 2. The greedy heuristic returns a set of qualifications B and f∗ the value of the objective

function f1 associated to B.

The greedy heuristic is a constructive heuristic that, at each iteration, selects the single best

qualification (r∗,m∗), among all possible qualifications, that minimizes the nonlinear objective function

f1. At the end of each iteration, B is updated such that B = B ∪ (r∗,m∗).

Selecting the single best qualification (r∗,m∗) is performed by iterating through all possible quali-

fications in the qualification matrix. For each new candidate qualification (r,m) that is not already in

B, the outer linearization algorithm is run for k = 0 and a temporary qualification matrix q′, where

q′r′,m′ = qr′,m′ ∀(r′,m′) 6= (r,m), 6∈ B, and q′r,m = 1. The procedure is between lines 6 and 18 in

Algorithm 2. The procedure is repeated until no new candidate qualification can be found, because

either |B| = k or B includes all possible qualifications, Algorithm 2 returns B. For some instances, |B|
can therefore be smaller than k.

4.2. Local search

The local search heuristic is inspired by the “ADD-REMOVE” heuristics for discrete location

problems (Daskin (2011)), and its pseudo code can be found in Algorithm 3. Similarly to the greedy

heuristic of Section 4.1, the local search heuristic returns a set of qualifications B and f*, the value of

the objective function f1 associated to B.

The first step consists in determining a feasible qualification plan B′ of value f* with the greedy

heuristic. The local search heuristic then removes one qualification at a time from B′ and tries to

swap it with a better qualification. The heuristic terminates when there is no longer a qualification

that improves the objective function.

More formally, two indices i and j are introduced: i keeps track of the qualification that must be

replaced, i.e. of the i-th qualification to swap in B′, and j keeps track of the number of swaps that

are tried without improvement. Both indices i and j are initialized to 0. At each iteration of the local

search heuristic, i is incremented. A subset B′′ of B′ such that B′′ = B′ \ B′i is used to remove one

qualification from B′, the i-th qualification, to swap it with hopefully a better qualification. Algorithm

2 is then run with q′r,m = qr,m ∀(r,m), and q′r,m = 1 ∀(r,m) ∈ B′′ and k = 1. At this step, Algorithm 2

returns a new (potentially) best set of qualifications B′′′ of value f∗∗ such that |B′′′| = 1. If f∗∗ < f∗,

then an improving qualification has been found, j is then set to 0 and B′ = B′′ ∪ B′′′. Otherwise, j is

incremented. When i = |B′|, then i is set back to 0 to avoid accessing elements that do not exist in B′.
When j = |B′|, then the local search heuristic terminates because this means that all qualifications in

B′ were unsuccessfully swapped.
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Algorithm 2 Greedy heuristic (q, k, a, c, d, γ)

Input data: q, k, a, c, d, γ
Output data: B, f∗

1: procedure Greedy heuristic
2: B ← Ø
3: f∗ ← ∞
4: for i = 1 to k do
5: (r∗,m∗) ← Ø
6: for r = 1 to R
7: for m = 1 to M do
8: if qr,m = 2 and then (r,m) 6∈ B do
9: q′ ← q

10: q′r,m ← 1
11: f ′ ← f1(q

′, 0,a, c,d, γ)
12: if f ′ < f* then
13: (r∗,m∗) ← (r, m)
14: f∗ ← f ′

15: end if
16: end if
17: end for
18: end for
19: if (r∗,m∗) 6= Ø then
20: qr∗,m∗ ← 1
21: B ← B ∪ (r∗,m∗)
22: else
23: return B, f∗

24: end if
25: end for
26: return B, f∗

27: end procedure

4.3. Dual prices

Although heuristics presented in Sections 4.1 and 4.2 are starting points to determine good qualifi-

cation plans, the number of qualifications to evaluate from one iteration to another can be substantial

when the number of products and machines are large. On industrial instances, a few thousand quali-

fications have to be evaluated, which is not acceptable when short computational times are required.

Given the problem structure and the nature of the data, we know from practical (industrial) experi-

ence that only a restricted set of qualifiable pairs (product, machine) can lead to valuable qualification

plans in terms of utilization balance.

For instance, let us consider the illustrative example in Section 3.2 when γ = 4. The initial

utilization balance is presented in Figure 1. Machine 1 is critical (i.e. U1 = 1.0), while other machines

are underloaded (i.e. U2 = 0.416 < 1.0, U3 = 0.300 < 1.0, and U4 = 0.279 < 1.0). Adding new

qualifications to machine 1 is probably irrelevant in terms of utilization balance, because machine 1

would be even more loaded. Therefore, in this example, the search of the optimal qualifications can

potentially be restricted to machines 2, 3, and 4. All possible qualifications could be tested for the

example presented in Figure 1 as the number of products and the number of machines are small.

However, because many products could be qualified on many machines in industrial data, evaluating
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Algorithm 3 Local search (q, k, a, c, d, γ)

Input data: q, k, a, c, d, γ
Output data: B, f∗

1: procedure Local search
2: B′, f∗ ← Greedy Heuristic (q, k, a, c, d, γ)
3: j ← 0
4: i ← 0
5: n← min(|B′|, k)
6: while j 6= n do
7: B′′ ← B′ \ B′i
8: q′ ← q
9: q′r′,m′ = 1 ∀(r′,m′) ∈ B′′

10: i ← i+ 1
11: B′′′, f∗∗ ← Greedy Heuristic (q′, 1, a, c, d, γ)
12: if f∗∗ < f∗ then
13: B′ ← B′′ ∪ B′′′
14: f∗ ← f∗∗

15: j ← 0
16: else
17: j ← j + 1
18: end if
19: if i = n then
20: i ← 0
21: end if
22: end while
23: return B′, f∗
24: end procedure
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all the possible qualifications is most often too time-consuming when short computational times are

required.

To identify the most promising products and machines, and therefore to reduce the number of

qualifications from one iteration to another, the dual prices of the relevant constraints of the following

reformulation (when k = 0) of the optimization model (1)-(8) can be used, where Xr,m is the ratio of

the total quantity of product r assigned to machine m:

f2(q,a, c,d, γ) = min
∑
m

(Um)γ (12)

s. t. Um =
1

cm

∑
r|(r,m)∈Q1

Xr,mdr
ar,m

∀m (13)

∑
m|(r,m)∈Q1

Xr,m = 1 ∀r (14)

Xr,m ≤ 1 ∀(r,m) ∈ Q1 (15)

Xr,m ≤ 0 ∀(r,m) ∈ Q2 (16)

Xr,m ≥ 0 ∀(r,m) ∈ Q1 ∨Q2 (17)

The objective function (12) aims at balancing the utilization rates of the machines. Constraints

(13) compute the utilization rate of each machine in the work center. Constraints (14) ensure that

the demand of each product is fully assigned to the machines. Constraints (15) and (16) ensure

that machine m can only process product r if it is qualified on m. Finally, Constraints (7) are the

non-negativity constraints for variables Xr,m.

The optimization model is close to the initial model (1)-(8), but has some significant differences.

First, allocation variables Xr,m are defined as the ratio of the quantity of product r that is assigned

to machine m. Second, the constraints imposing that the current qualifications are satisfied are

differentiated. With these modifications, before any qualification decision, this optimization model

can be solved and the dual variable of each constraint (16) can be analyzed. The dual variable can

then be interpreted as an approximation of the gain on the nonlinear objective function f2 if product

r is qualified on machine m, as dual variables can be interpreted as “the marginal rate of change in

the objective function with respect to perturbations in the right-hand side of a constraint” (Bazaraa

et al. (2013)). f2 would become
∑

m(Um)γ + λr,m, where λr,m is the dual variable for the pair (r,m)

of Constraint (16). Analyzing the value of λr,m for each pair (r,m), when qr,m = 2, allows the

most promising qualification decisions to be ranked. The values of the dual variables associated to

Constraints (16) provided by the solver we used (Lougee-Heimer (2003), Löhndorf (2016)) were all

negative or equal to 0. This makes sense as adding qualifications cannot increase the objective function.

The smallest negative value indicates the most promising qualification. Note that f2(q,a, c,d, γ) =

f1(q, 0,a, c,d, γ).

By embedding the use of the dual variables in the greedy heuristic, instead of testing every possible

qualification at each iteration, the search space can be greatly reduced to the N most promising qual-

ifications. For instance, at each iteration of the greedy heuristic, instead of testing 800 qualifications,

only N = 10 are tested. If the qualifications are tested in parallel, N can be limited to the number of

cores of the CPU. If, at a given iteration of the greedy heuristic, more than N dual variables have the

same value, the first ones in the list are arbitrarily selected. The pseudo code of the greedy heuristic

with dual variables is provided in Algorithm 4. The same principle can be applied to the local search.

Algorithm 4 is very close to Algorithm 2. The main difference is that selecting the single best

qualification (r∗,m∗) at each iteration is no longer performed by iterating through all possible quali-

fications in the qualification matrix, but by iterating through the most promising qualifications. The
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set C of most promising qualifications in Algorithm 4 is identified by running Algorithm 5. The first

step consists in solving (12)-(17) and creating a set L that includes all subsets of possible qualifications

with the values of the dual variables associated to Constraints (16). L is then sorted by ascending

order of λr,m, and C then consists of the first min(|L|, N) from L.

Algorithm 4 Greedy heuristic with dual variables (q, k, a, c, d, γ, N)

Input data: q, k, a, c, d, γ, N
Output data: B, f∗

1: procedure Greedy heuristic with dual variables
2: B ← Ø
3: f∗ ← ∞
4: for i = 1 to k do
5: (r∗,m∗) ← Ø
6: C ← Identification of most promising qualifications (q, a, c, d, γ, N)
7: for j = 1 to |C| do
8: (r,m)← Cj .(r,m)
9: q′ ← q

10: q′r,m ← 1
11: f ′ ← f1(q

′, 0,a, c,d, γ)
12: if f ′ < f∗ then
13: (r∗, m∗) ← (r, m)
14: f∗ ← f ′

15: end if
16: end for
17: if (r∗,m∗) 6= Ø then
18: qr∗,m∗ ← 1
19: B ← B ∪ (r∗,m∗)
20: else
21: return B, f∗

22: end if
23: end for
24: return B, f∗

25: end procedure

Algorithm 5 Identification of most promising qualifications (q, a, c, d, γ, N)

Input data: q, a, c, d, γ
Output data: C

1: procedure Identification of most promising qualifications
2: C ← Ø
3: L ← {{(r,m), λr,m} ∈ Constraint (16) | qr,m = 2} after solving (12)-(17).
4: Sort L by ascending order of dual variables λr,m
5: C ← first min(|L|, N) elements from L
6: return C
7: end procedure

The local search heuristic that relies on the dual variables is very similar to the local search heuristic

of Section 4.2. Instead of running the greedy heuristic (Algorithm 2) at each iteration for k = 1, the
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greedy heuristic with dual variables (Algorithm 4) is executed. The pseudo code is given in Algorithm

6.

Algorithm 6 Local search with dual variables (q, k, a, c, d, γ, N)

Input data: q, k, a, c, d, γ
Output data: B, f*

1: procedure Local search
2: B′, f∗ ← Greedy heuristic with dual variables (q, k, a, c, d, γ, N)
3: j ← 0
4: i ← 0
5: n← min(|B′|, k)
6: while j 6= n do
7: B′′ ← B′ \ B′i
8: q′ ← q
9: q′r′,m′ = 1 ∀(r′,m′) ∈ B′′

10: i ← i+ 1
11: B′′′, f∗∗ ← Greedy heuristic with dual variables (q′, 1, a, c, d, γ, N)
12: if f∗∗ < f∗ then
13: B′ ← B′′ ∪ B′′′
14: f∗ ← f∗∗

15: j ← 0
16: else
17: j ← j + 1
18: end if
19: if i = n then
20: i ← 0
21: end if
22: end while
23: return B′, f∗
24: end procedure

Another “Instantaneous” Greedy Heuristic (IGH) can be designed by using dual variables in a

more straightforward way. IGH builds a feasible qualification plan B with the k new qualifications

associated to the k smallest dual variables identified after running Algorithm 5. Contrary to the

greedy heuristic in Algorithm 4, IGH is not an iterative procedure since the k qualifications are taken

just after the dual variables are computed. The pseudo code of the instantaneous greedy heuristic can

be found in Algorithm 7.

4.4. Greedy Randomized Adaptive Search Procedure (GRASP)

A greedy randomized adaptive search procedure (GRASP) (Feo and Resende (1989)) is proposed

that also relies on the dual variables. This is motivated by three remarks: (1) The greedy heuristic with

dual prices (Algorithm 4) is relatively fast in the computational experiments, (2) The associated local

search heuristic (Algorithm 6) does not always reach the maximum allowed computational time, and

(3) The GRASP has also been successfully applied to difficult problems such as scheduling problems

(e.g. Knopp et al. (2017) and Yepes-Borrero et al. (2021))

A GRASP is a metaheuristic where the construction of an initial solution, typically in a greedy

manner, at each iteration is randomized. Initial solutions are then improved with a local search. The

proposed GRASP is presented in Algorithm 8. The construction of an initial solution with at most k
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Algorithm 7 Instantaneous Greedy Heuristic(q, k, a, c, d, γ)

Input data: q, k, a, c, d, γ
Output data: B, f∗

1: procedure Instantaneous Greedy Heuristic(q, k, a, c, d, γ)
2: B ← Ø
3: f∗ ← ∞
4: q′ ← q
5: C ← Identification of most promising qualifications (q, a, c, d, γ, ∞)
6: for j = 1 to min(k, |C|) do
7: (r,m)← Cj .(r,m)
8: q′r,m ← 1
9: end for

10: f∗ ← f1(q
′, 0,a, c,d, γ)

11: return B, f∗

12: end procedure

qualifications is performed by running Algorithm 9: The initial set of qualifications is built iteratively.

At each iteration, Algorithm 5 is executed to identify a set C with at most the N most promising

qualifications based on the value of the dual variables of Constraint (16). C can sometimes be empty if

k is larger than the number of possible qualifications and if all possible qualifications are already made.

If C is empty, Algorithm 9 immediately returns the best solution found so far as no new qualification

can be made. If C is not empty, one element Cj among min(N, |C|) is then randomly selected from

C and added to the initial set of qualifications B′. B′ is then improved by running the local search

heuristic that uses the dual variables (Algorithm 6). The GRASP is stopped, in our case, when the

allowed computational time is reached.

Algorithm 8 GRASP (q, k, a, c, d, γ, N)

Input data: q, k, a, c, d, γ, N
Output data: B, f∗

1: procedure GRASP
2: B ← Ø
3: f∗ ← ∞
4: s← 0
5: while s = 0 do
6: B′, f ′ ← Greedy randomized heuristic (q, k, a, c, d, γ, N)
7: q′ ← q
8: q′r′,m′ = 1 ∀(r′,m′) ∈ B′
9: B′, f ′ ← Local search with dual variables (q′, k, a, c, d, γ, N)

10: if f ′ < f∗ then
11: B ← B′
12: f∗ ← f ′

13: end if
14: s = 1 if allowed computational time is reached
15: end while
16: return B, f∗

17: end procedure
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Algorithm 9 Greedy randomized heuristic (q, k, a, c, d, γ, N)

Input data: q, k, a, c, d, γ, N
Output data: B, f∗

1: procedure Greedy randomized heuristic
2: B ← Ø
3: f∗ ← ∞
4: q′ ← q
5: for i = 1 to k do
6: (r∗,m∗) ← Ø
7: C ← Identification of most promising qualifications (q, a, c, d, γ, N)
8: Randomly select one element Cj from C
9: (r∗,m∗)← Cj .(r,m)

10: if (r∗,m∗) 6= Ø then
11: qr∗,m∗ ← 1
12: B ← B ∪ (r∗,m∗)
13: else
14: return B, f∗

15: end if
16: end for
17: f* ← f1(q

′, 0,a, c,d, γ)
18: return B, f∗

19: end procedure

4.5. Branch and Bound

A branch and bound solution approach, in particular a best first approach, is also investigated to

compare the solutions of the heuristic approaches to optimal solutions that can be obtained on some

instances.

Branching is performed on the qualification decision variable Yr,m that is the closest to one but

not binary. Bounding is performed by solving the continuous relaxation of the optimization model

(1)-(8). A priority queue Q on the smallest lower bound is implemented to explore the tree. Finally,

as explained in the hypothesis, a feasible solution can be quickly generated by running Algorithm 7.

The pseudo code of the branch and bound algorithm is provided in Algorithm 10. Note that the lower

bound is also updated by computing the smallest lower bound among all active nodes in Q, as it can

be used to further closing gaps (Bixby et al. (1999)).

5. Computational study: Industrial instances

In this section, the solution approaches presented in Section 4 are compared on industrial instances.

The objective is to determine the most suited solution approaches by work center given the required

small computational time (a few minutes at most). Instances used in the computational study are

characterized in Section 5.1, and the design of experiments is presented in Section 5.2. The main

findings are discussed in Section 5.3, while the detailed numerical results can be found in Section 5.4.

5.1. Instance characterization

The computational study is performed by using historical data extracted from the most advanced

production facility of STMicroelectronics located in Crolles, France. The facility is characterized by

shifting bottleneck work centers, a large number of products, frequent product mix changes, high
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Algorithm 10 Branch and bound algorithm (q, k, a, c, d, γ)

1: procedure Branch and bound algorithm (q, k, a, c, d, γ)
2: B, f∗ ← Instantaneous Greedy Heuristic(q, k, a, c, d, γ)
3: UB ← f∗

4: Q ← Ø
5: Y ← arg min (1)-(8) when relaxing binary constraints
6: LB ← f1(Y , 0,a, c,d, γ)
7: Q ← Q∪ (Y , LB)
8: while Q 6= Ø or UB−LB

LB > ε do
9: Take a node A (Y ′, f ′) off Q

10: if Y ′ binary and f ′ ≤ UB then
11: B ← Qualifications from Y ′

12: UB ← f ′

13: end if
14: if Y ′ non binary then
15: Let (r′, m′) be the largest non binary variable in Y ′

16: Y 0 ← arg min(1)− (8) when relaxing binary constraints and Yr′,m′ = 0
17: Y 1 ← arg min(1)− (8) when relaxing binary constraints and Yr′,m′ = 1
18: if f1(Y 0, 0,a, c,d, γ) ≥ UB then
19: Prune node A
20: else
21: Q ← Q∪ {Y 0, f1(Y 0, 0,a, c,d, γ)}
22: end if
23: if f1(Y 1, 0,a, c,d, γ) ≥ UB then
24: Prune node A
25: else
26: Q ← Q∪ {Y 1, f1(Y 1, 0,a, c,d, γ)}
27: end if
28: LB ← Smallest f ′ among all nodes A (Y ′, f ′) in Q
29: end if
30: end while
31: return B, UB
32: end procedure

production variability, frequent disqualifications and large machine utilization rates. Four different

work centers are studied (see Table 1). Work center A is an ion implantation work center where

the fabrication process consists in doping products with ions. Work center B is a dry etching work

center where the fabrication process consists in removing matter from the products. Work center C

is a dielectric work center where the fabrication process consists in making deposits of isolation films.

Finally, work center D is a metallization work center where the fabrication process consists in deposits

of conductive layers on the surface of the products.

The four work centers are of different nature and account for nearly 40% of machines in the

considered production facility (more than 600 machines in total). Moreover, many of the work centers

not considered in the numerical experiments are not interesting because of their high flexibility and

thus no qualification is proposed. Consequently, we believe the selected set of work centers is relevant

to assess the performance of the solution approaches in a semiconductor manufacturing facility.

In total, 24 instances are used by work center to compare the solution approaches, and the pro-
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duction quantities and capacities for one day in each work center are used. Instances were retrieved

in 2019. The instances used for the computational study are described in the appendix. For confiden-

tiality reasons, industrial instances cannot be fully detailed as they may contain critical information.

The following indicators are reported in Appendix:

• The coefficient of variation σ(d)

d
, where d is the mean demand of products, σ(d) the standard

deviation of the demand of products, the ratio d−

d
, where d− is the minimum demand over all

products, and the ratio d+

d
, where d+ is the maximum demand over all products,

• The coefficient of variation σ(c)
c , where c is the mean production capacity of machines, and σ(c)

the standard deviation of the production capacity of machines, the ratio c−

c , where c− is the

minimum capacity over all machines, and the ratio c+

c , where c+ is the maximum capacity over

all machines,

• The coefficient of variation σ(a)
a , where a is the mean throughput of products on machines of

initial and possible qualifications, and σ(a) the standard deviation of the throughput of prod-

ucts on machines of initial and possible qualifications, the ratio a−

c , where a− is the minimum

throughput of products on machines, and the ratio a+

c , where a+ is the maximum throughput

of products on machines,

• The number of initial qualification rates, and the possible qualification rates.

These indicators could be further used to generate new instances. A procedure is presented and

numerical experiments are performed on randomly generated instances in Section 6. Note that it is

reasonable that, given a work center, the number of products and machines do not vary much from

one instance to another. This is because machines are very expensive and thus products, even if new

ones are introduced, will go through the same work centers with approximately the same degree of

reentrancy as previous products of the same technology node.

Table 1: Work centers, process types and instances.

Work center Process type Appendix

A Ion implantation Appendix A
B Dry etching Appendix B
C Dielectric Appendix C
D Metallization Appendix D

Two metrics are presented by instance to compare the solution approaches: The relative gain (%)

on the utilization balance of the machines with respect to the initial qualification configuration and the

computational time (in seconds). Numerical results are not detailed instance by instance to limit the

length of the paper. More precisely, the relative gain (%) is equal to f1(q,0,a,c,d,γ)−f1(q,k,a,c,d,γ)
f1(q,0,a,c,d,γ)

× 100

when k qualifications are proposed.

5.2. Design of experiments

In the computational study, the horizon is 24 hours. Following the discussion in Section 3.2, γ

is set to 4. The outer linearization algorithm is stopped when a relative gap lower than 0.0001 is

reached. Each iteration of the outer linearization algorithm is solved by CLP, which is an open source

solver (Lougee-Heimer (2003), Löhndorf (2016)). Dual variables are then computed with CLP when
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the outer linearization algorithm is stopped. All solution approaches are implemented in Java 8 on a

computer with an Intel(R) Xeon(R) CPU E3-1240 v5 @3.50GHz with 4 cores and 32 GB of RAM. Note

that all solution approaches are parallelized, including the Branch and Bound algorithm. As discussed

in Section 4.3, the maximum number of qualification plans that are simultaneously evaluated is equal

to the number of logical threads, e.g. 8 on the computer we used. Hence, N is set to 8 in all our

approaches. For instance, 8 qualification plans are tested in parallel in the greedy heuristic of Section

4.1. In B&B, we set an optimality gap, i.e. UB−LB
LB , of 0.0001. If B&B is running but the gap is lower

than 0.0001, then B&B is stopped and the best solution found so far is considered as numerically

optimal.

Solution approaches are compared for a number of qualifications k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 40, 100}.
We study all values between 1 and 8 because, in most cases, it is unnecessary to make a larger number

of qualifications to significantly improve the utilization balance of the machines. In other words, the

three best qualifications lead to better increase on the utilization balance of the machines than the

following three best qualifications, even if the utilization balance of the machines still improves. In

addition, in practice, only a limited number of qualifications is usually allowed on 24 hours. Larger

values of k, i.e. 40 and 100, are studied to evaluate the performances of solution approaches in a

limited computational time.

Solution approaches are executed for the four work centers presented in Table 1. Two maximum

computational times are considered: 30 seconds and 180 seconds (3 minutes). In addition, two initial

qualification configurations are studied:

First qualification configuration. It consists in taking the industrial qualification matrix as

is to test our approaches for real-life qualification configurations.

Second qualification configuration. We are also interested in testing our approaches for more

extreme cases. This configuration consists in making qualifiable the qualifications that are

currently not qualifiable (i.e. when qr,m = 0). For each machine, the associated throughput

for these cases is set to the mean throughput over other initially qualified and qualifiable

machines. The density of the qualification matrix is then close to 100%. Considering this

configuration is interesting for at least two reasons. The first one is to study the limit of the

solutions approaches when the problem sizes increase. The second reason is practical and

related to medium-term or long-term qualification management. Although qr,m = 0 means

that product r cannot be currently qualified on machine m, investigating if conducting a

non-existing time-costly qualification is still relevant, in particular when new products or

new machines are introduced.

The solution approaches are presented in Table 2. They are summarized by their name and

whether dual prices are used. In total, six different solution approaches are compared to generate a

qualification plan for short-term qualification management. For the sake of presentation, short names

are given to the solution approaches (see Table 2) to present the numerical results in Section 5.4.
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Table 2: Solution approaches tested in the computational study.

Algorithm Dual prices Short name Reference section

Greedy heuristic Off GH 4.1
Local search Off LS 4.2
Greedy heuristic On GHDP 4.3
Local search On LSDP 4.3
Instantaneous Greedy heuristic (branch and bound) On IGH 4.3
Branch and Bound - B&B 4.5
Greedy Randomized Adaptive Search Procedure On GRASP 4.4

5.3. Main findings

Numerical results in Section 5.4 show that all algorithms do not perform equally. Generally, GH

and LS are irrelevant because GHDP and LSDP determine qualification plans of similar or better

quality in smaller computational times. However, depending on the work center, the qualification

configuration and the computational budget, the other solution approaches are valuable to a certain

extent:

• There is no solution approach that systematically outperforms all other solution approaches in

all experiments,

• Restricting the search space by using the dual prices is in most cases relevant both in terms of

solution quality and computational time,

• For work center B and both qualification configurations, GHDP, LSDP and GRASP provide

qualification plans that are of similar quality in terms of gain.

• For a very small computational budget, instantaneous or of a few seconds, allowed in the Deci-

sion Support System, IGH is the most suitable approach, in particular for k > 1, because the

computational time is independent of k, no matter the work center and the qualification con-

figuration. However, a qualification plan determined by IGH may be of poor quality compared

to GHDP, because one machine could inappropriately be overqualified at the expense of other

machines. Therefore, a qualification plan may need manual rework by work center managers in

the Decision Support System.

• For the first qualification configuration and small work centers or work centers with a small

number of possible qualifications, B&B is particularly suitable as it can determine optimal

solutions in less than 180 seconds. B&B is also suitable for the second qualification configuration

when k ≤ 3.

• For the first qualification configuration and large work centers or work centers with a large num-

ber of possible qualifications, using GHDP seems the best policy. GHDP determines solutions

that are close to the optimal solutions determined by B&B. LSDP and GRASP are only slightly

better than GHDP but could be considered if work center managers accept larger computational

times, which can be the case for large work centers such as work centers B and C.

• For the second qualification configuration, GRASP seems to be the best approach as it always

outperforms GHDP and in most cases also outperforms LSDP. GRASP determines solutions

that are close to the optimal solutions.
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• This study shows that, although an optimization problem can be NP-Hard, studying the nature

of the data is essential to design efficient solution approaches. For manufacturing facilities with a

large product variety, using dual variables to guide the solution approach is shown to be effective

and efficient for different types of work centers and qualification configurations.

• The gains between the first and second qualification configurations are very different. This shows

that machines that cannot be qualified for some products, i.e. such that qr,m = 0 in the first

configuration, could potentially lead to substantial improvements for the work center in terms

of utilization balance of the machines. This may be worth to investigate, and to check if these

forbidden qualifications could actually be made, i.e. whether the associated qr,m = 0 in the first

configuration could be changed to qr,m = 2.

5.4. Detailed numerical results

Solution approaches were actually only executed for 180 seconds, but all evaluated sets of qualifi-

cations were kept while the approaches were running. Computational times are reported as follows:

• If the total computational time is larger than or equal to 180 seconds, then the solution approach,

both for a computational time limit of 30 and 180 seconds, does not terminate on time. In this

case, 180 seconds, respectively 30 seconds, is reported for a computational time limit of 180

seconds, respectively 30 seconds.

• If the computational is smaller than 180 seconds but larger than 30 seconds, then the total

computational time is reported for a computational time limit of 180 seconds, but 30 seconds

are reported for a computational time limit of 30 seconds.

• If the computational time is smaller than or equal to 30 seconds, then the total computational

time is reported for both computational time limits.

A computational time is associated to each reported solution. For a computational time limit

of 180 seconds, respectively 30 seconds, only solutions that could be reached before 180 seconds,

respectively 30 seconds, are kept in the numerical results. Finally, the gain associated to the best set

of qualifications is reported in the numerical experiments for each computation time limit and each k.

5.4.1. First qualification configuration

For each k and each work center, Table 3, respectively Table 4, shows the numerical results for

a computational time limit of 30 seconds, respectively 180 seconds. Table 5 provides details on the

Branch and Bound algorithm for the first qualification configuration such as the initial relaxation gap

at the root node, the final relaxation gap when the algorithm stops, the total number of explored

nodes and the number of instances where the optimal solution is found. Note that, when an optimal

solution is found, a gap of 0% is reported.

Depending on the work center, all solution approaches may not determine satisfactory qualification

plans, in particular GH and LS compared to GHDP and LSP. For instance, for a computational time

limit of 30 seconds, GHDP performs better on average than GH from k = 6. The mean gain with GH

is equal to 6.9% whereas the mean gain with GHDP is equal to 7.0%. The larger k, the larger the

difference between GHDP and GH. This is due to the fact that, although the mean run time of GH

is equal to 24.8 seconds, on several instances GH cannot find a complete qualification plan because it

reaches the computational time limit. This is confirmed by experiments for k = 7 and k = 8. This

shows that, for a small computational time limit, using dual variables is valuable. For a computational

time limit of 180 seconds, GH actually performs slightly better on average than GHDP for k = 6 and
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k = 7. This is because the dual variables are only indicative of the marginal increase in the objective

function. However, when k = 40 or k = 100, GHDP determines better qualification plans than GH

because GH reaches the computational time limit.

Generally, GHDP determines solutions that are close to the optimal solutions, and can even outper-

form B&B for work centers B and C. On average, the benefit of LSDP is very limited for a substantial

increase of the computational time. On average, LSDP only slightly improves (at most by 0.1%)

the mean gain of GHDP. GRASP determines slightly better solutions than GHDP and LSDP. For

instance, for k ∈ {40, 100} and work center C, the mean gain determined by GRASP is equal to 18.2%

whereas the mean gain determined by LSDP is equal to 17.4%. Similar observations can be made for

work center B. However, in general, the difference between LSDP and GRASP do not exceed 0.1%.

Note that, GHDP, LSDP and GRASP do not necessarily determine optimal solutions for k = 1,

although close to optimal solutions are obtained. This is because dual variables are only indicative,

and do not necessarily guarantee that the marginal rate can be fully reached. Also, it is possible that

several dual variables have the same value but, in practice, does not lead to the same gain on the

utilization balance of the machines. In addition, there could be more than N dual variables with the

same value but only N are considered.

For work centers A and D, where the number of possible qualifications is the smallest among the

studied work centers, B&B determine optimal solutions for all instances in less than 30 seconds when

k ≤ 8, and for 23 out of the 24 instances when k = 40 or 100. All optimal solutions are determined

for a computational time limit of 180 seconds (see Table 5). The mean computational time to reach

optimal solutions do not exceed a few seconds. For work centers B and D, B&B is better than any

other approach for k ∈ {1, 2, 3}, but is outperformed by either LSDP or GRASP for larger values of

k. In most cases, when B&B is not the best solution approach, GRASP determines better solutions,

which are always close to the optimal solutions.

It is interesting to observe that, for k = 100, fewer nodes are explored by B&B than when k = 40,

which can be counter intuitive because more combinations should be tested. However, as the number of

qualifications increases, almost all relevant qualification decisions are already binary in the continuous

relaxation at the root node (due to the nature of data), and thus considered in the initial feasible

qualification plan determined by IGH. Hence, the required branching effort is reduced because the

resulting number of “choices” is smaller. Similarly, almost all relevant qualifications are determined

by using the k largest dual variables. Therefore, on industrial data, as soon as k exceeds a few

qualifications, even if the optimization problem is NP-Hard, the theoretical combinatorial aspect of

the problem fades.

Numerical results show that, for small work centers or work centers with a limited number of

possible qualifications, B&B performs better than other solution approaches both in terms of solution

quality and computational times. For instance, in practice, B&B should be used for work centers A

and D. This also shows that using empirical observations and dual variables, which are part of the

B&B solution approach, is relevant for these work centers. For larger work centers, numerical results

show that B&B is outperformed by LSDP and GRASP which should be preferred. In particular, as

work centers get larger, larger computational time limits seem acceptable. In this case, GRASP is

probably the best solution approach.

5.4.2. Second qualification configuration

For each value of k and each work center, Table 6, respectively Table 7, shows the numerical

results for a computational time limit of 30 seconds, respectively for a computational time limit of

180 seconds. Table 8 provides details on the Branch and Bound algorithm for the second qualification

configuration such as the initial relaxation gap at the root node, the final relaxation gap when the
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Table 3: Numerical results for a computational time limit of 30 seconds and the first qualification configuration. Cells
in italic, respectively bold, indicate the smallest, respectively the largest, gain value by k and work center.

GH LS GHDP LSDP GRASP IGH B&B

Work center k Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s)

A

1 2.7 7.5 2.7 7.5 2.7 0.8 2.7 0.8 2.7 30.0 2.1 0.2 2.7 0.2
2 4.1 7.5 4.1 16.6 4.1 0.8 4.1 2.0 4.1 30.0 3.4 0.2 4.2 0.3
3 5.1 11.7 5.1 25.1 5.1 1.4 5.1 4.6 5.1 30.0 4.5 0.2 5.1 0.4
4 5.9 16.2 5.9 28.5 5.9 2.1 5.9 6.1 5.9 30.0 5.1 0.2 5.9 0.4
5 6.5 21.1 6.5 29.7 6.5 4.1 6.6 7.6 6.6 30.0 5.7 0.2 6.6 0.5
6 6.9 24.8 6.9 30.0 7.0 4.6 7.1 9.0 7.1 30.0 6.0 0.2 7.1 0.5
7 7.0 27.0 7.0 30.0 7.4 5.0 7.5 9.8 7.5 30.0 6.3 0.2 7.5 0.6
8 7.1 28.3 7.1 30.0 7.8 6.1 7.8 12.0 7.8 30.0 6.7 0.2 7.8 0.8
40 7.2 30.0 7.2 30.0 10.4 24.5 10.4 30.0 10.4 30.0 9.6 0.2 10.4 4.1
100 7.2 30.0 7.2 30.0 10.5 29.9 10.5 30.0 10.7 30.0 10.6 0.2 10.8 2.2

B

1 15.4 30.0 15.4 30.0 15.8 4.4 15.8 4.4 15.8 30.0 15.1 2.3 15.9 10.1
2 15.4 30.0 15.4 30.0 20.8 4.5 20.8 9.1 20.8 30.0 17.6 2.3 20.9 17.5
3 15.4 30.0 15.4 30.0 23.0 6.8 23.1 14.2 23.2 30.0 18.9 2.3 23.2 24.9
4 15.4 30.0 15.4 30.0 24.6 9.0 24.7 18.7 24.7 30.0 19.9 2.4 24.1 28.8
5 15.4 30.0 15.4 30.0 25.6 11.2 25.8 24.2 25.8 30.0 20.4 2.3 22.9 29.6
6 15.4 30.0 15.4 30.0 26.5 13.4 26.7 27.3 26.6 30.0 20.9 2.3 22.3 29.6
7 15.4 30.0 15.4 30.0 27.2 15.4 27.3 29.9 27.2 30.0 21.6 2.3 21.6 30.0
8 15.4 30.0 15.4 30.0 27.7 17.8 27.7 30.0 27.7 30.0 21.9 2.5 21.9 30.0
40 15.4 30.0 15.4 30.0 28.7 30.0 28.7 30.0 29.1 30.0 25.9 2.4 25.9 30.0
100 15.4 30.0 15.4 30.0 28.7 30.0 28.7 30.0 29.1 30.0 28.3 2.6 28.3 30.0

C

1 7.4 30.0 7.4 30.0 7.4 1.5 7.4 1.5 7.4 30.0 6.7 0.6 7.4 3.1
2 8.9 30.0 8.9 30.0 10.4 1.5 10.4 5.2 10.5 30.0 8.1 0.6 10.5 7.8
3 8.8 30.0 8.8 30.0 12.1 2.4 12.1 6.9 12.1 30.0 8.9 0.6 12.1 15.3
4 8.9 30.0 8.9 30.0 13.2 4.8 13.3 8.5 13.3 30.0 9.3 0.6 13.0 21.2
5 9.0 30.0 9.0 30.0 14.1 5.9 14.1 11.6 14.1 30.0 9.8 0.6 13.3 25.4
6 8.9 30.0 8.9 30.0 14.7 6.8 14.7 15.2 14.7 30.0 10.0 0.6 12.8 25.7
7 8.8 30.0 8.8 30.0 15.2 7.8 15.2 18.7 15.2 30.0 10.8 0.6 12.9 27.5
8 8.8 30.0 8.8 30.0 15.6 8.3 15.6 27.5 15.7 30.0 11.8 0.6 13.7 28.0
40 9.0 30.0 9.0 30.0 17.4 30.0 17.4 30.0 18.2 30.0 16.2 0.6 16.2 30.0
100 8.9 30.0 8.9 30.0 17.4 30.0 17.4 30.0 18.3 30.0 17.7 0.7 17.8 27.5

D

1 3.7 0.9 3.7 0.9 3.7 0.7 3.7 0.7 3.7 30.0 3.7 0.1 3.7 0.2
2 5.1 0.9 5.1 2.2 5.1 0.7 5.1 1.9 5.1 30.0 4.5 0.1 5.1 0.4
3 5.8 1.5 5.8 4.6 5.8 1.3 5.8 4.3 5.8 30.0 5.0 0.1 5.8 0.5
4 6.3 2.1 6.3 5.6 6.3 1.9 6.3 5.5 6.3 30.0 5.4 0.1 6.3 0.9
5 6.6 3.1 6.6 7.6 6.6 2.8 6.6 7.3 6.6 30.0 5.8 0.1 6.6 1.2
6 6.8 4.8 6.8 9.3 6.8 4.4 6.8 8.3 6.8 30.0 6.1 0.1 6.8 1.3
7 6.9 5.2 6.9 11.0 6.9 5.1 6.9 10.7 6.9 30.0 6.3 0.1 6.9 1.3
8 7.0 6.2 7.0 20.1 7.0 5.6 7.0 18.2 7.0 30.0 6.5 0.1 7.0 1.4
40 7.5 30.0 7.5 30.0 7.5 21.3 7.5 27.3 7.5 30.0 7.5 0.1 7.5 0.3
100 7.5 30.0 7.5 30.0 7.5 21.7 7.5 27.6 7.5 30.0 7.5 0.1 7.5 0.1
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Table 4: Numerical results for a computational time limit of 180 seconds and the first qualification configuration. Cells
in italic, respectively bold, indicate the smallest, respectively the largest, gain value by k and work center.

GH LS GHDP LSDP GRASP IGH B&B

Work center k Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s)

A

1 2.7 7.5 2.7 7.5 2.7 0.8 2.7 0.8 2.7 180.0 2.1 0.2 2.7 0.2
2 4.1 7.5 4.1 16.7 4.1 0.8 4.1 2.0 4.1 180.0 3.4 0.2 4.2 0.3
3 5.1 11.7 5.1 30.2 5.1 1.4 5.1 4.6 5.1 180.0 4.5 0.2 5.1 0.4
4 5.9 16.5 5.9 50.6 5.9 2.1 5.9 6.1 5.9 180.0 5.1 0.2 5.9 0.4
5 6.5 22.0 6.6 63.7 6.5 4.1 6.6 7.6 6.6 180.0 5.7 0.2 6.6 0.5
6 7.1 29.2 7.1 83.6 7.0 4.6 7.1 9.0 7.1 180.0 6.0 0.2 7.1 0.5
7 7.5 37.4 7.5 103.5 7.4 5.0 7.5 9.8 7.5 180.0 6.3 0.2 7.5 0.6
8 7.8 44.3 7.8 116.0 7.8 6.1 7.8 12.0 7.8 180.0 6.7 0.2 7.8 0.8
40 9.7 174.0 9.7 180.0 10.4 24.5 10.4 65.0 10.4 180.0 9.6 0.2 10.4 5.8
100 9.6 180.0 9.6 180.0 10.8 54.2 10.8 148.1 10.8 180.0 10.6 0.2 10.8 2.2

B

1 15.9 180.0 15.9 180.0 15.8 4.4 15.8 4.4 15.8 180.0 15.1 2.3 15.9 11.9
2 15.9 180.0 15.9 180.0 20.8 4.5 20.8 9.1 20.9 180.0 17.6 2.3 20.9 32.1
3 15.9 180.0 15.9 180.0 23.0 6.8 23.1 14.2 23.2 180.0 18.9 2.3 23.2 77.9
4 15.9 180.0 15.9 180.0 24.6 9.0 24.7 18.7 24.8 180.0 19.9 2.4 24.8 121.7
5 15.9 180.0 15.9 180.0 25.6 11.2 25.8 24.5 25.9 180.0 20.4 2.3 25.2 160.6
6 15.9 180.0 15.9 180.0 26.5 13.4 26.7 29.3 26.7 180.0 20.9 2.3 25.5 166.7
7 15.9 180.0 15.9 180.0 27.2 15.4 27.3 35.6 27.3 180.0 21.6 2.3 25.7 175.3
8 15.9 180.0 15.9 180.0 27.7 17.8 27.8 42.8 27.8 180.0 21.9 2.5 24.5 177.0
40 15.9 180.0 15.9 180.0 29.5 89.5 29.5 180.0 29.5 180.0 25.9 2.4 25.9 180.0
100 15.9 180.0 15.9 180.0 29.6 180.0 29.6 180.0 29.6 180.0 28.3 2.6 28.3 180.0

C

1 7.4 87.1 7.4 87.1 7.4 1.5 7.4 1.5 7.4 180.0 6.7 0.6 7.4 3.1
2 10.4 86.8 10.5 173.9 10.4 1.5 10.4 5.2 10.5 180.0 8.1 0.6 10.5 10.4
3 12.1 144.7 12.1 180.0 12.1 2.4 12.1 6.9 12.1 180.0 8.9 0.6 12.1 34.8
4 12.7 177.0 12.7 180.0 13.2 4.8 13.3 8.5 13.3 180.0 9.3 0.6 13.2 71.8
5 12.9 178.4 12.9 180.0 14.1 5.9 14.1 12.0 14.1 180.0 9.8 0.6 13.5 91.5
6 12.9 180.0 12.9 180.0 14.7 6.8 14.7 15.2 14.8 180.0 10.0 0.6 14.0 114.9
7 12.9 180.0 12.9 180.0 15.2 7.8 15.2 20.9 15.2 180.0 10.8 0.6 14.2 135.5
8 12.9 180.0 12.9 180.0 15.6 8.3 15.6 35.2 15.7 180.0 11.8 0.6 14.8 138.7
40 12.9 180.0 12.9 180.0 18.2 114.3 18.2 180.0 18.2 180.0 16.2 0.6 16.2 180.0
100 12.9 180.0 12.9 180.0 18.3 180.0 18.3 180.0 18.3 180.0 17.7 0.7 18.3 44.4

D

1 3.7 0.9 3.7 0.9 3.7 0.7 3.7 0.7 3.7 180.0 3.7 0.1 3.7 0.2
2 5.1 0.9 5.1 2.2 5.1 0.7 5.1 1.9 5.1 180.0 4.5 0.1 5.1 0.4
3 5.8 1.5 5.8 4.6 5.8 1.3 5.8 4.3 5.8 180.0 5.0 0.1 5.8 0.5
4 6.3 2.1 6.3 5.6 6.3 1.9 6.3 5.5 6.3 180.0 5.4 0.1 6.3 0.9
5 6.6 3.1 6.6 7.6 6.6 2.8 6.6 7.3 6.6 180.0 5.8 0.1 6.6 1.2
6 6.8 4.8 6.8 9.3 6.8 4.4 6.8 8.3 6.8 180.0 6.1 0.1 6.8 1.3
7 6.9 5.2 6.9 11.0 6.9 5.1 6.9 10.7 6.9 180.0 6.3 0.1 6.9 1.3
8 7.0 6.2 7.0 20.9 7.0 5.6 7.0 18.5 7.0 180.0 6.5 0.1 7.0 1.4
40 7.5 115.5 7.5 168.3 7.5 33.8 7.5 68.1 7.5 180.0 7.5 0.1 7.5 0.3
100 7.5 146.1 7.5 164.9 7.5 36.0 7.5 68.8 7.5 180.0 7.5 0.1 7.5 0.1
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Table 5: Details of the branch and bound solution approach for the first qualification configuration.

30 seconds 180 seconds

Initial Final Number of Initial Final Number of
Work center k Gap(%) Gap(%) Nodes optimal solutions Gap(%) Gap(%) Nodes optimal solutions

A

1 0.59 0.00 0.3 24 0.59 0.00 0.3 24
2 0.89 0.00 0.8 24 0.89 0.00 0.8 24
3 0.75 0.00 2.1 24 0.75 0.00 2.1 24
4 0.92 0.00 2.3 24 0.92 0.00 2.3 24
5 0.99 0.00 4.5 24 0.99 0.00 4.5 24
6 1.22 0.00 6.6 24 1.22 0.00 6.6 24
7 1.30 0.00 6.9 24 1.30 0.00 6.9 24
8 1.26 0.00 10.5 24 1.26 0.00 10.5 24
40 0.96 0.08 201.3 23 0.96 0.00 303.8 24
100 0.20 0.00 81.9 23 0.20 0.00 84.4 24

B

1 5.75 2.31 6.8 23 5.75 2.28 8.8 24
2 8.89 0.67 21.2 15 8.89 0.27 43.6 22
3 10.33 0.91 38.3 9 10.33 0.23 124.6 18
4 11.30 2.20 54.7 3 11.30 0.46 235.5 13
5 12.01 5.91 65.8 1 12.01 1.62 359.1 7
6 12.16 9.03 67.0 1 12.16 2.46 415.7 3
7 11.75 11.28 70.2 0 11.75 3.34 459.5 1
8 11.85 11.54 70.2 0 11.85 5.55 483.3 1
40 7.05 7.05 70.0 0 7.05 7.05 503.5 0
100 2.59 2.59 70.5 0 2.59 2.59 499.9 0

C

1 2.98 0.02 7.1 24 2.98 0.02 7.1 24
2 4.47 0.05 48.9 22 4.47 0.02 71.9 24
3 5.29 0.15 125.6 19 5.29 0.03 332.2 22
4 6.24 0.69 222.4 11 6.24 0.21 808.0 17
5 6.54 1.29 326.2 9 6.54 0.97 1187.2 16
6 7.07 2.69 344.3 6 7.07 1.04 1615.5 12
7 6.68 3.46 383.0 4 6.68 1.51 2022.7 8
8 5.90 2.90 410.5 4 5.90 1.32 2120.8 7
40 2.67 2.67 453.6 0 2.67 2.67 3018.2 0
100 0.77 0.66 402.9 7 0.77 0.00 669.9 24

D

1 0.26 0.00 1.1 24 0.26 0.00 1.1 24
2 0.84 0.00 3.2 24 0.84 0.00 3.2 24
3 1.08 0.00 10.3 24 1.08 0.00 10.3 24
4 1.08 0.00 27.1 24 1.08 0.00 27.1 24
5 1.01 0.00 63.7 24 1.01 0.00 63.7 24
6 0.86 0.00 71.9 24 0.86 0.00 71.9 24
7 0.79 0.00 74.2 24 0.79 0.00 74.2 24
8 0.67 0.00 75.2 24 0.67 0.00 75.2 24
40 0.03 0.00 11.5 24 0.03 0.00 11.5 24
100 0.03 0.00 0.0 24 0.03 0.00 0.0 24
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algorithm stops, the total number of explored nodes and the number of instances where the optimal

solution is found.

GH and LS always propose unsatisfactory qualification plans, whether the computational time

limit is 30 or 180 seconds, even for k = 1, and are always outperformed by GHDP, LSDP and GRASP.

When k = 1, GH may determine qualification plans close in terms of quality to the qualification plans

of GHDP. However, such a quality in the qualification plans is almost obtained “by chance” because

the computational time limit of 30 or 180 seconds is always reached and good solutions are among the

first ones evaluated. Such differences are due to the significant combinatorial explosion. For instance,

consider instance 1 of work center B. There are 768 products and 162 machines (see Appendix B). The

initial number of qualifications is equal to 3,975. For the second qualification configuration, this means

that the total number of qualifiable pairs (product, machine) is equal to 768× 162− 3, 975 = 120, 441.

120,441 qualifications cannot be evaluated in 30 or 180 seconds. The use of dual variables is therefore

particularly relevant to restrict the search space to the N most promising qualifications. Doing so

immunizes GHDP, LSDP and GRASP against the increase in the number of qualifiable products on

each machine.

Contrary to the first qualification configuration, B&B performs poorly on a large number of ex-

periments. For work center A, B&B is relevant until approximately k = 5 where it is outperformed

by GHDP, LSDP or GRASP. For work center B, B&B is relevant until approximately k = 7 where

it is outperformed by GHDP, LSDP or GRASP. For work centers B and C, B&B is outperformed by

GHDP, LSDP or GRASP as soon as k = 3. Contrary to the first qualification configuration, the poor

performance of B&B can be explained by the fact that empirical observations that motivate B&B do

not longer hold and cause a combinatorial explosion. For instance, many qualification decisions are

relevant and the continuous relaxation may no longer be strong. Many qualifications can be relevant

to improve the utilization balance of the machines and the qualification matrix is now dense. Another

reason that explains why B&B performs worst on the second qualification configuration than in the

first qualification configuration is the fact that the linear relaxation is more computationally expensive.

For instance, consider work center B and a computational time limit of 180 seconds. Several hundreds

nodes could be explored for the first qualification configuration (see Table 5) whereas no more than

30 nodes can be explored for the second qualification configuration (see Table 8).

Although the mean run time is still very small, less than 1 second for work centers A, C, and D

and less than 3 seconds for work center B, IGH is less relevant to determine qualification plans in

the second qualification configuration than in the first qualification configuration. IGH is far from

the best solution found by other solution approaches because many dual variables that rank among

the best ones when assessing the initial situation often correspond to the same product, or the same

machine. In practice, qualifying the same product, or the same machine, many times is irrelevant to

efficiently improve the utilization balance of the machines.

LSDP improves the initial qualification plan determined by GHDP more in the second qualification

configuration than in the first qualification configuration. The improvement can reach more than 1%,

as shown in Table 7 for work center A and k = 8.

From a general perspective, GRASP is the best solution approach because it always outperforms

GHDP and in most cases also outperforms LSDP. GRASP also determines the best solutions for most

values of k for work centers B and C. And when GRASP is not the best solution approach, it is still

close to the best found solution, even for experiments for work centers A and D where B&B could

determine optimal solutions. LSDP also determines satisfactory qualifications plans, but which in

general are of lower quality than the qualifications plans determined by GRASP. Thus, GRASP seems

to be most relevant approach to tackle the studied optimization problem on very large scale industrial

instances, even for a small computational budget.
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Another interesting conclusion that can be drawn from these numerical experiments is that the

gain between the first and second qualification configurations are very different. Consider k = 1 where

the optimal solution is found for all instances by B&B. For the first qualification configuration, the

mean gain is equal to 2.7% whereas it is equal to 15.4% for the second qualification configuration. The

difference is significant. This shows that machines that cannot be qualified for some products, i.e.

such that qr,m = 0 in the first configuration, could potentially lead to substantial improvements for

the work center in terms of utilization balance of the machines. This may be worth to investigate, and

to check if these forbidden qualifications could actually be made, i.e. whether the associated qr,m = 0

in the first configuration could be changed to qr,m = 2.

Note that if many dual variables have the same value, the solution approaches that are based on

dual variables lose quality if a restricted number of qualifications is tested at each iteration. However,

numerical results show that this loss is not substantial and does not seem to depend on the number of

products R and machines M . If the loss was significant, the number of qualifications tested at each

iteration in GHDP, LSDP or GRASP could be increased to overcome the loss of quality.

Table 6: Numerical results for a computational time limit of 30 seconds and the second qualification configuration. Cells
in italic, respectively bold, indicate the smallest, respectively the largest, gain value by k and work center.

GH LS GHDP LSDP GRASP IGH B&B

Work center k Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s)

A

1 11.6 30.0 11.6 30.0 15.4 0.9 15.4 0.9 15.4 30.0 13.7 0.2 15.4 1.0
2 11.6 30.0 11.6 30.0 23.5 0.9 24.7 2.5 25.1 30.0 15.3 0.2 25.1 2.0
3 11.6 30.0 11.6 30.0 30.7 1.5 31.7 5.0 32.1 30.0 16.1 0.2 32.1 3.8
4 11.6 30.0 11.6 30.0 35.3 2.1 36.3 7.0 37.3 30.0 16.4 0.2 37.3 10.4
5 11.6 30.0 11.6 30.0 38.9 4.4 40.2 8.9 41.2 30.0 17.4 0.2 40.4 19.1
6 11.6 30.0 11.6 30.0 42.2 4.5 43.2 10.4 44.1 30.0 18.8 0.2 44.2 22.9
7 11.6 30.0 11.6 30.0 44.5 5.5 46.1 12.2 47.0 30.0 19.9 0.2 43.6 27.2
8 11.6 30.0 11.6 30.0 46.7 6.5 48.6 14.9 49.1 30.0 20.2 0.2 40.3 30.0
40 11.6 30.0 11.6 30.0 60.4 24.8 60.6 30.0 60.8 30.0 43.1 0.3 43.1 30.0
100 11.6 30.0 11.6 30.0 61.0 30.0 61.0 30.0 62.4 30.0 53.0 0.3 54.6 28.0

B

1 0.8 30.0 0.8 30.0 35.3 7.2 35.3 7.2 35.3 30.0 32.3 2.9 35.2 29.4
2 0.8 30.0 0.8 30.0 44.5 7.1 44.8 12.7 45.4 30.0 34.6 2.7 36.2 30.0
3 0.8 30.0 0.8 30.0 50.8 9.9 51.8 20.2 51.8 30.0 35.2 2.7 35.2 30.0
4 0.8 30.0 0.8 30.0 55.7 12.4 56.5 25.7 56.7 30.0 35.3 2.8 35.3 30.0
5 0.8 30.0 0.8 30.0 59.5 15.3 61.3 29.7 61.0 30.0 35.3 2.8 35.3 30.0
6 0.8 30.0 0.8 30.0 63.4 17.8 64.3 30.0 64.2 30.0 35.3 2.9 35.3 30.0
7 0.8 30.0 0.8 30.0 65.8 20.7 66.7 30.0 66.4 30.0 35.3 2.8 35.3 30.0
8 0.8 30.0 0.8 30.0 68.3 23.1 69.0 30.0 68.4 30.0 35.3 2.9 35.3 30.0
40 0.8 30.0 0.8 30.0 72.2 30.0 72.2 30.0 77.4 30.0 35.9 2.8 35.9 30.0
100 0.8 30.0 0.8 30.0 72.0 30.0 72.0 30.0 77.3 30.0 37.1 3.0 37.1 30.0

C

1 7.2 30.0 7.2 30.0 34.5 1.8 34.5 1.8 34.5 30.0 33.6 0.8 34.5 25.2
2 7.2 30.0 7.2 30.0 46.5 2.1 46.5 6.1 46.5 30.0 34.6 0.8 47.7 27.5
3 7.2 30.0 7.2 30.0 53.6 3.0 54.0 7.9 54.0 30.0 34.8 0.8 54.5 30.0
4 7.2 30.0 7.2 30.0 59.2 5.6 59.4 10.2 59.6 30.0 35.0 0.8 49.7 30.0
5 7.2 30.0 7.2 30.0 62.8 6.7 62.9 13.7 62.9 30.0 35.1 0.8 38.8 30.0
6 7.2 30.0 7.2 30.0 65.6 7.9 65.7 19.2 65.8 30.0 35.1 0.8 35.1 30.0
7 7.2 30.0 7.2 30.0 67.9 8.8 68.1 21.5 68.1 30.0 35.1 0.8 35.1 30.0
8 7.2 30.0 7.2 30.0 69.6 9.5 70.0 28.4 69.8 30.0 35.1 0.8 35.1 30.0
40 7.2 30.0 7.2 30.0 77.5 30.0 77.5 30.0 82.2 30.0 37.8 0.8 37.8 30.0
100 7.2 30.0 7.2 30.0 77.5 30.0 77.5 30.0 83.6 30.0 53.0 0.9 53.0 30.0

D

1 32.6 22.7 32.6 22.7 32.4 0.8 32.4 0.8 32.4 30.0 24.3 0.1 32.6 0.7
2 44.0 23.0 44.0 29.7 42.9 0.8 43.0 2.1 43.6 30.0 33.7 0.1 44.2 1.0
3 48.0 29.1 48.0 30.0 49.5 1.6 50.0 5.2 50.1 30.0 34.5 0.1 50.2 1.5
4 48.5 29.9 48.5 30.0 52.4 2.1 53.3 7.2 53.6 30.0 35.1 0.1 53.9 4.1
5 49.0 30.0 49.0 30.0 54.8 2.8 55.3 9.9 56.1 30.0 35.2 0.1 56.4 11.4
6 49.0 30.0 49.0 30.0 56.6 4.5 57.7 17.0 57.9 30.0 35.8 0.1 58.3 17.9
7 49.0 30.0 49.0 30.0 58.2 5.2 59.2 22.4 59.4 30.0 38.7 0.1 59.8 21.5
8 49.0 30.0 49.0 30.0 59.2 6.2 60.3 25.5 60.5 30.0 39.3 0.1 58.7 25.3
40 49.0 30.0 49.0 30.0 64.2 30.0 64.2 30.0 66.7 30.0 55.3 0.2 55.3 30.0
100 49.0 30.0 49.0 30.0 64.3 30.0 64.3 30.0 67.6 30.0 62.2 0.2 67.2 12.0
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Table 7: Numerical results for a computational time limit of 180 seconds and the second qualification configuration.
Cells in italic, respectively bold, indicate the smallest, respectively the largest, gain value by k and work center.

GH LS GHDP LSDP GRASP IGH B&B

Work center k Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s) Gain(%) CPU (s)

A

1 15.0 180.0 15.0 180.0 15.4 0.9 15.4 0.9 15.4 180.0 13.7 0.2 15.4 1.0
2 15.0 180.0 15.0 180.0 23.5 0.9 24.7 2.5 25.1 180.0 15.3 0.2 25.1 2.0
3 15.0 180.0 15.0 180.0 30.7 1.5 31.7 5.0 32.1 180.0 16.1 0.2 32.1 3.8
4 15.0 180.0 15.0 180.0 35.3 2.1 36.3 7.0 37.3 180.0 16.4 0.2 37.3 18.6
5 15.0 180.0 15.0 180.0 38.9 4.4 40.2 8.9 41.4 180.0 17.4 0.2 41.4 38.5
6 15.0 180.0 15.0 180.0 42.2 4.5 43.2 10.4 44.6 180.0 18.8 0.2 44.7 54.6
7 15.0 180.0 15.0 180.0 44.5 5.5 46.1 12.2 47.2 180.0 19.9 0.2 47.3 91.2
8 15.0 180.0 15.0 180.0 46.7 6.5 48.6 14.9 49.3 180.0 20.2 0.2 48.9 153.4
40 15.0 180.0 15.0 180.0 60.4 24.8 61.0 93.4 61.0 180.0 43.1 0.3 43.1 180.0
100 15.0 180.0 15.0 180.0 62.4 59.9 62.5 164.9 62.5 180.0 53.0 0.3 54.6 146.8

B

1 3.1 180.0 3.1 180.0 35.3 7.2 35.3 7.2 35.3 180.0 32.3 2.9 36.0 166.1
2 3.1 180.0 3.1 180.0 44.5 7.1 44.8 12.7 45.6 180.0 34.6 2.7 46.5 180.0
3 3.1 180.0 3.1 180.0 50.8 9.9 51.8 20.2 52.6 180.0 35.2 2.7 53.4 180.0
4 3.1 180.0 3.1 180.0 55.7 12.4 56.5 26.7 57.6 180.0 35.3 2.8 52.4 180.0
5 3.1 180.0 3.1 180.0 59.5 15.3 61.5 37.4 61.9 180.0 35.3 2.8 35.3 180.0
6 3.1 180.0 3.1 180.0 63.4 17.8 64.5 45.0 64.8 180.0 35.3 2.9 35.3 180.0
7 3.1 180.0 3.1 180.0 65.8 20.7 67.0 57.9 67.5 180.0 35.3 2.8 35.3 180.0
8 3.1 180.0 3.1 180.0 68.3 23.1 69.3 60.5 70.1 180.0 35.3 2.9 35.3 180.0
40 3.1 180.0 3.1 180.0 88.1 117.4 88.7 180.0 88.8 180.0 35.9 2.8 35.9 180.0
100 3.1 180.0 3.1 180.0 90.3 180.0 90.3 180.0 91.4 180.0 37.1 3.0 37.1 180.0

C

1 8.8 180.0 8.8 180.0 34.5 1.8 34.5 1.8 34.5 180.0 33.6 0.8 34.6 76.0
2 8.8 180.0 8.8 180.0 46.5 2.1 46.5 6.1 46.5 180.0 34.6 0.8 47.8 148.7
3 8.8 180.0 8.8 180.0 53.6 3.0 54.0 7.9 54.0 180.0 34.8 0.8 54.7 180.0
4 8.8 180.0 8.8 180.0 59.2 5.6 59.4 10.2 59.6 180.0 35.0 0.8 56.8 180.0
5 8.8 180.0 8.8 180.0 62.8 6.7 62.9 14.0 63.1 180.0 35.1 0.8 45.4 180.0
6 8.8 180.0 8.8 180.0 65.6 7.9 65.7 21.6 66.1 180.0 35.1 0.8 37.5 180.0
7 8.8 180.0 8.8 180.0 67.9 8.8 68.1 30.4 68.4 180.0 35.1 0.8 36.5 180.0
8 8.8 180.0 8.8 180.0 69.6 9.5 70.0 39.8 70.3 180.0 35.1 0.8 35.1 180.0
40 8.8 180.0 8.8 180.0 82.3 117.5 82.6 180.0 82.6 180.0 37.8 0.8 37.8 180.0
100 8.8 180.0 8.8 180.0 83.4 180.0 83.4 180.0 84.7 180.0 53.0 0.9 53.0 180.0

D

1 32.6 23.6 32.6 23.6 32.4 0.8 32.4 0.8 32.4 180.0 24.3 0.1 32.6 0.7
2 44.2 24.3 44.2 58.2 42.9 0.8 43.0 2.1 43.6 180.0 33.7 0.1 44.2 1.0
3 50.1 39.1 50.2 92.5 49.5 1.6 50.0 5.2 50.1 180.0 34.5 0.1 50.2 1.5
4 53.7 58.0 53.7 119.6 52.4 2.1 53.3 7.2 53.7 180.0 35.1 0.1 53.9 4.1
5 56.2 64.9 56.3 142.5 54.8 2.8 55.3 9.9 56.2 180.0 35.2 0.1 56.4 20.4
6 58.0 83.8 58.1 161.3 56.6 4.5 57.7 19.1 58.1 180.0 35.8 0.1 58.3 56.5
7 59.5 98.8 59.6 176.0 58.2 5.2 59.2 27.5 59.6 180.0 38.7 0.1 59.8 101.9
8 60.5 115.5 60.6 177.5 59.2 6.2 60.3 37.7 60.7 180.0 39.3 0.1 60.9 117.9
40 63.5 180.0 63.5 180.0 66.6 95.4 66.8 180.0 66.8 180.0 55.3 0.2 55.9 176.0
100 63.5 180.0 63.5 180.0 67.3 180.0 67.3 180.0 67.6 180.0 62.2 0.2 67.6 18.2

6. Computational study: Random instances

In this section, additional numerical experiments are performed on 96 randomly generated instances

to further compare and validate the proposed solution approaches. The design of experiments is similar

to the one in Section 5.2. The procedure to generate the random instances is detailed in Section 6.1

while, in Section 6.2, the main findings are discussed. Finally, Section 6.3 analyzes the numerical

results in more details.

6.1. Instance generation

To generate random instances, the industrial data are used as a baseline. We proceed as follows:

First, the demand and throughput are randomly generated. Then, initial and possible qualifications

are randomly generated. Finally, the capacity is computed from the demand and throughput and but

also randomly generated.

For each of the 96 randomly generated instances, each of the following “hyperparameters” are

randomly selected from one the 96 industrial instances: The number of products and machines, d−

d
,

d+

d
, σ(d)

d
, a−

a , a+

a , σ(a)
a , c−

c , c+

c , σ(c)
c , the initial qualification rate, and the possible qualification rate.

Selecting these parameters is critical as they are used to randomly generate c, d, q, and a. Each

hyperparameter, for instance c−

c and c+

c , is randomly selected from one the 96 industrial instances.

Note that, even in the case where all the “hyperparameters” would be drawn from the same industrial
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Table 8: Details of the branch and bound solution approach for the second qualification configuration.

30 seconds 180 seconds

Initial Final Number of Initial Final Number of
Work center k Gap(%) Gap(%) Nodes optimal solutions Gap(%) Gap(%) Nodes optimal solutions

A

1 2.04 0.09 1.8 24 2.04 0.09 1.8 24
2 13.78 0.03 8.1 24 13.78 0.03 8.1 24
3 25.15 0.01 21.5 24 25.15 0.01 21.5 24
4 35.62 0.04 82.8 21 35.62 0.03 158.4 23
5 44.27 1.76 182.5 16 44.27 0.01 368.0 22
6 51.13 0.69 257.3 11 51.13 0.01 537.6 22
7 57.49 7.15 343.9 5 57.49 0.02 925.0 20
8 64.39 19.21 406.9 0 64.39 0.67 1827.6 10
40 60.79 60.79 423.8 0 60.79 60.79 2762.5 0
100 32.32 28.31 396.1 5 32.32 28.31 2205.3 5

B

1 10.95 4.72 1.6 1 10.95 3.38 12.5 3
2 30.71 27.42 1.5 0 30.71 5.36 23.4 0
3 51.04 51.04 1.3 0 51.04 6.25 21.1 0
4 71.36 71.36 1.2 0 71.36 23.19 19.8 0
5 91.01 91.01 1.1 0 91.01 91.00 17.5 0
6 111.19 111.19 1.0 0 111.19 111.19 16.5 0
7 131.72 131.72 1.0 0 131.72 131.72 16.0 0
8 152.43 152.43 1.0 0 152.43 152.43 15.2 0
40 696.11 696.11 1.0 0 696.11 696.11 11.5 0
100 890.51 890.51 1.0 0 890.51 890.50 16.6 0

C

1 7.42 5.13 13.9 6 7.42 0.75 45.0 21
2 40.85 5.00 33.7 3 40.85 3.18 230.8 6
3 71.12 7.38 38.4 0 71.12 5.65 284.5 0
4 98.69 52.48 38.5 0 98.69 27.31 284.1 0
5 124.84 116.86 37.5 0 124.84 90.17 287.0 0
6 149.89 149.77 35.8 0 149.89 143.86 279.8 0
7 172.98 172.90 34.0 0 172.98 169.77 272.7 0
8 194.12 194.08 32.8 0 194.12 193.94 263.1 0
40 406.03 406.02 33.5 0 406.03 406.02 259.0 0
100 297.11 297.11 38.0 0 297.11 297.11 289.7 0

D

1 23.90 0.30 3.0 24 23.90 0.30 3.0 24
2 30.69 0.23 6.5 24 30.69 0.23 6.5 24
3 47.25 0.03 15.8 24 47.25 0.03 15.8 24
4 60.59 0.03 78.6 24 60.59 0.03 78.6 24
5 72.96 0.15 272.8 20 72.96 0.00 433.1 24
6 83.21 0.45 508.2 14 83.21 0.07 1285.8 19
7 78.77 0.73 691.6 9 78.77 0.24 2338.3 13
8 85.50 5.18 873.3 7 85.50 0.40 3071.7 10
40 49.10 49.10 1262.4 0 49.10 48.07 7329.0 1
100 20.38 0.97 462.8 23 20.38 0.00 739.2 23
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instance, the resulting instance would still be different from the industrial instance as c, d, q, and a

are randomly generated.

Generate the demand and the throughput. It is assumed that the demand follows a normal

distribution of mean d, standard deviation σ(d). A value is then generated with min(d+,max(d +

σ(d)N (0.0, 1.0),d−)), where G(0.0, 1.0) is a random value drawn from the normal law that has a mean

0.0 and standard deviation 1.0. It is assumed that d = 100 so that σ(d), d−, and d+ can be generated

from the industrial data as only ratios are provided in the Appendix. Similarly, it is assumed the

throughput follows a normal distribution of mean a and standard deviation σ(a). A value is then

generated with min(a+,max(a + σ(a)G(0.0, 1.0),a−)). It is also assumed that a = 100 so that σ(a),

a−, and a+ can be generated from the industrial data.

Generate the initial and possible qualifications. First, for each recipe, a machine is randomly

selected to be initially qualified for the recipe. Similarly, for each machine, a recipe is randomly selected

to be initially qualified on the machine. Then, additional initial and possible qualifications are added

based on the initial qualification and possible qualification rates of the random instances. Let us define

v1 as the initial qualification rate and v2 as the possible qualification rate of the industrial instance. A

list of all couples (product, machine) is created then shuffled. The first v1 couples (product, machine)

of the list are selected and will be initially qualified, and the following v2 couples (product, machine)

are selected as possible qualifications.

Generate the capacity. The capacity is also assumed to follow a normal distribution of mean c

and standard deviation σ(c). A value is then generated with min(c+,max(c+ σ(c)G(0.0, 1.0), c−)). c

is first determined from the demand and throughput: c =
∑
r(dr×minm(ar,m))

90%×M assuming that the initial

mean capacity utilization rate is equal to 90%. In general, generating the capacity this way does not

ensure that the initial mean utilization rate is equal to 90% due to the randomness of the instance

generation procedure. Let us define c0 as the value of the capacities generated so far. To ensure that

the mean utilization rate is equal to 90%, Algorithm 1 is run on the generated instance where the

capacity is c0. The real utilization rate of machine m is then equal to c1m, where c1m is the optimized

utilization rate of machine m computed with Algorithm 1. The final capacity value of each machine

m is then defined as c0m
90%×M∑
m(c1m)

.

6.2. Main findings

Similarities between the industrial and randomly generated instances can be observed, in particular

the fact that restricting the search space by using the dual prices is relevant both in terms of solution

quality and computational time. However, small differences with the main findings of the results for

the industrial instances can be also observed:

1. For the first qualification configuration, using GHDP does not seem to be the best policy. LSDP

and GRASP largely outperform GHDP even for k = 1,

2. For the first qualification configuration, LSDP, GRASP and B&B outperform other solution

approaches for both computational time limits,

3. LSDP is more successful to improve solutions determined by GHDP than in industrial instances,

4. For the first qualification configuration, in particular small values of k, LSDP and GRASP

provide near optimal solutions and perform slightly better than B&B for large values of k,

5. For the second qualification configuration, when k < 4, B&B is the best solution approach,

6. For the second qualification configuration, LSDP and GRASP provide fewer near optimal solu-

tions but remain the best solution approaches when k > 4, Increasing N could help determine

better solutions but at the cost of an increased computational time.
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6.3. Detailed numerical results

6.3.1. First qualification configuration

For each value of k, Table 9, respectively Table 10, shows the numerical results for a computational

time limit of 30 seconds, respectively for a computational time limit of 180 seconds. Table 11 provides

details on the Branch and Bound algorithm for the first qualification configuration such as the initial

relaxation gap at the root node, the final relaxation gap when the algorithm stops, the total number

of explored nodes and the number of instances where the optimal solution is found.

Results on random instances are similar to the results obtained for the industrial instances but

small differences can be observed.

For a computational time limit of 30 seconds, GH and GHDP perform similarly when k is not

too large, typically when k ≤ 8. However, GHDP is often much faster to reach the same quality of

solutions as GH. When k ≤ 8, GHDP is between 2 and 5 times faster than GH. For a computational

time limit of 180 seconds, GHDP performs slightly better than GH and is between 1.5 and 20 times

faster than GH. LS is always outperformed by LSDP for all values of k and LSDP always finished

before LS. IGH is also outperformed by GHDP, LSDP and GRASP.

For a computational time limit of 30 seconds, B&B determines all optimal solutions when k = 1.

For a computational time limit of 180 seconds, B&B determines all optimal solutions when k ≤ 4 and,

when k > 4, determines an optimal solution for more than 89% of the instances.

It is interesting to note that LSDP and GRASP provide near optimal solutions when k < 4 as the

differences between LSDP, GRASP and B&B are almost unnoticeable in terms of gain, less than 0.1%.

B&B finds solutions faster than LSDP and GRASP. When B&B does not provide optimal solutions,

GRASP and LSDP often perform a bit better than B&B. GRASP performs better than B&B when

k ∈ {5, 6, 40}, and LSDP performs better than B&B when k ∈ {5, 6}.
Note also that, contrary to the industrial instances, LSDP (and GRASP) can significantly improve

GHDP. When the differences between GHDP and LSDP is of about 0.1% in most cases, LSDP can

improve solutions determined by GHDP by more than 3%.

Table 9: Numerical results for a computational time limit of 30 seconds and the first qualification configuration. Cells
in italic, respectively bold, indicate the smallest, respectively the largest, gain value by k.

GH LS GHDP LSDP GRASP IGH B&B

k Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 14.9 15.5 14.9 15.5 14.9 3.5 16.4 3.5 16.4 30.0 15.9 1.1 16.4 2.0
2 18.6 15.5 18.6 18.3 18.6 3.5 21.6 6.9 21.6 30.0 18.3 1.1 21.6 3.0
3 20.7 16.9 20.7 20.3 20.7 5.6 24.0 10.1 24.1 30.0 20.4 1.1 24.1 4.7
4 21.7 18.5 21.7 21.7 21.7 6.7 25.6 12.0 25.6 30.0 21.9 1.1 25.6 5.5
5 22.5 19.7 22.5 23.1 22.5 8.6 26.5 13.9 26.6 30.0 23.1 1.1 26.1 6.7
6 22.8 20.2 22.9 24.1 22.8 10.0 27.3 15.8 27.3 30.0 24.1 1.1 26.9 6.9
7 23.2 21.1 23.2 25.4 23.2 10.9 27.8 17.5 27.8 30.0 24.7 1.1 27.8 7.6
8 23.5 21.7 23.5 26.6 23.5 11.9 28.3 20.0 28.3 30.0 25.3 1.1 28.3 7.7
40 24.5 29.5 24.5 30.0 24.5 27.2 30.9 29.7 31.6 30.0 30.8 1.1 31.4 11.3
100 24.7 29.9 24.7 30.0 24.7 28.2 31.0 29.7 32.1 30.0 32.1 1.2 32.2 10.4

6.3.2. Second qualification configuration

For each value of k, Table 12, respectively Table 13, shows the numerical results for a computational

time limit of 30 seconds, respectively for a computational time limit of 180 seconds. Table 14 provides

details on the Branch and Bound algorithm for the second qualification configuration such as the

initial relaxation gap at the root node, the final relaxation gap when the algorithm stops, the total

number of explored nodes and the number of instances where the optimal solution is found.

Similarly to what can be observed for the industrial instances, GH and LS always propose un-

satisfactory qualification plans, whether the computational time limit is 30 or 180 seconds, even for
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Table 10: Numerical results for a computational time limit of 180 seconds and the first qualification configuration. Cells
in italic, respectively bold, indicate the smallest, respectively the largest, gain value by k.

GH LS GHDP LSDP GRASP IGH B&B

k Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 16.2 71.7 16.2 71.7 16.4 3.5 16.4 3.5 16.4 180.0 15.9 1.1 16.4 2.0
2 20.7 72.9 20.7 83.6 21.6 3.5 21.6 7.5 21.6 180.0 18.3 1.1 21.6 3.2
3 22.7 77.5 22.7 89.0 24.0 5.7 24.1 12.0 24.1 180.0 20.4 1.1 24.1 5.6
4 24.0 83.8 24.0 96.6 25.5 7.4 25.6 15.5 25.6 180.0 21.9 1.1 25.6 8.5
5 24.7 86.5 24.8 99.1 26.5 9.8 26.6 19.4 26.6 180.0 23.1 1.1 26.6 12.3
6 25.3 88.8 25.4 102.0 27.3 11.9 27.3 24.3 27.3 180.0 24.1 1.1 27.4 13.8
7 25.8 91.9 25.8 106.1 27.8 13.5 27.9 29.3 27.9 180.0 24.7 1.1 27.9 16.9
8 26.2 95.2 26.2 109.2 28.3 15.3 28.3 36.2 28.4 180.0 25.3 1.1 28.4 20.4
40 28.5 136.3 28.5 158.0 31.8 80.2 31.8 124.8 31.9 180.0 30.8 1.1 31.4 59.9
100 28.5 158.1 28.5 167.8 32.4 109.0 32.4 133.1 32.7 180.0 32.1 1.2 32.3 49.1

Table 11: Details of the branch and bound solution approach for the first qualification configuration.

30 seconds 180 seconds

Initial Final Number of Initial Final Number of
k Gap (%) Gap (%) Nodes optimal solutions Gap (%) Gap (%) Nodes of optimal solutions

1 3.06 0.67 1.0 96 3.06 0.67 1.0 96
2 12.75 0.04 2.7 95 12.75 0.04 2.8 96
3 19.75 0.04 6.7 91 19.75 0.01 7.4 96
4 25.65 0.07 10.2 89 25.65 0.01 13.0 96
5 38.33 9.44 18.1 86 38.33 0.06 36.5 95
6 48.56 10.07 18.8 82 48.56 0.00 27.8 94
7 58.39 0.25 24.4 82 58.39 0.01 46.1 93
8 41.63 0.23 29.6 78 41.63 0.10 59.1 92
40 6.80 5.20 129.2 64 6.80 5.06 598.8 67
100 3.44 2.76 117.3 69 3.44 2.62 399.3 73

k = 1, and are always outperformed by GHDP, LSDP, GRASP and B&B. Similarly to the industrial

instances, for the second qualification configuration, there are tens of thousands of qualifications to

evaluate for a single iteration of GH. This cannot be done in a few seconds. The use of dual variables

is therefore particularly relevant to restrict the search space.

B&B is the best solution approaches as long as k < 4, although not all solutions are optimal.

For instance, consider k = 1. For the first qualification configuration, B&B determines an optimal

solution for all the instances. For the second qualification configuration, only 83 optimal solutions are

determined for 96 instances. The number of optimal solutions quickly drops as k increases.

Contrary to the first qualification configuration, LSDP and GRASP do not always provide near

optimal solutions when k < 4. The difference in gains between GRASP and B&B varies between 1%

and 2%. The fact that LSDP and GRASP no longer provide as many near optimal solutions can

be explained by N , which is the parameter driving the number of qualifications to evaluate at each

iteration. A similar explanation can be given for the first qualification matrix when k = 1, as LSDP

improves solutions found by GHDP. In this case, increasing N may lead to better solutions. When

k > 4, LSDP and GRASP both outperform B&B.

LSDP and GRASP still provide much better solutions than GH, LS, GHDP and IGH. First, let

us compare GHDP with GH and LS. The solutions of GHDP are between 1.5 and 5 times better

and are determined much faster than the solutions determined by GH and LS. Contrary to the first

qualification configuration, LSDP only slightly improves the quality of the qualification plans. For all

values of k and both computational time limits, GRASP provides better results on average in terms

of gain than LSDP.
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Table 12: Numerical results for a computational time limit of 30 seconds and the second qualification configuration.
Cells in italic, respectively bold, indicate the smallest, respectively the largest, gain value by k.

GH LS GHDP LSDP GRASP IGH B&B

k Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 12.9 30.0 12.9 30.0 20.2 4.3 20.2 4.3 20.2 30.0 20.0 1.2 21.3 9.8
2 12.9 30.0 12.9 30.0 28.1 4.3 28.2 7.7 28.3 30.0 20.2 1.2 30.5 13.5
3 12.9 30.0 12.9 30.0 33.1 6.0 33.5 11.3 33.6 30.0 20.2 1.2 35.3 15.1
4 12.9 30.0 12.9 30.0 35.9 7.6 36.4 13.6 36.8 30.0 20.3 1.2 36.6 17.0
5 12.9 30.0 12.9 30.0 38.3 9.1 38.7 15.1 39.1 30.0 20.6 1.2 35.8 18.0
6 12.9 30.0 12.9 30.0 40.0 10.6 40.7 17.9 41.0 30.0 20.8 1.2 35.3 18.4
7 12.9 30.0 12.9 30.0 41.3 11.6 42.3 20.9 42.7 30.0 21.0 1.2 34.2 19.0
8 12.9 30.0 12.9 30.0 42.7 12.6 43.5 22.9 43.9 30.0 21.4 1.2 33.4 19.6
40 12.9 30.0 12.9 30.0 53.1 28.4 53.2 30.0 56.2 30.0 31.1 1.3 39.5 23.8
100 12.9 30.0 12.9 30.0 53.5 30.0 53.5 30.0 60.3 30.0 42.0 1.3 44.1 27.0

Table 13: Numerical results for a computational time limit of 180 seconds and the second qualification configuration.
Cells in italic, respectively bold, indicate the smallest, respectively the largest, gain value by k.

GH LS GHDP LSDP GRASP IGH B&B

k Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 14.2 161.5 14.2 161.5 20.2 4.3 20.2 4.3 20.2 180.0 20.0 1.2 21.4 35.6
2 17.0 162.1 17.0 174.4 28.1 4.3 28.2 8.3 28.3 180.0 20.2 1.2 30.6 50.1
3 18.0 170.3 18.0 180.0 33.1 6.2 33.5 13.4 33.7 180.0 20.2 1.2 35.6 61.9
4 18.4 175.6 18.4 180.0 36.0 8.2 36.4 17.4 36.9 180.0 20.3 1.2 38.0 76.4
5 18.1 178.7 18.1 180.0 38.3 10.4 38.8 21.9 39.3 180.0 20.6 1.2 37.1 81.5
6 18.5 179.7 18.5 180.0 40.1 12.6 40.8 29.3 41.3 180.0 20.8 1.2 37.0 88.2
7 18.9 180.0 18.9 180.0 41.4 14.3 42.3 37.4 42.9 180.0 21.0 1.2 36.3 93.2
8 18.9 180.0 18.9 180.0 42.8 16.2 43.7 46.0 44.3 180.0 21.4 1.2 37.0 97.6
40 18.9 180.0 18.9 180.0 56.6 87.4 57.0 152.7 57.4 180.0 31.1 1.3 43.5 120.8
100 18.9 180.0 18.9 180.0 60.8 138.5 61.0 179.5 62.6 180.0 42.0 1.3 46.5 145.7

Table 14: Details of the branch and bound solution approach for the second qualification configuration.

30 seconds 180 seconds

Initial Final Number of Initial Final Number of
k Gap (%) Gap (%) Nodes optimal solutions Gap (%) Gap (%) Nodes of optimal solutions

1 8.74% 5.16% 7.8 74 8.74% 5.00% 14.7 83
2 46.71% 5.47% 41.6 63 46.71% 4.98% 85.0 76
3 93.52% 5.14% 53.5 57 93.52% 4.18% 184.5 70
4 144.62% 44.07% 81.6 52 144.62% 31.43% 273.5 63
5 205.70% 102.45% 85.3 49 205.70% 90.50% 345.0 58
6 288.74% 175.31% 90.5 42 288.74% 157.57% 403.1 56
7 401.80% 283.44% 97.0 41 401.80% 264.68% 443.2 51
8 549.76% 443.59% 102.7 39 549.76% 403.78% 481.3 49
40 29727.94% 29343.32% 142.1 28 29727.94% 28920.18% 598.2 37
100 130259.70% 129512.62% 151.4 14 130259.70% 128722.32% 781.3 23
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7. Conclusions and perspectives

In this paper, we propose new solution approaches to determine optimized qualification plans in

work centers with non-identical parallel machines to maximize the capacitated time flexibility measure

proposed in Rowshannahad et al. (2015). In particular, dual prices are used to derive heuristics that are

quickly guided towards good solutions. The proposed approaches are compared on industrial data on

four different work centers, covering a significant number of machines in the considered semiconductor

manufacturing facility, and two different qualification configurations. The proposed approaches are

also compared on instances randomly generated using parameters taken from the industrial data. The

approaches relying on dual variable provide very good solutions. Because the four work centers are

of different nature, we expect the approaches to be effective on the remaining work centers in the

production facility. Recommendations are finally provided. The approaches are now embedded in

a decision support system that determines and proposes effective qualification plans to work center

managers twenty minutes before every shift (every 8 hours). The decision support is used to enhance

their decision process and better manage work centers.

We believe the following perspectives are worth investigating in the future:

• Some parameters might be subject to uncertainty, such as product quantities and machines

capacities, and designing robust qualification plans should be an interesting research avenue,

• Workload variables are continuous but, in practice, some machines run product quantities by

batches. Hence, the consideration of batching constraints could be explored as in Rowshannahad

and Dauzère-Pérès (2013),

• An outer linearization algorithm is used to solve nonlinear programs. Other algorithms, such

as active-set methods or sequential quadratic methods (Rowshannahad et al. (2015)) could be

compared to the outer linearization algorithm to further reduce computational times,

• Solution approaches could be compared on data from other factories to further validate the

relevance of the dual variable solution approaches,

• We assumed in this work that each qualification has the same cost, which makes sense at the

operational level. However, considering different qualification costs when decisions are taken for

the next weeks or months could be relevant,

• Studying the effect of disqualifications on the compromise between qualification costs and uti-

lization balance can also be relevant,

• Considering time-varying demand and production capacity on a longer planning horizon is in-

teresting, but makes sense at a different decision level than the one considered in this paper,

• It would be relevant to study the robustness of solution approaches, e.g. under what conditions

using dual prices does not provide good solutions.
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Löhndorf, N., 2016. Java interface for the clp solver. https://github.com/quantego/clp-java.

Accessed in 2017.

Lougee-Heimer, R., 2003. The common optimization interface for operations research: Promoting

open-source software in the operations research community. IBM Journal of Research and Devel-

opment 47, 57–66.

Obeid, A., Dauzère-Pérès, S., Yugma, C., 2014. Scheduling job families on non-identical parallel

machines with time constraints. Annals of Operations Research 213, 221–234.

Perraudat, A., Dauzère-Pérès, S., Vialletelle, P., 2019. Evaluating the impact of dynamic qualifica-

tion management in semiconductor manufacturing, in: 2019 Winter Simulation Conference (WSC),

IEEE. pp. 2336–2347.

Pianne, A., Rivero, L., Dauzère-Pérès, S., Vialletelle, P., 2016. Ideal and potential flexibility measures

for qualification management in semiconductor manufacturing, in: Winter Simulation Conference

(WSC), 2016, IEEE. pp. 2621–2632.

Rowshannahad, M., Dauzère-Pérès, S., 2013. Qualification management with batch size constraint,

in: 2013 Winter Simulations Conference (WSC), IEEE. pp. 3707–3718.

Rowshannahad, M., Dauzère-Pérès, S., Cassini, B., 2014. Qualification management to reduce work-

load variability in semiconductor manufacturing, in: Proceedings of the 2014 Winter Simulation

Conference, IEEE Press. pp. 2434–2443.

Rowshannahad, M., Dauzère-Pérès, S., Cassini, B., 2015. Capacitated qualification management in

semiconductor manufacturing. Omega 54, 50–59.

Yepes-Borrero, J.C., Perea, F., Ruiz, R., Villa, F., 2021. Bi-objective parallel machine scheduling with

additional resources during setups. European Journal of Operational Research 292, 443–455.

37



Appendix A. Instances for work center A

Table A.15: Instances for work center A: d is the mean demand of products, σ(d) the standard deviation of the demand
of products, d+ the maximum demand of products, d− the minimum demand over all products, c the mean production
capacity of machines, σ(c) the standard deviation of the production capacity of machines, c+ the maximum capacity
over all machines, c− the minimum capacity over all machines, a the mean throughput of products on machines of initial
and possible qualifications, a+ the maximum throughput of products on machines of initial and possible qualifications,
and a− the minimum throughput of products on machines of initial and possible qualifications, and σ(a) the standard
deviation of the throughput of products on machines of initial and possible qualifications. The initial qualification rate
(%) is the number of entries equal to 1 in the matrix q divided by R×M , and the qualifiable rate (%) is the number of
entries equal to 2 in the matrix q divided by R×M .

Initial Qualification Possible Qualification

Instance R M d−

d
d+

d

σ(d)

d
a−

a
a+

a
σ(a)
a

c−

c
c+

c
σ(c)
c Rate (%) Rate (%)

1 660 14 0.016 8.049 1.015 0.055 8.042 0.574 0.838 1.167 0.109 25.130% 5.400%
2 650 14 0.015 8.039 1.062 0.055 5.308 0.561 0.836 1.208 0.106 25.000% 5.396%
3 667 15 0.015 7.493 1.033 0.045 5.547 0.576 0.808 1.167 0.121 24.048% 4.018%
4 642 14 0.014 7.457 1.092 0.045 5.528 0.570 0.815 1.156 0.097 25.567% 4.105%
5 548 15 0.015 6.328 0.999 0.046 5.157 0.562 0.803 1.160 0.120 24.684% 5.876%
6 538 15 0.014 6.016 1.008 0.045 5.076 0.575 0.828 1.196 0.107 24.845% 5.799%
7 532 14 0.014 6.330 1.029 0.090 5.035 0.553 0.803 1.160 0.118 26.705% 6.002%
8 542 14 0.016 6.243 1.005 0.093 2.493 0.549 0.792 1.145 0.113 28.268% 4.942%
9 569 14 0.016 6.231 1.006 0.059 2.466 0.556 0.824 1.190 0.117 26.048% 5.938%
10 565 14 0.016 6.612 0.999 0.059 2.456 0.558 0.797 1.151 0.113 27.155% 5.815%
11 563 14 0.032 8.416 1.041 0.077 2.423 0.558 0.803 1.160 0.123 27.138% 6.141%
12 585 14 0.033 7.357 1.019 0.057 2.419 0.555 0.824 1.190 0.120 26.984% 6.105%
13 578 14 0.015 7.365 0.950 0.058 2.461 0.569 0.817 1.181 0.120 27.533% 5.252%
14 602 14 0.015 7.631 1.002 0.045 2.411 0.564 0.806 1.164 0.119 28.049% 4.461%
15 590 15 0.016 10.089 1.071 0.044 2.402 0.549 0.805 1.163 0.119 25.763% 4.226%
16 578 14 0.016 10.113 1.085 0.069 6.426 0.563 0.818 1.182 0.119 27.558% 5.042%
17 632 14 0.016 8.525 1.113 0.044 6.384 0.548 0.807 1.165 0.102 27.238% 5.120%
18 631 14 0.015 8.107 1.161 0.070 6.455 0.552 0.821 1.186 0.120 27.383% 5.173%
19 604 14 0.014 7.984 1.175 0.079 2.484 0.557 0.808 1.146 0.109 26.703% 6.055%
20 582 14 0.013 7.074 1.192 0.077 2.446 0.558 0.796 1.149 0.113 26.338% 6.112%
21 558 15 0.015 7.634 1.133 0.079 2.501 0.566 0.792 1.144 0.107 24.886% 5.783%
22 564 14 0.015 8.133 1.052 0.079 2.503 0.561 0.794 1.147 0.111 26.722% 5.990%
23 588 14 0.013 6.242 1.096 0.071 2.458 0.552 0.826 1.172 0.108 25.948% 6.353%
24 601 15 0.013 7.395 1.203 0.071 2.447 0.555 0.820 1.143 0.099 24.326% 5.768%
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Appendix B. Instances for work center B

Table B.16: Instances for work center A: d is the mean demand of products, σ(d) the standard deviation of the demand of
products, d+ the maximum demand over all products, d− the minimum demand over all products, c the mean production
capacity of machines, σ(c) the standard deviation of the production capacity of machines, c+ the maximum capacity
over all machines, c− the minimum capacity over all machines, a the mean throughput of products on machines of initial
and possible qualifications, a+ the maximum throughput of products on machines of initial and possible qualifications,
and a− the minimum throughput of products on machines of initial and possible qualifications, and σ(a) the standard
deviation of the throughput of products on machines of initial and possible qualifications. The initial qualification rate
(%) is the number of entries equal to 1 in the matrix q divided by R×M , and the qualifiable rate (%) is the number of
entries equal to 2 in the matrix q divided by R×M .

Initial Qualification Possible Qualification

Instance R M d−

d
d+

d

σ(d)

d
a−

a
a+

a
σ(a)
a

c−

c
c+

c
σ(c)
c Rate (%) Rate (%)

1 786 168 0.015 10.051 1.300 0.076 45.635 1.423 0.890 1.049 0.037 3.010% 0.924%
2 760 168 0.014 9.937 1.264 0.078 46.882 1.452 0.840 1.053 0.039 3.022% 0.931%
3 806 168 0.014 13.364 1.263 0.072 43.423 1.809 0.891 1.050 0.037 3.052% 0.969%
4 785 168 0.014 12.204 1.282 0.073 43.802 1.715 0.839 1.052 0.039 3.044% 0.961%
5 767 168 0.014 9.993 1.233 0.078 91.173 1.993 0.841 1.054 0.040 2.894% 0.979%
6 767 168 0.014 10.024 1.185 0.079 91.885 2.000 0.841 1.054 0.040 2.930% 0.944%
7 780 168 0.014 9.622 1.128 0.079 92.418 2.001 0.840 1.053 0.040 2.898% 0.982%
8 809 168 0.015 10.299 1.159 0.079 47.644 1.661 0.840 1.053 0.040 2.860% 1.023%
9 821 168 0.015 7.667 1.102 0.078 46.954 1.643 0.892 1.051 0.038 2.888% 0.977%
10 814 169 0.015 8.696 1.120 0.078 46.622 1.639 0.838 1.050 0.038 2.758% 1.092%
11 781 168 0.015 7.303 1.173 0.081 48.617 1.692 0.838 1.050 0.039 2.895% 1.023%
12 793 168 0.016 6.987 1.168 0.081 48.671 1.696 0.839 1.051 0.040 2.866% 1.028%
13 793 168 0.015 9.071 1.180 0.079 47.235 1.574 0.839 1.051 0.038 2.797% 1.099%
14 783 168 0.015 10.039 1.197 0.074 44.531 1.760 0.839 1.051 0.039 2.842% 1.022%
15 798 168 0.015 8.690 1.211 0.079 47.491 1.588 0.839 1.052 0.039 2.846% 1.018%
16 790 168 0.015 7.908 1.198 0.078 46.642 1.582 0.837 1.049 0.038 2.884% 0.995%
17 795 168 0.015 9.697 1.167 0.077 46.349 1.564 0.839 1.052 0.038 2.880% 1.013%
18 794 169 0.015 12.039 1.213 0.077 46.596 1.569 0.889 1.048 0.036 2.820% 1.023%
19 791 168 0.016 19.706 1.395 0.075 45.164 1.533 0.839 1.051 0.040 2.823% 1.026%
20 767 168 0.014 14.196 1.425 0.075 45.252 1.540 0.838 1.051 0.040 2.875% 1.004%
21 752 169 0.015 15.569 1.459 0.083 50.205 1.500 0.839 1.051 0.040 2.882% 1.028%
22 753 168 0.015 11.377 1.249 0.078 90.358 1.916 0.839 1.052 0.038 2.892% 1.022%
23 779 168 0.016 12.244 1.297 0.080 48.302 1.604 0.891 1.050 0.037 2.854% 1.104%
24 762 168 0.015 14.442 1.327 0.077 46.596 1.577 0.838 1.050 0.039 2.843% 1.051%
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Appendix C. Instances for work center C

Table C.17: Instances for work center A: d is the mean demand of products, σ(d) the standard deviation of the demand of
products, d+ the maximum demand over all products, d− the minimum demand over all products, c the mean production
capacity of machines, σ(c) the standard deviation of the production capacity of machines, c+ the maximum capacity
over all machines, c− the minimum capacity over all machines, a the mean throughput of products on machines of initial
and possible qualifications, a+ the maximum throughput of products on machines of initial and possible qualifications,
and a− the minimum throughput of products on machines of initial and possible qualifications, and σ(a) the standard
deviation of the throughput of products on machines of initial and possible qualifications. The initial qualification rate
(%) is the number of entries equal to 1 in the matrix q divided by R×M , and the qualifiable rate (%) is the number of
entries equal to 2 in the matrix q divided by R×M .

Initial Qualification Possible Qualification

Instance R M d−

d
d+

d

σ(d)

d
a−

a
a+

a
σ(a)
a

c−

c
c+

c
σ(c)
c Rate (%) Rate (%)

1 589 69 0.014 11.901 1.367 0.051 46.437 2.336 0.630 1.273 0.166 5.472% 1.821%
2 579 69 0.014 13.678 1.498 0.052 31.064 2.239 0.631 1.274 0.159 5.384% 1.867%
3 565 69 0.014 12.955 1.509 0.053 24.722 2.125 0.624 1.260 0.151 5.502% 1.857%
4 556 70 0.014 13.073 1.473 0.055 20.587 2.000 0.633 1.279 0.154 5.447% 1.775%
5 540 70 0.016 8.046 1.172 0.075 23.157 2.287 0.638 1.290 0.156 5.172% 1.849%
6 550 69 0.016 13.858 1.219 0.080 24.640 2.238 0.628 1.269 0.159 5.270% 1.900%
7 537 69 0.016 14.502 1.241 0.078 24.208 2.303 0.636 1.286 0.165 5.090% 1.924%
8 554 69 0.016 14.869 1.214 0.080 24.852 2.211 0.629 1.271 0.165 5.148% 1.870%
9 513 69 0.016 14.488 1.238 0.076 19.033 2.244 0.628 1.269 0.160 5.150% 1.865%
10 516 69 0.016 14.774 1.325 0.076 19.114 2.237 0.638 1.288 0.159 5.081% 2.005%
11 579 69 0.017 15.549 1.265 0.052 24.292 2.193 0.639 1.291 0.161 5.136% 1.997%
12 568 70 0.017 13.335 1.230 0.053 24.832 2.149 0.633 1.279 0.165 5.179% 1.901%
13 487 69 0.017 14.478 1.312 0.052 24.224 2.272 0.632 1.277 0.161 5.074% 1.976%
14 501 69 0.018 8.896 1.124 0.051 23.811 2.225 0.677 1.239 0.153 5.091% 1.970%
15 506 69 0.018 6.760 1.052 0.050 23.346 2.312 0.627 1.266 0.154 5.058% 1.988%
16 494 69 0.017 5.983 1.087 0.050 23.350 2.307 0.642 1.296 0.163 5.090% 2.004%
17 543 70 0.018 10.123 1.220 0.047 21.915 2.366 0.629 1.270 0.158 5.017% 1.978%
18 516 69 0.017 11.783 1.294 0.050 23.148 2.272 0.636 1.286 0.163 5.123% 1.938%
19 540 69 0.016 9.877 1.166 0.052 19.719 2.147 0.632 1.276 0.164 5.360% 1.688%
20 497 70 0.015 8.935 1.189 0.053 24.293 2.180 0.634 1.281 0.163 5.185% 1.771%
21 523 69 0.016 10.767 1.253 0.048 22.443 2.233 0.634 1.280 0.159 5.495% 1.649%
22 496 69 0.015 12.566 1.322 0.044 53.408 2.740 0.634 1.281 0.157 5.508% 1.622%
23 531 69 0.015 11.915 1.295 0.041 49.669 2.774 0.630 1.273 0.166 5.273% 1.850%
24 530 70 0.015 10.193 1.318 0.046 54.768 2.769 0.623 1.258 0.153 5.261% 1.771%
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Appendix D. Instances for work center D

Table D.18: Instances for work center A: d is the mean demand of products, σ(d) the standard deviation of the demand of
products, d+ the maximum demand over all products, d− the minimum demand over all products, c the mean production
capacity of machines, σ(c) the standard deviation of the production capacity of machines, c+ the maximum capacity
over all machines, c− the minimum capacity over all machines, a the mean throughput of products on machines of initial
and possible qualifications, a+ the maximum throughput of products on machines of initial and possible qualifications,
and a− the minimum throughput of products on machines of initial and possible qualifications, and σ(a) the standard
deviation of the throughput of products on machines of initial and possible qualifications. The initial qualification rate
(%) is the number of entries equal to 1 in the matrix q divided by R×M , and the qualifiable rate (%) is the number of
entries equal to 2 in the matrix q divided by R×M .

Initial Qualification Possible Qualification

Instance R M d−

d
d+

d

σ(d)

d
a−

a
a+

a
σ(a)
a

c−

c
c+

c
σ(c)
c Rate (%) Rate (%)

1 228 21 0.016 12.971 1.687 0.050 1.590 0.310 0.467 1.204 0.150 15.539% 1.838%
2 219 21 0.016 13.621 1.636 0.049 1.581 0.313 0.845 1.167 0.082 15.482% 1.957%
3 229 21 0.016 12.096 1.375 0.101 1.614 0.317 0.851 1.174 0.088 15.325% 1.539%
4 235 21 0.017 11.186 1.398 0.102 1.626 0.319 0.835 1.153 0.078 15.299% 1.479%
5 226 21 0.019 7.692 1.210 0.103 1.718 0.336 0.464 1.197 0.142 14.834% 1.622%
6 226 21 0.018 8.326 1.190 0.050 1.608 0.320 0.844 1.165 0.088 15.381% 1.686%
7 222 21 0.018 6.394 1.117 0.050 1.607 0.330 0.854 1.162 0.068 14.972% 1.780%
8 228 21 0.018 5.438 1.093 0.050 1.599 0.321 0.469 1.209 0.144 14.724% 2.109%
9 221 22 0.019 5.574 1.063 0.050 1.609 0.332 0.467 1.204 0.139 14.500% 1.666%
10 223 22 0.019 6.494 1.083 0.050 1.608 0.332 0.465 1.200 0.141 13.596% 2.059%
11 240 22 0.020 8.341 1.223 0.051 1.618 0.338 0.854 1.178 0.084 12.784% 2.917%
12 237 21 0.020 8.342 1.219 0.051 1.624 0.337 0.846 1.167 0.075 14.627% 1.869%
13 218 21 0.018 6.959 1.204 0.051 1.642 0.326 0.459 1.183 0.143 15.138% 1.573%
14 213 21 0.018 7.271 1.132 0.050 1.631 0.323 0.465 1.200 0.147 15.336% 1.543%
15 215 21 0.018 6.585 1.163 0.050 1.641 0.329 0.848 1.171 0.089 15.150% 1.550%
16 215 21 0.018 6.360 1.129 0.050 1.616 0.319 0.835 1.152 0.077 15.216% 1.639%
17 223 21 0.018 7.625 1.166 0.101 1.635 0.329 0.467 1.205 0.142 14.820% 1.708%
18 219 21 0.019 6.590 1.171 0.101 1.645 0.338 0.464 1.196 0.146 14.808% 1.805%
19 214 21 0.017 7.056 1.115 0.101 1.687 0.329 0.466 1.202 0.145 15.198% 1.602%
20 207 21 0.019 6.958 1.127 0.100 1.677 0.325 0.465 1.199 0.149 15.183% 1.610%
21 223 21 0.020 8.120 1.162 0.051 1.708 0.335 0.462 1.190 0.142 14.606% 1.815%
22 241 21 0.020 10.274 1.206 0.050 1.683 0.329 0.462 1.190 0.142 15.076% 1.680%
23 215 21 0.018 8.144 1.195 0.050 1.685 0.339 0.467 1.204 0.150 14.862% 1.949%
24 224 21 0.019 9.036 1.166 0.051 1.692 0.340 0.461 1.189 0.147 14.881% 1.786%
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