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Abstract

In this article, a statistical study on transverse permeability of random fibrous medium

is performed. For that purpose, numerous random numerical microstructures are gen-

erated with constant or randomly varying fibre radii. Their statistical representativity

with respect to experimental data is first briefly discussed. Flow simulations are then

performed on these digital microstructures to retrieve their full transverse permeability

tensor. The representative volume element (RVE) size is determined by studying conver-

gence of permeability distribution when domain size increases. This allows to characterise

the medium isotropy as well as the impact of geometrical randomness on permeability.

The approach also integrates Gaussian process regression, that is a Bayesian machine-

learning model, to consider variability within interpolation in the proposed permeability

predictive model. In addition, this paper considers the impact of fluid slip at liquid/fibre

interface on permeability for random fibrous media. An analytical expression is proposed

to describe precisely the transition from a no-slip to a free-slip regime. This allows us to

propose a probabilistic model that links permeability to both the fibre volume ratio and

slip length. This finally yields two bounds for transverse permeability of fibrous media:

a first related to statistical scattering and a second purely linked to fluid slip.

Keywords: Numerical permeability, Statistics, Fluid slip, Gaussian process regression

Preprint submitted to International Journal of Multiphase Flow May 28, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0301932221001956
Manuscript_9131e9bb3c74edf2428d1264bbe0320d

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0301932221001956
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0301932221001956


1. Introduction

Permeability is a key notion for describing flows within porous materials. As a con-

sequence, this tensorial characteristic has been extensively studied in numerous scientific

communities [21, 82] including modelling of manufacturing processes such as Liquid Com-

posite Moulding (LCM) for long carbon fibre reinforced polymers wherein a viscous fluid5

impregnates fibrous preforms [13, 30, 62, 76].

Classically, flows in porous media can be studied at various scales. Experimental ap-

proaches to describe permeability of fibrous materials operate at a macroscopic scale (i.e.

the laboratory scale). They were found to suffer from a lack of reproducibility as well as

a high sensitivity to laboratories settings [5, 79]. On the contrary, analytical and compu-10

tational approaches consist in local studies of flows across fibrous microstructures. Both

local and macroscopic descriptions can be connected through an upscaling procedure

from which permeability naturally shows up. Considering local scale approaches, ana-

lytical models that are convenient to use [11, 14, 29] lean on geometrical simplifications

that do not allow to consider realistic systems with intrinsic variabilities (e.g. random15

fibre radius, random fibre placement,...) as observed in manufacturing processes. These

limitations lead researchers to develop numerical strategies to characterise permeabil-

ity more accurately [2, 20, 58]. This approach first requires virtual geometries. Those

can be obtained from digitisation of real-world materials thanks to recent tomography

techniques [3, 89] or in a pure numerical way with textile modelling software [26, 50] or20

random non-overlapping disk algorithms. The latter will be detailed in Section 2.1. This

work is primarily oriented towards modelling the manufacturing processes of composite

materials, although these results can be relevant wherever a viscous flow in a fibrous

medium is observed: textile, biomechanics,... In this study, no direct comparison with

experimental permeability measurements will be carried out. However, comparisons with25

other numerical results — which has been found to be consistent with the experiment —

will be performed.

From those fibrous geometries, mass (Eq.1) and momentum (Eq.2) local conservation

equations for a newtonian incompressible viscous fluid (i.e. Stokes equations) are classi-
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cally solved to first represent the fluid flow across the fibrous arrangements and then to

assess their permeability. This is done through various numerical methods: Finite Ele-

ment Method (FEM) [73], Lattice Boltzman Method (LBM) [35], Fast Fourier Transform

(FFT) [1, 83],...

∇ · v = 0 (1)

µ∆v −∇p = 0 (2)

where v is the fluid velocity, p the fluid pressure and µ the fluid viscosity. As indicated

previously, those local equations can be upscaled to get a macroscopic description of the

fluid flow within the porous structure. This corresponds to Darcy law [6, 21, 82]:

∇ · vD = 0 (3)

vD = − 1

µ
K ·∇pD (4)

where vD (resp. pD) is the upscaled velocity (resp. pressure) and K the second-order

permeability tensor. This permeability term naturally comes from the upscaling proce-

dure: it encompasses all the effects leading to the fluid energy loss, i.e. fluid viscosity30

effects and its contact with fibres [82]. Hence both contributions of flow channels formed

between fibres and fluid/fibres interaction should be investigated. It has been also high-

lighted that permeability may be affected by thermal effects or by the type of fluid under

consideration [70]: those contributions will be neglected here. In practice, solution fields

at the local scale are integrated to then compute permeability from Eq.4 (Section 2.3).35

Permeability tensor K is generally represented by a diagonal matrix since fluid is as-

sumed to flow along the principal directions of the medium under consideration. This

assumption is however rarely verified [56] as computing off-diagonal components of the

permeability tensor may be challenging. In this paper, geometrical periodicity allows to

provide periodic boundary conditions leading to a direct computation of the off-diagonal40

components. The importance of those terms will be discussed.

That upscaling procedure must be performed on a representative volume element

(RVE) that is the smallest geometry for which permeability becomes independent of the
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domain size [9, 32, 33, 36, 72, 75]. Numerical permeability of fibrous media is then gen-

erally studied from single deterministic unit cells that are supposed to be representative45

of real-world materials [30, 60]. Yet, fibrous materials display a natural geometrical com-

plexity that justifies a statistical modelling [17, 86, 87, 90]. As a consequence, for a given

fibre volume fraction Vf value, permeability tensor of numerous random RVEs should be

computed to provide an accurate characterisation of the property. This is done in this

paper where the tensors computed from microstructures are regarded as realisations of a50

permeability continuous random variable. Only few papers can be found with a similar

methodology for permeability study of fibrous materials [8, 90]. This approach differs

from [74, 75] where a statistical RVE (SRVE) is defined as a geometry sufficiently large

to capture both physical and geometrical information.

As noticed previously, permeability can be related to fluid/fibres interaction. As a55

consequence, the condition provided at the liquid/solid interface has a direct impact on

the permeability. As carbon fibre radius is around 3.3 µm [77] and industrial requirements

for Vf may be close to 0.6, flow channels between fibres may become submicrometric. At

this scale, the usual no-slip condition at the liquid/solid interface should be reconsidered

to take fluid slip into account [59, 71, 91]. Fluid slip is an active research topic in various60

communities [16, 46, 47, 66, 68]. It can be explained by surface roughness effects as well

as chemical fluid/solid affinity [41]. This is in line with industrial observations according

to which permeability measurements may be sensitive to carbon fibres surface treatment

[25]. Fluid slip consideration is also convenient when it comes to modelling moving fluid

front in transient multiphase flows as it allows to alleviate Huh-Scriven paradox [39].65

Details on fluid slip origins and terminologies can be found in [81].

Mathematically, fluid slip is generally expressed through Navier slip condition [57] at

the liquid/solid interface ΓLS . It relates tangential fluid velocity to shear components of

fluid Cauchy stress tensor σ (Fig.1):

v · t = −`s
µ
t · σ · n on ΓLS (5)

where `s is the slip length, and t (resp. n) is a unit tangential (resp. normal) vector

to ΓLS . This generalises no-slip (`s → 0) and free-slip conditions (`s → ∞) [78, 80].

Many articles can be found on experimental or numerical determination of slip length

for various fluid/solid couples [42, 43, 63]. It is generally found to span from 10−9m70
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to 10−6m. Maali et al. [51] estimate the slip length for water/graphite couple to be

8 ± 2 nm. It can be then remarked that those orders of magnitude can be comparable

to the characteristic size of flow channels within our microstructures. Slip length will be

considered here as a constant parameter even if its dependencies to other characteristics

of the flow might be complex and still on study [4, 41, 52, 66]. However, as slip length75

mainly acts as an intrinsic property of the fluid/solid couple, it seems appropriate to

consider it as independent of the imposed pressure drop — at least for a newtonian

fluid. The influence of slip length value on permeability of idealised geometries has been

investigated in few articles [7, 27, 28, 45]. One of the novelties of this paper is to consider

fluid slip on numerous RVEs of fibrous media on top of other sources of variability.80

We will first describe the microstructure generation method and its representativity

(Section 2.1). Full permeability tensor (Section 2.3) of numerous generated geometries

will be then computed from finite element solving (Section 2.2) of Stokes equation. This

will allow to determine the domain size to reach a RVE (Section 3.1). Then isotropy of the

RVEs will be discussed (Section 3.2). The influence of fibres centre randomness (Section85

3.3) and radius variability (Section 3.4) on permeability will be also detailed. Gaussian

process regression (Section 2.4) will be integrated into the statistical analysis. In the

end, fluid slip will be considered and its influence on permeability will be characterised

(Section 3.5). A probabilistic model that links permeability to Vf and slip length will

be finally proposed. This will give boundings to stochastic permeability. Those results90

will be then discussed (Section 4): comments will be first made about the variability

of permeability. Then the influence of fluid slip on permeability — with slip lengths

consistent with available experimental measurements — will be discussed.

2. Materials and methods

2.1. Microstructure generation algorithm and representativity95

Various numerical methods for microstructure generation can be found in the liter-

ature [55, 84, 85]. Those consist in non-overlapping disk placement methods that are

finally supposed to be representative of the transverse section of long fibre composite

materials. The most straightforward algorithm is named hard-core method and consists

in placing fibre centers totally randomly before performing a non-overlapping test of100
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2D cross-sections [12]. This method is highly limited by jamming effect that prevents

from reaching high Vf . The algorithm can be adapted to reduce this effect and provide

geometrical periodicity [55].

Another technique consists in starting from an initial configuration that is subse-

quently perturbated randomly by picking a random displacement vector for each fibre105

[15, 34, 84]. Potential-based methods that consider fibres as a set of interacting particles

seem to be the most efficient to reach high Vf [40, 49]. In spite of the efficiency of the

presented algorithms, the question of representativity still remains. This is regularly as-

sessed through Complete Spatial Randomness (CSR) characterisation thanks to related

tools such as Ripley’s function [65]. However, such a consideration does not lie on experi-110

mental observations. In addition, total randomness cannot be observed at high Vf due to

the non-overlapping condition. Indeed, it entails forbidden positions for fibre placement

that result in a biased CSR: this is comparable to an interaction potential between fibres

[8, 31, 33]. To overcome this issue, generation algorithms that are directly based on

experimental parameters distribution can be also proposed [77]. Despite the representa-115

tivity of these approaches, it has been finally shown in [87] that fibrous geometries and

permeability results slightly depend on generation algorithm, at least for moderate Vf

values. At last, only few algorithms take radius randomness into account [49, 54] while

it may entail an additional source of variability. Its influence will be investigated in this

paper.120

In the context of this study, the requirements related to the generation method were

multiple. First, the algorithm should reach Vf values around 0.6 to be relevant for in-

dustrial applications. Then the generated microstructures should display a variability

Cr of fibre radius r that is set at 10% in this work. Fibre radius should follow a normal

distribution: r ∼ N (r̄, Cr r̄) = N (r̄, 0.1r̄). The microstructures should also be period-125

ical to provide periodic boundary conditions. Indeed, this allows to be consistent with

rigourous homogeneisation procedures and to reach a RVE for smaller domain size since

edge effects are prevented [88]. At last, the method should be computationnally efficient

enough to generate numerous microstructures.

For all these reasons, this work focus on a simple method that generates microstruc-

tures within a square domain of size L2 by perturbating an initally dense quadratic
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packing (Fig.2). It is based on an algorithm proposed in [34] with some differences.

Fibre centres are first placed according to a quadratic packing of maximum compacity.

Then random radii are picked in a Gaussian law N (r̄, Cr r̄) and a non-overlapping con-

dition is enforced. The value of r̄ can be directly computed from both domain size and

Vf :

r̄ = L

√
Vf
Nπ

(6)

where N is the number of fibre contained inside the domain that is explicitly calculated130

from Vf and L considering a quadratic packing. Then a random displacement vector is

applied on each fibre. This displacement is kept if it does not lead to fibre overlapping or

to a distance between fibres so small that it could cause mesh refinement issues: it is here

chosen to reject distances inferior to 0.07r̄. This is repeated Np times. That step also

provides geometrical periodicity as a fibre going out of the domain reenters on the oppo-135

site side. The algorithm is also convenient to generate microstructures with a constant

fibre radius by taking Cr � 1. An example of numerically generated microstructure with

varying radius can be observed in Fig.3.

Other generation algorithms have also been tested. It has been remarked that the

targeted fibre radius variance could be difficult to retrieve, especially for high Vf values.140

This is directly related to the non-overlapping rejecting test. The generation algorithm

described previously has been found to be suitable to limit this problem. Indeed, for all

the Vf considered here, a Gaussian radius variability with Cr ∼ 10% can be retrieved.

Through this algorithm, the obtained Vf value may slightly differ from the targetedone,

especially for Vf > 0.55. Indeed, a limit is observed for Vf ∼ 0.62: higher Vf values145

cannot be reached. Even if the maximum compacity for a quadratic packing is close

to 0.78, a compromise between obtaining very high Vf values and mesh issues has to

be achieved. Indeed, for very high Vf values, flow channels become so narrow that

ensuring a sufficient number of finite elements to represent the flow profile correctly may

be complex. It should be remarked that this issue could be alleviated by using anisotropic150

mesh adaptation techniques [23] that would help to reach higher Vf values.

Representativity of the generated microstructures should be next assessed. The CSR

criterion is here rejected due to the arguments developed previously : the non-overlapping

condition makes irrelevant complete spatial randomness as it acts as an interaction po-
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tential between fibres. We choose to compare first and second nearest neighbour (NN)155

distance distributions of the generated microstructures to experimental ones. Further

microstructural parameters are commonly used in literature : Delaunay triangulation

[87], Voronoi tesselation characteristics [67],... However, first and second NN distances

are one of the most straightforward tools to characterise fibrous microstructures on a

first approach. These morphological parameters measure short-range interactions of the160

particules.

Experimental microstructure analyses are so rare that we struggled to find some well

described data for comparing with our virtual microstructures. In Fig.4, we compared

our NN distributions to results from Vaughan and McCarthy [77] that consider experi-

mental distributions of carbon fibres for high performance composite materials with high165

Vf value. First NN distribution can be reasonably modeled with a Gaussian law, while

2nd NN distribution fit a nearly symmetric lognormal law. It can observed that both 1st

NN distributions are centred on close values while differences can been seen for the 2nd

NN. Furthermore, variance is significatly higher for numerically generated microstruc-

tures. However, it should be remarked that the experimental distribution relies on a170

single microstructure while several fibrous geometries should be analysed to retrieve a

more representative distribution. Further comparisons should be carried out when sup-

plementary documented data are made available. Nonetheless, mean NN distances of our

generated microstructures are rather close to experimental ones which give us confidence

on the relevance of representativity of the generation algorithm. By comparing 1st NN175

distribution for different numbers of perturbations Np, it can be seen in Fig.5 that dis-

tributions become stable from Np = 1000. In a similar fashion, it has been observed that

permeability distributions are nearly unchanged from 1000 perturbations, for a same set

of input parameters. For the rest of the study, Np = 5000 will be chosen.

2.2. Numerical strategy180

Stokes equations are solved on fluid domain ΩL (Fig.6) using a stabilised FEM ap-

proach implemented in Z-Set software 1 which has been widely presented in former articles

1http://www.zset-software.com/
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[2, 18, 61]. An Algebraic Sub-Grid Scale (ASGS) [19, 38] stabilisation scheme is imple-

mented to circumvent Ladyzhenskaya–Babuška–Brezzi [10] condition with a piecewise

linear approximation of both velocity and pressure fields.185

Accounting for Navier slip in the weak formulation can be now briefly described,

further details are presented in [18]. The weak formulation of the problem is obtained

by multiplying Stokes equations by appropriate test functions and then intergrating by

parts. This leads to a surface integral term T on the boundaries of the fluid domain, ∂ΩL.

For single-phase flow, the integral is decomposed into two terms: a Neumann boundary

condition term on RVE boundaries (i.e. the imposed stress vector on RVE boundaries),

TΓN
, and a complementary term on the fibre contours, TΓLS

, that naturally reveals the

Navier slip condition:

T = TΓN
+ TΓLS

(7)

with:

TΓLS
≡

∫
ΓLS

σ · n · v? dΓ

=

∫
ΓLS

− µ
`s
v · v? dΓ

(8)

by considering Eq.5 and where v? is a test function with suitable properties.

Computational times strongly depend on both domain size and Vf . For Vf = 0.5 and

L/r̄ = 60, the mesh around 106 nodes leading to 3 × 106 degrees of freedom (two per

nodes for velocity and one for pressure) (Fig.7). The number of nodes has been optimised

using an adaptative mesh: 8 points are regurlarly placed on the contour of each fibre.190

For each point, the first NN inter-fibre distance is computed to define a mesh size map

(Fig.7). This finally permits to retrieve the minimum number of elements (i.e. 8 elements

from our tests) within each flow channel between fibres to ensure a good representation

of the parabolic Poiseuille-like flow. The full computation chain, from microstructure

generation to flow simulations, has been performed on a desktop computer (CPU: i5-195

8500, 6×3.0 GHz ; RAM: 16 Gb) and lasts approximately 10 minutes with a direct solver

for the finite element linear system: around 80% of the computation time is taken by

the resolution of the FEM problem. Computational times are thus reasonable enough to

generate data massively.
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2.3. Boundary conditions and permeability tensor computation200

The permeability tensor K (Eq.4) is considered as a continuous random variable:

each permeability tensor k computed from a generated microstructure is regarded as a

realisation of K. The computation of k is detailed in the following.

Considering a given microstructure, constant pressures p1 and p2 are applied on

opposite boundaries entailing a pressure difference ∆p = p2 − p1 (Fig.6). Pressure is

weakly imposed through the Cauchy stress tensor: n · σ · n = −p1 or −p2 on ΓN .

Note that for this linear approach the computed permeability does not depend on the

pressure differential. Since the mesh is periodic, a periodic velocity is easily prescribed

on perpendicular edges (Fig.6):

v(x, 0) = v(x, L)

v(0, y) = v(L, y)

 for a pressure drop along

 x direction

y direction
(9)

This allows the full permeability tensor k to be computed from outgoing flows (Fig.8).

Let’s assume that a pressure difference ∆jp is imposed over a length Lj , along the j

direction characterised by a unit vector ej . The upscaled pressure gradient is usually

linearised: ∇pD = (∆jp/Lj) ej . The upscaled velocity component vDi
is generally

defined as vDi = Qi/Ai where Qi =

∫
Ai

v · ei dAi is the flow-rate through cross-section

Ai. Darcy law can thus be rewritten (Eq.4) so that permeability can be computed:

kij = −vDi

µLj

∆jp
= −Qi

Ai

µLj

∆jp
(10)

It is important to notice that the computation of off-diagonal components of permeability

tensor from perpendicular outgoing flow is allowed by periodic boundary conditions. A205

comparable method for permeability calculation can be found in [56]. As a general

notation, the overscript bar (e.g. k̄) will denote for the rest of the paper the empirical

mean computed from realisations.

2.4. Gaussian process regression

Several kinds of variability affect the permeability values in this study. As a conse-210

quence, it is relevant to consider the resulting permeability through a regression method

that naturally takes into account those variabilities and proposes an uncertainty estima-

tion for interpolation. Moreover, as computation may be expensive, the regression should
10



be efficient even for small databases. For all these reasons, a Bayesian machine-learning

approach, namely Gaussian Process Regression (GPR), is selected here [64]. The basics215

of GPR are now detailed. GPR is equivalent to kriging [44, 48, 53] even if both approches

are different: GPR uses a Bayesian framework while kriging is based on the best linear

unbiased predictor.

A dataset D is considered :

D =
{

(X1, Y1), ..., (XN , YN )
}

=
{
XD,YD

}
(11)

From D, the image Y ∗ of an new input X∗ /∈ D through the unknown function to model

f is sought. For sake of simplicity, the case f : R→ R is presented here even though the

approach can be generalised for higher dimension spaces. GPR is based on a probabilistic

interpolation of data: f is seen as a random variable. In other terms, the probability of

a model knowing the dataset D is considered. The latter can be rewritten using Bayes

formula. A hypothesis on the prior probability distribution should be then proposed.

GPR assumes that the model probability follows a Gaussian process:

∀fX1,...,Xn
=
(
f(X1), ..., f(Xn)

)
, fX1,...,Xn

∼ N (0,C) (12)

where C corresponds to the covariance matrix that can be expressed with a kernel func-

tion c according to Mercer’s theorem. The choice of the kernel function makes an assump-

tion on the regularity of the function to model. In the context of this study, variations

are supposed to be rather smooth leading to consider a common radial basis function:

Cij = c(Xi, Xj) = σ exp

(
− (Xi −Xj)

2

2λ2

)
(13)

where σ and λ are two hyper-parameters. The previous assumptions on the Gaussian be-

haviour allows to use related powerful properties. They especially state that Y ∗ knowing

D and X∗ (i.e. the new wanted output knowing the related new input and the dataset)

follows a Gaussian trend with explicit formula for parameters:

p(Y ∗|D,X∗) ∼ N (µ∗,Σ∗) (14)

with:

µ∗ = c(X∗,XD)T ·
(
c(XD,XD) + αI

)−1 · Y (15)
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and

Σ∗ = c(X∗, X∗)− c(X∗,XD)T ·
(
c(XD,XD)−1 + αI

)
· c(X∗,XD) (16)

with c(X∗,XD) =
(
c(X∗, X1), ..., c(X∗, XN )

)
and c(XD,XD) =

(
c(Xi, Xj)

)
ij

. Eq.15

should be seen as the most probable output for X∗ while Eq.16 is the related uncertainty220

on interpolation. This is illustrated in Fig.9 as an example where the dataset contains

only six (Xi, Yi) couples: Eq.15 corresponds to the blue continuous line while Eq.16

corresponds to the light blue shaded zone. A noisy GPR formulation is considered here

(Eq.15, 16): a diagonal perturbation term αI is added. Such a term has a double interest.

First, it adds a flexibility on dataset points. This prevents from overfitting but also allows225

taking dataset variability into account (Fig.9, 10). Second, the noisy formulation has also

a purely numerical role. Indeed, Eq.16 relies on inverting a matrix that can be poorly

conditionned due to the use of a quadratic exponential function (Eq.13). Noise terms

thus make inversion stable. In the context of this work, we select the noise intensity α

to have a physical meaning, it will be equal to the variability observed at each dataset230

point. At last, it should be remarked that the derivation of hyper-parameters σ and λ

have not been detailed yet. Those are classicaly computed afterwards by maximisation

of the marginal likelihood function.

3. Results

3.1. RVE determination235

The first step of our approach consists in determining the RVE size to ensure the valid-

ity of the upscaling process. Classicaly, permeability is computed for increasing domain

size. The minimum length to retrieve a reasonable convergence towards an asymptotical

value corresponds to the RVE size `RV E . The convergence pattern is characterised by

a clear convergence of mean value as well as a decrease of the variability [24]: the do-240

main becomes large enough to capture the statistical information of the medium. The

value of `RV E clearly depends on Vf . It can be expected that `RV E diminishes when

Vf increases as geometrical arrangement tends towards a hexagonal pattern that can be

described with a well-known unit cell [29]. In addition, `RV E can be related to the type

of boundary condition that are applied. Indeed, periodic boundary conditions are known245

to help convergence as it gets rid of edge effects since the space is toroidal [88].
12



Permeability tensor is thus computed for various domain size ` at different Vf values.

Domain size is here expressed as a dimensionless quantity :

` =
L

r̄
(17)

A no-slip condition is first considered at fluid-solid interface as Navier slip is supposed

not to have a significant impact on RVE size. For each (`, Vf ) couple, 30 microstructures

are considered. This allows to determine the RVE related to a given Vf value. We

have considered Vf ∈ {0.3, 0.4, 0.5, 0.6} to describe situations from highly porous cases250

to the ones observed in the manufacture of high performance composite materials. An

exemple of convergence plot for permeability of diagonal terms is represented in Fig.11

for both constant and random Gaussian radii. As indicated earlier, microstructures with

a constant radius are obtained by setting a coefficient of variability for the fibre radius

close to zero (i.e. Cr � 1).255

Those curves follow the expected trend as mean values converge towards a constant

value and variability decreases. When convergence is reached for diagonal terms, off-

diagonal components are found to be two orders of magnitude lower than diagonal ones.

It has thus been chosen to neglect them. Those results follow the conclusions of [56]. It

should be reported that, for a given microstructure, discrepancies are observed between260

off-diagonal terms whereas permeability tensor is generally considered as symmetric.

Those differences can be attributed to numerical artefacts or permeability computing

method. This is not really problematic as far as the weight of those terms is irrelevant.

The value of `RV E is now estimated. For all Vf values, the coefficient of variability

Ck (i.e. the ratio between the standard deviation and the mean value) decreases when265

` increases until being stable at around 3%. Similar observations can be found in [87]

for constant fibre radii. Based on this observation, we first choose to define `RV E as

the first value from which Ck becomes lower than 5%. Estimations of `RV E from this

criterion are proposed in Table 1. As convergence patterns are similar for both diagonal

terms, a single `RV E is indicated for both kxx and kyy. Results follow the expectations as270

`RV E decreases when Vf value increases. It is also relevant to notice that, for a same Vf

value, `RV E is higher for a random radius. Indeed, radius variability brings an additional

statistical information: the RVE is then larger in order to grasp it.

However, the convergence criterion may be limited. Indeed, even when dispersion is
13



stable, distributions and especially mean values can be locally sensitive to the domain275

size. Broadly speaking, giving a precise value of `RV E is not necessarily straightforward

and relevant due to the stochastic character of the study. To circumvent this problem, it

has been chosen to consider `RV E ∼ 100 for all Vf . Indeed, this value seems to be large

enough to provide convergence in any case. It is also rigourously consistent with the

scale separation hypothesis which is the basement of homogeneisation procedures [82].280

This choice is critical in terms of computation effort.

3.2. RVEs isotropy

From Fig.11, it can be noticed that kxx and kyy distributions at convergence are very

close: this is more clearly illustrated in Fig.12. Both seem to follow a Gaussian trend

[8, 90]. A Kolmogorov-Smirnov statistical hypothesis test [37] can be performed to jus-

tify rigourously the similarity of the distributions. This test is based on the comparison

between the cumulative distribution function of both samples. The associated null hy-

pothesis supposes an equality between both cumulative distribution fonction. A risk of

5% has been chosen. For all Vf values, p-values are retrieved : all are superior to 0.53.

As they are significantly higher than the risk, this leads to conserve the null hypothesis:

Kxx
d
= Kyy (18)

where
d
= means ”equal in distribution”. Considering that the perturbation step of gen-

eration algorithm is isotropic, it can be definitively stated that:

Kxx = Kyy (19)

This means that microstructures are statistically isotropic in the plane (ex, ey) which is

consistent with both ergodicity hypothesis and the generation method. Similar observa-

tions have been made in [87]. This also explains the irrelevance of off-diagonal terms for285

RVEs. In the following, permeability will thus be considered as a scalar. In a similar

fashion, k will denote realisation of a random permeability variable K.

3.3. Variability related to fibre centre randomness

We first describe the influence of fibre centre location, induced by the proposed gen-

eration method, on permeability. For that purpose, permeability for a constant radius290
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can be compared with various analytical robust models. Those models generally consider

unit cells for which fibre centres are placed periodically allowing geometrical simplifica-

tions. Gebart permeabilities [29] have thus been considered. A comparison is observed in

Fig.13. It can be seen that analytical models do not manage to model the data properly

for the Vf values considered. Indeed, geometrical randomness decreases considerably295

the permeability values. This could have been inferred since the flow channels formed

between fibres become more tortuous than for regular packings. The difference between

the results from analytical models and those obtained from random microstructures can

be measured by studying the mean value, ε̄, of all relative differences εi. Mean relative

differences between data mean values and Gebart permeabilities (Table 2) are both signif-300

icantly high. It can be remarked that ε̄ is lower for Gebart’s quadratic model. Moreover,

it can be seen in Fig.13 that this model is more efficient than the hexagonal one for high

Vf value. This is explained by the selected generation algorithm: for high Vf values, the

memory of the initial packing still remains. Nevertheless, with little computional efforts,

the geometrical stochastic character of the permeability can be highlighted.305

The results are now compared to permeability values from similar studies that has

been shown to be in agreement with experimental data [8, 87]. The microstructures

of these works also show a constant fibre radius while the generation algorithms are

different. Results are presented in Fig.14. A good agreement is globally observed as it

can be confirmed by computing ε̄. It should be noted that ε̄ is computed from mean

values. As a result, it does not take into account the observed permeability distribution.

For instance, the mean relative difference for [8] seems to be high while both distributions

(Fig.14) seem to be consistent. It should be remarked that results from [8] show a

high dispersion (∼ 15%) that may question the representativity of the geometries in

consideration. Yet, all the results show a clear linear trend between the logarithm of

mean permeability and Vf as it is confirmed by the GPR and its uncertainty (Fig.14).

The mean relative difference between data mean values and a linear model is close to

0.5%. As a consequence, for the range of Vf values considered (i.e. Vf ∈ [0.3, 0.6]), it

can be assumed:

log

(
k̄

r̄2

)
∝ Vf (20)

As noticed previously, for a given Vf , permeability distribution follows a Gaussian
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law with a low coefficient of variability. Values of Ck are presented in Table 3 for various

Vf values. The interest of considering a coefficient of variability rather than a standard

deviation is to reason with a dimensionless quantity that can be compared for different

Vf , which is necessary since permeability spans several orders of magnitude. It can be

seen from Table 3 that this variability is globally stable w.r.t. to Vf and close to 3%.

This statistical variability can be integrated into the model by multiplying the relation

between permeability and fibre volume ratio (Eq.20) by a random variable γ ∼ N (1, 3%):

K

r̄2
= γ exp (c1 + c2Vf ) (21)

where c1 and c2 are the coefficients from linear regression (Eq.20) (c1 ≈ 1.18, c2 ≈ −11.8).

This allows a probabilistic modelling of the permeability behaviour, involving an explicit

random variable. This finally leads to a first statistical bounding for permeability of

random fibrous media with circular cross-sections.

It should be noticed from Fig.14 that all the results match well for high porosity310

values. This shows that the generation algorithms are equivalent for low Vf . Indeed, few

fibres are observed within the RVEs and consequently, the non-overlapping condition is

no more critical. At the opposite, when Vf value is high, the specificities of the selected

generation algorithms may affect more directly permeability distributions [87]. However,

the overall good agreement between the presented models gives us confidence about the315

universality of coefficients c1 and c2 in similar cases.

3.4. Variability related to radius randomness

The influence of radius randomness on permeability is here investigated. Most of

the studies in literature are performed with constant radius which is not consistent with

experimental observations. Yet, radius randomness changes flow channel width and tor-320

tuosity: it can be expected to alter permeability. As introduced earlier, fibre radii are

supposed to follow a normal law with of 10% variability. Permeability values are com-

puted from numerous RVE for constant and random radius. Both histograms are com-

pared in Fig.15. The fibre radius variability does not seem to have a significant impact

on permeability distribution. This observation can be confirmed with a Kolmogorov-325

Smirnov test. For all Vf values considered, each p-value is higher than 20% which leads

16



to conserve the null hypothesis according to which both samples follow the same dis-

tribution. This allows to show that fibre radius variability does not affect significantly

permeability. This can be explained as the radii follow a Gaussian law centered in r̄.

As a result, even if the flow channels width is altered, overall contribution equilibrates330

which leads to an unsignificant global effect. Such an observation may thus justify the

consideration of a constant fibre radius which has several important implications. First,

it makes possible to consider a simpler generation algorithm with smaller computation

domains (Section 3.1). Then, Eq.21 remains valid for random radii with a variability of

10%. For a higher radius variability (e.g. glass fibres) or for non-circular cross-sections335

(e.g. flax fibres), those results should be reconsidered.

3.5. Variability related to slip length consideration

We now consider Navier slip (Eq.5) at the fluid-solid interface. As explained in

introduction, both analytical and computational upscaling procedures usually assume a

no-slip condition while fibre treatment has been experimentally shown to alter fluid flow

within the porous medium [25]. For a given microstructure, fluid slip is expected to

increase permeability as it gets easier for the liquid to flow across the porous medium.

This can be simply highlighted considering a Poiseuille flow between two planes separated

by a distance a (Fig.16). Permeability κ can computed analytically by solving Stokes

equations, integrating velocity field and then identifying with Darcy law:

κ =
a2

12
+
a`s
2

(22)

When slip length vanishes, Eq.22 corresponds to no-slip permeability. In a free-slip sce-

nario, permeability becomes infinite. Despite the simplicity of this example, it allows to

underline the significant importance of slip length on permeability. As a consequence,340

permeability cannot be only considered as an intrinsic geometrical property like it is

quasi-systematically assumed in literature. On the contrary, permeability should be re-

lated to fluid shear that has two origins: the tortuosity of flow channels (i.e. a geometrical

contribution) and the condition at liquid/solid interface. This especially explains why

permeability cannot be defined in a Poiseuille flow with free-slip (Eq.22) as the fluid is345

not sheared. However, when the fluid is newtonian with a no-slip condition, the interface
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contribution does no longer induce variability and permeability can be considered as a

morphological property of the medium.

The influence of slip length on permeability is represented in Fig.17 for a given random

microstructure with random radii. Permeability computed with fluid slip Ks is bounded

between no-slip K and free-slip permeabilities Kfs as Navier slip (Eq.5) generalises both

conditions. We have considered slip length values significantly superior to the ones

encountered experimentally [42, 43] (typically 10−9 − 10−6 m) in order to capture and

characterise precisely the transition between regimes. GPR has been performed to model

the trend: the related uncertainty is relatively low. Mean value of GPR perfectly match

a sigmoid model. The following relation can thus be proposed:

Ks = K +
Kfs −K
1 + 1

2
r̄
`s

= K

[
1− 1− α

1 + 1
2

r̄
`s

]
(23)

where α = Kfs/K represents the amplitude of fluid slip phenomenon.

The influence of slip length on permeability can be now expressed for numerous350

microstructures at a given Vf value (Fig.18). This allows to integrate the statistical

variability into the study of fluid slip. It is relevant to notice in Fig.18 that microstructure

statistical variability, even with random radii, is relatively low in comparison with the

curve amplitude due to the slip effect. The coefficient of variability is globally similar for

all the `s values. Once again, GPR is performed from mean values with a noise equal355

to the variance. It also follows a sigmoid trend which confirms the validity of Eq.23. In

addition, Eq.23 seems to hold well for different Vf values without further fit parameters,

as it can be observed in Table 4. This equation can also be useful in practice to determine

slip length values as discussed in Section 4.2.

We expect the fluid slip importance to rise when fibre volume fraction gets higher as

the slip surface increases. We thus consider α as a function of Vf (Fig.19). It should be

noticed that the ratio between no-slip and free-slip permeabilities can reach a decade for

Vf of interest in high performance composites. As the relation between the logarithm of

α and Vf is linear in a first approach, we write:

log(α) = βVf (24)

where β is the slope of the linear regression (β ≈ 3.65) This relation can be injected to
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Eq.23 to get:

Ks = K

[
1− 1− exp(βVf )

1 + 1
2

r̄
`s

]
(25)

Eq.25 requires no-slip permeability K which can be retrieved numerically or experimen-

tally in practice. In the context of this work, K carries the stochastic information of the

model: it is expressed as a random variable. Its expression is directly linked to Vf as

proposed previously in Eq.21. This finally provides a general bounding of permeability

including both fluid slip and statistical variability:

Ks = r̄2γ exp (c1 + c2Vf )

[
1− 1− exp(βVf )

1 + 1
2

r̄
`s

]
(26)

It can be remarked from the mathematical expression of the sigmoid model (Eq.23)360

that the transition zone from no-slip to free-slip regime is not affected by Vf . This means

that, indepedently from Vf , the regime transition always occurs for slip lengths between

10−9m and 10−4m. Those values are close to realistic values of `s meaning that fluid slip

may affect permeability in practice (Section 4.2). Finally, permeability can be expressed

as a function of the slip length and Vf that are two independent variables. Both analytical365

(Eq.26) and GPR approaches are in very good agreement and allow a good modelling of

data. The mean relative difference between analytical model and data is about 2.35%. It

should be remarked that Eq.26 only holds for the transverse permeability in a 2D case.

Longitudinal permeability should also be considered [22, 69] to retrieve a more complete

and realistic model. Further studies should be performed to clarify this point, that is370

out of the scope of this work.

4. Discussion

4.1. On permeability variability

Variability of permeability values is now discussed. We have highlighted that common

analytical models based on geometrical simplifications cannot inherently model random375

fibrous medium permeability. As noticed before, for a given Vf value, this variability is

approximately 3% regardless of radius randomness. It seems acceptable to consider this

variability as low. This observation gives an interesting insight to studies that aim at
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finding the best correlations between permeability and various microstructural parame-

ters [54, 87]. Indeed, while Vf is the most straightforward parameter to describe a fibrous380

microstructures, it captures nearly 95% of the observed variability. This confirms that

Vf is a first-order parameter for the characterisation of fibrous media permeability as it

is generally assumed. Therefore further morphological parameters may allow to describe

the remaining variability or else to propose a better correlation with permeability than

Vf . Those observations regarding the low variability of permeability values computed385

from RVEs may also justify the use of deterministic relations. Depending on the context

of further works, this may be justified as far as RVEs are supposed to grasp the statistical

variability of a medium.

4.2. Numerical application for fluid slip influence

In the previous sections, theoretical influence of slip length on permeability has been390

examined. However, as a wide range of `s were considered, some values were consid-

erably higher than the orders of magnitude that are typically found in literature. As

a consequence, it seems relevant to study the influence of slip length for more realistic

values.

As a numerical application, we consider here r̄ = 3.5µm, Vf = 0.6, that is a typical395

value for high-performance applications and `s = 8 ± 2 nm that was experimentally es-

timated in [51] for water on a plane graphite surface, assuming that this slip length can

characterise carbon fibre/fluid interactions. The extreme values have been considered for

slip length (i.e. 6 nm and 10 nm). It should be remarked that those values do not take

surface roughness effects into account [51]: such additional effects would tend to increase400

slip length. By application of Eq.25, results presented in Table 5 are retrieved: assuming

Gaussian distributions, intervals that contain 95% of the distributions can be proposed.

This leads to a confidence interval [3.24 , 3.71]×10−14m2 for permeability. Considering

mean values, it can be seen that the relative difference w.r.t. no-slip situation is near

3%. This is comparable with statistical variability (Section 4.1). In other words, taking405

fluid slip into account or not would lead, at least, to an uncertainty as large as statistical

variability. This can justify the importance of fluid slip in real-world applications, for

example in composite materials manufacturing. This also confirms experimental obser-

vations from [25] where sizing (i.e. a chemical surface treatment of fibres) can divide
20



permeability values up to 4 times. Moreover it should be noticed that slip length of410

10−6 − 10−4 m can be found in [66]. Even if those values were back-calculated for

transient multiphase flow involving capillarity, they would lead to huge differences be-

tween permeability computed with fluid slip or no-fluid slip conditions (Table 5). This

highlights the necessity of accurate slip length value for the resin/carbon couple under

consideration in LCM processes. It should be also noticed that the difference between415

free-slip and no-slip permeabilities is close to one order of magnitude (Table 5, Fig.19).

As a consequence, the bounding of permeability related to fluid slip is particularly wide

in comparison with statistical bounds.

Finally, Eq.23 can also be useful for experimental determination of slip length from

real-world fibrous materials. Indeed, the equation does not show any tuning parameter420

for a given microstructure. Thereby, permeability K should be first measured experimen-

tally. Then, digitisation of the medium (e.g. through X-ray tomography) may allow to

estimate Kfs with numerical simulation. This may lead to retrieve the slip length from

Eq.23. Naturally, this would rely on the validity of Eq.23: further studies should be car-

ried out to show the relevance of the expression especially for other radius distributions425

or for random slip length values within a microstructure.

5. Conclusion

The main results of the study are summarised here:

• Numerous periodic fibrous microstructures have been generated numerically through

a simple and fast algorithm. The RVE size has been determined through a con-430

vergence study of permeability components. To simplify the determination of RVE

size, it has been set to meet the scale separation hypothesis.

• A statistical study has been performed using several data-related tools such as

Kolmogorov-Smirnov statistical hypothesis testing or Gaussian process regression:

those allowed to take variability into account in a response model. The permeability435

tensor can thus be reduced to a single scalar value as long as isotropy is met

statistically.
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• Two kinds of geometrical variability have been considered. Fibre center location

randomness has been shown to alter significantly permeability values, highlighting

the importance of a statistical modelling. Considering a Gaussian distribution for440

fibre radius — with a radius variability up to 10% — has been shown to have a

negligible impact on permeability.

• Permeability has been then found to follow a Gaussian distribution with a rela-

tively low coefficient of variability (∼ 3%) providing a narrow confidence interval

for permeability. This has also lead to consider Vf as a relevant morphological445

parameter for permeability characterisation as it explains on its own more than

95% of the variability.

• Fluid slip at fibre/liquid interface has been taken into account. A sigmoid transition

has been observed between no-slip and free-slip regimes. This model has been then

connected to the early statistical study to get a global equation that encompasses450

both phenomena. This has finally provided a double bounding for permeability.
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Figure 1: Fluid slip and slip length

Figure 2: Algorithm for microstructure generation
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Figure 3: A numerically generated microstructure (Vf = 0.5, r ∼ N (r̄, 0.1r̄), L/r̄ ∼ 85)

Figure 4: Nearest neighbour distance distributions normalised by r̄ (∼ 2.3 × 104 generated

microstructures,Vf = 0.59, Np > 1000)
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Figure 5: Gaussian fit of first nearest neighbour distance distribution for various Np values (Vf = 0.59)

Figure 6: Domains, equations and boundary conditions for a flow in the x direction
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Figure 7: Numerical flow simulation (velocity magnitude field, ×10−3 mm/s) and adapted mesh

Figure 8: Illustration of the permeability computation method for a pressure gradient along x direction
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Figure 9: Illustration of noiseless GPR
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Figure 10: Illustration of noisy GPR
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Figure 11: Convergence plot for diagonal terms: mean values and standard deviations (Vf = 0.4, left:

constant radius, right: random radius)
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Figure 12: Histograms of diagonal permeabilities normalised by r̄2 ((a) Vf = 0.3, (b) Vf = 0.5)
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Figure 13: Permeability normalised by r̄2 as a

function of Vf : influence of fibres center ran-

domness
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Figure 14: Permeability normalised by r̄2 as a

function of Vf : comparison with other studies
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Figure 15: Histogram of permeability normalised by r̄2 for constant and random radii ((a): Vf = 0.3,

(b): Vf = 0.5)

Figure 16: Poiseuille flow and slip length
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Figure 18: Permeability normalised by r̄2 as a function of slip length with consideration of statistical

variability (Vf = 0.3, 30 RVEs for each `s value)
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Figure 17: Permeability normalised by r̄2 as a function of slip length for a given microstructure (Vf = 0.4)
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Figure 19: Decimal logarithm of mean α as a function of Vf
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Vf = 0.3 Vf = 0.4 Vf = 0.5 Vf = 0.6

`RV E [constant radius] 80 85 75 60

`RV E [r ∼ N (r̄, 0.1r̄)] 95 90 90 70

Table 1: Estimation of `RV E for different Vf values

Gebart (hexa.) Gebart (quad.) Bodaghi et al. (2016) Yazdchi et al. (2012)

ε̄ (%) 78.4 39.9 19.4 14.4

Table 2: Mean relative difference w.r.t. mean permeability values

Vf 0.3 0.4 0.5 0.6

Ck (%) 2.6 2.6 3.0 2.9

Table 3: Coefficient of variability of permeability for different Vf values

Vf 0.3 0.4 0.5 0.6

ε̄ (%) 0.75 1.2 0.91 1.3

Table 4: Mean relative difference between data mean values and sigmoid model

No-slip `s = 6 nm `s = 10 nm `s = 1 µm `s = 100 µm Free-slip

95% of permeability distribution [3.15 , 3.55] [3.24 , 3.65] [3.30 , 3.71] [12.3 , 13.8] [27.8 , 31.2] [28.2 , 31.7]

(×10−14 m2)

Relative difference - 2.7 4.5 ∼300 >700 >700

between k̄ and mean value (%)

Table 5: Mean permeability (no-slip and realistic slip length)
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