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ABSTRACT 
 

Alarms data is a very important source of information for network operation center (NOC) 

teams to aggregate and display alarming events occurring within a network element. However, 

on a large network, a long list of alarms is generated almost continuously. Intelligent analytical 

reporting of these alarms is needed to help the NOC team to eliminate noise and focus on 

primary events. Hence, there is a need for an anomaly detection model to learn from and use 

historical alarms data to achieve this. It is also important to indicate the root cause of 

anomalies so that immediate corrective action can be taken. In this paper, we aim to design an 

anomaly detection model in the context of alarms data (categorical data) in the field of 

telecommunication and that can be used as a first step for further root cause analysis. To do 

this, we introduce a new algorithm to derive four features based on historical data and 
aggregate them to generate a final score that is optimized through supervised labels for greater 

accuracy. These four features reflect the likelihood of occurrence of events, the sequence of 

events and the importance of relatively new events not seen in the historical data. Certain 

assumptions are tested on the data using the relevant statistical tests. After validating these 

assumptions, we measure the accuracy on labelled data, revealing that the proposed algorithm 

performs with a high anomaly detection accuracy 
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1. INTRODUCTION 
 

Anomaly detection is an aspect of data mining that has been the subject of research in many 
fields, such as telecommunications, information technology and finance. 
 

There are several definitions of anomaly in the literature. Hawkins [1] defines an anomaly/outlier 

as an observation, which deviates considerably from the remaining observations, as if generated 
by a different process. Dunning and Friedman [2] state that anomaly detection involves 

modelling what is normal in order to discover what is not. In general, anomalies are events with a 

special behaviour that is dissimilar to that of normal events, and it is expected that this behaviour 
would be detected by analysing underlying data. Therefore, there is an urgent need for intelligent 

algorithms to identify such abnormal behaviour. 
 

Anomaly detection improves data quality by deleting or replacing abnormal data. However, in 

certain cases, anomalies reflect an extreme event and can provide useful new knowledge. For 
example, the detection of such anomalies can prevent material damage and encourage predictive 

maintenance in the industrial field. It also has applications in several other areas such as health 

[3], cybersecurity [4], finance [5], natural disaster [6], and telecommunication [7]. 
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Several methods have been proposed for detecting anomalies, each of which has its own strengths 
and weaknesses. Patcha and Park [8] reviewed all the known methods used for anomaly 

detection. Additionally, an overview of existing techniques covering several approaches is 

presented in [9] and [10]. 
 

Despite the large volume of literature on anomaly detection for numeric data e.g., time series, 

there is limited knowledge on the problem of abnormal behaviour in the context of categorical 

and structured textual data. 
 

In this paper, we aim to design an anomaly detection algorithm in the context of alarms data 

(categorical data) in the field of telecommunication. In other words, in a given period of time, 

each network element of a telecommunication network generates a set of Key Performance 

Indicators (KPIs) and alarms that describe its behaviour. Alarms are typically categorical data 
with different characteristics (i.e., name, description, severity of the event, start time, end time), 

triggered to indicate a certain event occurring on the network element. Based on this information, 

those intervals of time are detected that have a high probability/score of displaying abnormal 
behaviour. Alarms data is important in a real-world context when KPIs are unavailable and 

cannot be calculated or extracted. It should be noted that alarms are events that can start popping 

up on a certain network element at any time. Therefore, each alarm can be considered to be 
equivalent to a binary random variable that can appear at any time with a certain probability. 
 

Here, we propose an approach that introduces two new, innovative aspects. First, four features 

are calculated and aggregated to define events data during a certain interval of time; this includes 

the number of alarms, occurrence time, inter arrival time, transition frequency (Markovian 
model) and historical frequency. By combining this information, we compute an abnormality 

score which is, to the best of our knowledge, the first time that an anomaly detection algorithm 

has incorporated all the attributes of an event. In fact, in the majority of prior influential studies 
only a few of the previously cited attributes were considered. [11] consider just the Markovian 

component; in [12], a feature selection step is proposed prior to anomaly detection, which is a 

process that is associated with a high risk of loss of key information and requires significant 
effort for data labelling; [13] consider categorical data to be textual and vectorize it before the 

anomaly detection phase which is also associated with a high risk of loss of information. Second, 

the proposed algorithm enables users to extract local and focused information about one of the 

previously discussed features which may provide greater insight into the root cause of the 
anomaly (also known as anomaly fingerprint). 
 

In this paper, we first describe the methodology used to build the abnormality score. We then 

present an application of the algorithm and analyse the results. 
 

2. METHODOLOGY 
 

We propose a semi-parametric scoring system that reflects the different behavioural aspects of a 

component of a network during a given interval of time using alarms data generated for that 

component. These aspects are (2.1) the number of alarms, (2.2) the inter-arrival time between 
alarms, (2.3) the transition probability of two consecutive alarms, and (2.4) the historical 

frequency of an alarm. The calculation of the final score is demonstrated in Subsection 2.5 and 

the optimization of the model weights is shown in Subsection 2.6. Because alarms are generated 
from each network component, of which there are different types, we group these components by 

type when drawing inferences from the data to reduce volatility and heterogeneity in the 

calculated statistics. 
 

 



Computer Science & Information Technology (CS & IT)                                        105 

2.1. Number of Alarms 
 

It is a common practice in parametric statistics to assume a Poisson distribution while modelling 

the number of occurrences of a certain event during a fixed period. Therefore, under this 

assumption, we begin by estimating the rate parameter 𝜆 of the Poisson distribution by 

calculating the arithmetic average of the number of alarms across all the intervals for each 

different component type of the network. Therefore, if we have 𝐿 different types of components 

in the network, 𝐿 different rate parameters 𝜆1 ,… , 𝜆𝐿 are estimated. 
 

Now, let 𝑁𝑙 ,𝑙 = 1, …, 𝐿 denote the random variables (r.v.) indicating the number of alarms 

generated by a component of type 𝑙∈ {1, … , 𝐿} over an interval of time. Based on the previous 

assumption, 𝑁𝑙 follows a Poisson distribution with rate parameter 𝜆𝑙 . Note that 𝔼[𝑁𝑙 ] = 𝜆𝑙 and it 
can easily be shown that the proposed estimator is a minimum variance unbiased estimator 

(MVUE) of 𝜆. Hence, if 𝑛 denotes the observed number of alarms in a fixed interval for a 

component of type 𝑙, the associated probability can be computed as shown in Equation (1). 
 

 
 

Hence, in order to standardize this probability and transform it into a score that reflects the 

number of alarms, and the fact that a higher-than-average score indicates a higher probability of 

abnormal behaviour, 𝑆 1 𝑙 can be defined as: 
 

 
 

where 𝑖𝑛𝑡(. ) denotes the integer part of a real number. Then, a value of 𝑆 1 𝑙 close to one implies 

that the number of alarms indicates abnormal behaviour in the specified interval. Note that 𝑖𝑛𝑡(𝜆𝑙 
) represents the mode of a Poisson distribution of parameter 𝜆𝑙 . 
 

2.2. Inter-Arrival Time 
 

Using the same logic, we consider the intervals of time during which at least two alarms were 

detected for each type of component 𝐿. We also define the r.v.𝑌𝑙 representing the time between 
two consecutive alarms that occurred within the same interval of time. It is common to model 

such r.v. by an exponential distribution with rate parameter 𝜇𝑙 , which is estimated by calculating 

the inverse of the arithmetic average of the time between two consecutive alarms during all the 
intervals for each different component type of the network. Note that under the previous 

assumption, 𝔼[𝑌𝑙 ] = 1 𝜇𝑙 ⁄ . Hence, if the number of alarms during an interval for a component of 

type 𝑙∈ {1, … ,𝐿} is 𝑛 ≥ 2, an associated probability can be computed as shown in Equation (3). 
 

 
 

where 𝑦𝑗 ,𝑗 = 1,… , 𝑛 − 1 denotes the time between alarms 𝑗 and 𝑗 + 1. Similarly, this probability 

can be standardized and transformed into a score to reflect that alarms occurring consecutively 
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within a very short span of time are more likely to indicate abnormal behaviour, as shown in 
Equation (4). 
 

 
 

Here, a value of 𝑆 2
𝑙 close to one implies that the time between consecutive alarms indicates 

abnormal behaviour in the specified interval. 
 

2.3.Transition Probability 
 

In the same context as that of the inter-arrival time score, and based on all the observed alarms 

during all the intervals for a component of type 𝑙, we define the state space of alarms as 𝐸𝑙 = {𝑎1 

,… , 𝑎𝐾 }, where 𝐾 denotes the number of unique observed alarms in component 𝑙. 
Subsequently, we empirically compute the transition probabilities, ∀𝑖,𝑗∈ {1, …𝐾}, as shown in 

Equation (5). 
 

 
 

Hence, we obtain a transition matrix in a similar manner to a Markov chain, that summarizes all 

the historical transitions that have occurred for each type of component. Then, to highlight 

abnormal behaviour during a given interval, we identify the occurrence of transitions that are 
historically uncommon. Practically, if the number of alarms during an interval for a component of 

type 𝑙 is 𝑛 ≥ 2, where these alarms are elements of the state space 𝐸𝑙 denoted by 𝑥1 ,… , 𝑥𝑛, an 

associated probability can be computed as shown in Equation (6). 
 

 
 

As described previously, the probability is standardized and transformed into a score to reflect 
that the alarms that occur consecutively and that have not occurred one after the other frequently 

in the past are more likely to be displaying abnormal behaviour. This score is obtained as shown 

in Equation (7). 
 

 
 

Here, a value of 𝑆 3 𝑙 close to one implies that during this interval, a non-frequent transition is 

occurring, which is likely to be abnormal behaviour. 
 

2.4. Historical Frequency 
 

Now, we consider the historical frequency of the alarms occurring during an interval. In other 

words, an alarm of a certain type that is historically infrequent is considered to be more critical 
and should be highlighted. In real world scenarios, given that access to big data can be limited, 

this attribute helps in identifying infrequent or non-occurring events in the network, especially 
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high impact events that occur rarely. Then, for a component of type 𝑙 we consider the state 

spaceof alarms 𝐸𝑙 = {𝑎1 ,…, 𝑎𝐾 }, and the historical frequency of each of these alarms is 

computed and denoted by 𝑓𝑖𝑖∈ {1, … 𝐾}. 
 

Further, to highlight abnormal behaviour during a given interval, we focus on the alarm with the 

lowest historical frequency among those that occurred during this interval, which are denoted by 

𝑥1 ,… , 𝑥𝑛∈𝐸𝑙 , with 𝑛 ≥ 1. 𝑃4
𝑙 is first defined as shown in equation (8) 

 

 
 

This is derived using all the available historical intervals data. This is followed by 

standardization, where 𝑃4
𝑙 is transformed into a score quantity as shown in Equation (9). 

 

 
 

Here, a value of 𝑆4
𝑙 close to one implies that a non-frequent alarm occurs during this interval, 

which indicates abnormal behaviour. 
 

2.5. Final score and individual contributions 
 

To obtain a final abnormality score for a given interval of time and for a particular component of 

the network of type 𝑙∈ {1, …𝐿}, the previously computed scores are aggregated as weighted 

average measures as shown in Equation (10). 
 

 
 

 
 

The values of different weights are determined based on interactions with subject matter experts 

(SMEs) and a supervised grid search approach that will be discussed later. 
 

A value of 𝑆𝑙 close to one indicates that abnormal behaviour is being displayed during the 

specified interval and addressing this should be considered to be a priority for the SMEs. In 

addition, diagnostic information can be extracted from the four individual scores which may 
provide a starting point for the SMEs to analyse the root cause of the detected anomalies. This 

additional information is used to explain the derived score by specifying which alarms occurred, 

which interarrivals are low, which transitions are rare and which alarms have the lowest 
occurrence historically. 
 

2.6. Validation And Optimization 
 

After assigning a score to each of the intervals across all the components of the network, we 

validate the results by comparing our labels to the ones given by the SMEs (labels are determined 

by manual inspection of the data to identify occurrences of anomalies). From the scores obtained 



108         Computer Science & Information Technology (CS & IT) 

in Subsection 2.5, the labels are determined based on a predefined fixed threshold denoted by 𝑠, 
such that: 
 

 
 

The values of the weights in Subsection 2.5 and the value of the threshold 𝑠 are determined based 

on a grid search process [14], where several scenarios/combinations of the underlying parameters 

are considered. The selected combination is the one with the best performance based on the 

accuracy of the confusion matrix that shows the degree of similarity between our labels and the 
SMEs labels, and the value of the Area Under the ROC Curve (AUC) [15]. Such optimization 

makes the algorithm similar to supervised ML models with the aim of maximizing the correlation 

between labels and features. This is a unique supervision method to replicate and learn human 
decisions. 

 

3. APPLICATION 
 

The methodology described in Section 2 is applied on real world data obtained from a virtual 

telecommunication network to identify intervals with a high probability of displaying abnormal 
behaviour. Data description, results and analyses, and the advantages of the proposed algorithm 

will be presented in Subsections 3.1, 3.2 and 3.3 respectively. 
 

3.1. Data Description 
 

From a virtual telecommunication network, and for a given period, we consider alarms occurring 

on the different network elements over 30-minute intervals with a sliding window step of 5 

minutes. The concept of the sliding window is introduced to consider events (i.e., alarms) that 
overlap between two consecutive intervals. In addition, to assure that the different aspects of the 

methodology of Section 2 are applicable, we estimate the parameters of the underlying 

distributions—Poisson for counting alarms and exponential for inter-arrival time—separately on 

the three types of components that are present in the network and are indexed as 𝑙∈ {1,2,3}. 
 

These alarms (categorical data) with their different levels of severity, e.g., critical, minor and 

major, occurring during a given interval indicate the occurrence of abnormal behaviour. Based on 
the abnormality score that is computed by the proposed algorithm, SMEs should prioritize 

intervention in such cases. 
 

3.2. Results And Analysis 
 

We first estimate the parameters of the Poisson distribution 𝜆𝑙 ,𝑙∈ {1,2,3} and the exponential 

distribution 𝜇𝑙 , for each type of component by applying the methods described in Subsections 

2.1 and 2.2. For each type of component, all the available alarm occurrences across all the 
intervals are used. Note that only those intervals with at least two alarms are considered for the 

estimation of 𝜇𝑙 because the exponential distribution models the time between two consecutive 

alarms (in minutes). Moreover, goodness-of-fit tests are conducted to test the feasibility of the 
assumption that the number of alarms and the time between two consecutive alarms are governed 

respectively by Poisson and exponential distributions. Pearson’s chi-squared test [16] is used for 

the goodness-offit test. The estimation results and the p-values of the statistical tests are 

represented in Tables 1 and 2 respectively. 
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Table 2 shows that when the different types of components are considered separately, the 

assumption about the underlying distribution appears to be reasonable. Therefore, the parametric 

approach defined in Subsections 2.1 and 2.2 can be relied upon to compute scores 𝑆1 𝑙 and 𝑆2 𝑙 
for each interval for the different network elements. 
 

The third type of score is based on a transition matrix of the probabilities of different descriptions 
of alarms for a given type of component. To compute such a matrix, the empirical approach 

described in Subsection 2.3 is applied. Table 3 shows the transition matrix of alarm descriptions 

for the component of type 𝑙 = 3. 
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As an example of how to read Table 3, we can say that for network element of type 𝑙 = 3, when at 
least two alarms occur during an interval, alarms of description 3(b) are followed by alarms of the 

same description in 20% of cases and alarms of description 3(h) in 80% of cases. 
 

Using these matrices and applying the method described in Subsection 2.3, one can obtain the 

third score 𝑆3
𝑙 for each interval for the different network elements. 

 

The next step is to compute the historical frequency of each alarm description for a given type of 

component and to use these frequencies, as described in Subsection 2.4, to calculate the fourth 

score 𝑆4 𝑙 for each interval for different network elements. An example of these frequencies is 

shown in Table 4 for the network element of type 𝑙 = 1. Then, when an alarm of description 1(b) 

occurs during an interval and is observed to have a low historical frequency, then the interval is 

suspected to be displaying abnormal behaviour. 
 

 
 

Now, for each component type 𝑙 ∈ {1,2,3} and for all the intervals, the final abnormality score 𝑆𝑙 

can be computed by applying Equation (10) and by setting the initial values for the weights 𝑤𝑖 , 𝑖 =

1,2,3,4 (e.g., 𝑤𝑖 =
1

4
∀𝑖). In addition, to apply Equation (11), a threshold 𝑠 needs to be determined 

to label all the intervals with 1 if abnormal behaviour is taking place and 0 otherwise. 
 

To optimize the choice of the underlying weights and threshold, the SMEs label a parallel and 

independent abnormal behaviour based on the same data for the same intervals. Then, based on a 
random grid search process, the parameters of the algorithm are optimized, for each component 

type, on two levels. First, among all the tested combinations of weights 𝑤𝑖 verifying 0 < 𝑤𝑖 < 1 

and ∑ 𝑤𝑖
4
𝑖=1 = 1 we select the one with the highest AUC. Second, among all the threshold used to 

draw the optimal ROC curve, we select the one with the highest accuracy in terms of true positives 

and true negatives, i.e., we maximize the sum of the diagonal terms of the confusion matrix. 

Hence, we begin the grid search process by considering the following equation: 
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where 𝑤 is a vector of weights 𝑤𝑖 , 𝑖 = 1,2,3,4 and 𝔇 is the set of all the considered combinations 
of weights during the first level of the grid search process. Once the optimal combination of 

weights 𝑤∗ is selected, we select optimal threshold by applying the following equation: 
 

 
 

where 𝑇𝑃(𝑠) and 𝑇𝑁(𝑠) denote the true positive and true negative labels respectively when the 

threshold 𝑠 is fixed. 𝒯 represents the set of all the considered thresholds during the second level 

of the grid search process. The construction of the sets 𝔇 and 𝒯 is done with collaboration and 

validation by the SMEs. Furthermore, we are not concerned by the phenomenon of overfitting 

because we are using the latter grid search process merely to optimize the selection of the 

underlying weights of different scores and the threshold based on a matching method with labels 
fixed by the SMEs. 
 

Considering network element of type 𝑙 = 1, Fig. 1 shows the optimal ROC curve with a 

maximum AUC of 0.975 corresponding to the vector of weights 𝑤∗ = (𝑤1
∗ = 0.41, 𝑤2

∗ =
0.29, 𝑤3

∗ = 0.2, 𝑤4
∗ = 0.1) for intervals with at least two alarms (i.e., 𝑆2

𝑙  and 𝑆3
𝑙  are computable) 

and a vector  𝑤∗ = (𝑤1
∗ = 0.8, 𝑤2

∗ = 0, 𝑤3
∗ = 0, 𝑤4

∗ = 0.2) for intervals with less than two 

alarms. 
 

 
 

Figure 1. Optimal ROC curve 

 

Table 5 shows the optimal confusion matrix corresponding to a threshold of 0.58. In other words, 

for components of type 𝑙 = 1, we will apply the following rule to label anomalous behaviour 

across all the intervals: 
 

 
 

In the following certain interpretations and metrics are discussed based on the confusion matrix: 

 True positive: 2521 intervals; False positive: 531 intervals. 

 True negative: 199513 intervals; False negative: 103 intervals. 
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 Sensitivity: proportion of true positive among SMEs abnormal intervals: 
2521

(2521 + 103)⁄ = 0.961. 

 Specificity: proportion of true negative among SMEs non abnormal intervals: 
199513

(199513 + 531)⁄ = 0.997. 

 Accuracy:  
(2521 + 199513)

(2521 + 531 + 103 + 199513)⁄ = 0.997. 

Table 5.  Confusion matrix. 
 

 
 

Based on all the previous metrics computed after interactions with the SMEs, it is evident that the 

proposed algorithm is performing well with a high accuracy, and that we can rely on it to detect 
abnormal behaviour in future intervals. Furthermore, the algorithm is applied on online arriving 

alarms data and intervals that have been declared as anomalous and validated by experts. Here, 

approximately 1% of the intervals under control were behaving in an abnormal way, which is 
very reasonable in practice and is commonly encountered by SMEs. In addition, the algorithm 

presented in this paper has several advantages when compared to the classical anomaly detection 

approach. Most of these advantages will be enumerated in the next subsection. 
 

3.3. Advantages Of The Proposed Algorithm 

 
Compared to popular anomaly detection models, the proposed algorithm has four main 

advantages: 

 

 Our algorithm is already adapted to be an online anomaly detection model applied directly to 
new arrivals for the purpose of highlighting abnormal behaviour. Hence, there is no need to 

train such a model on a sample and to test it on another because such a model has no risk of 

overfitting. 

 To the best of our knowledge, this is the first time that an anomaly detection algorithm, based 

solely on alarms categorical data, has successfully extracted diagnostic information from the 

four different components of the global score (i.e., 𝑆1
𝑙 , 𝑆2

𝑙 , 𝑆3
𝑙 and𝑆4

𝑙 ) to help SMEs initiate root 

cause analysis of the detected anomalies.  

 The proposed algorithm has the ability to generate abnormality scores based solely on alarms 
data without any additional information about numeric KPIs, which is uncommon in the field 

of anomaly detection for telecommunication networks. 

 The interpretability of this model adds great value and is important for both developers and 

users.  
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3.4. Test 0f Independence Between Different Type of Alarms 
 

The algorithm proposed in this paper assumes the existence of one family of alarms. In fact, if 

other families of alarms are available, our model can easily be generalized by proposing a 

weighted anomaly score for the different families of alarms. Additionally, we can consider the 
same optimisation process proposed in Subsections 2.6 and 3.2 to determine the values of the 

different weights. 
 

Further, to ensure the statistical independence between different families of alarms in terms of 
occurrence time we suggest an independence test. This is essentially a uniform distribution 

goodness-of-fit test using classical chi-squared test. Therefore, for alarms of family 𝒜, we test 

whether the occurrence times of such alarms, between two alarms of another family ℬ, are 

uniformly distributed. It is important to note that in order to apply such an approach, the intervals 
of time separating the occurrence of two alarms of the same family need to be normalized. 
 

4. CONCLUSION AND PERSPECTIVES 
 

In this paper, an innovative anomaly detection algorithm that solely uses structured alarms 

(categorical data) has been presented. The proposed model takes into consideration four different 
attributes extracted from alarms occurrence data to compute a global anomaly score. This can 

then be used to extract diagnostic information that helps SMEs in performing root cause analysis. 

Our algorithm is shown to be more advantageous than other existing anomaly detection models, 
when applied in the same context. 
 

Moreover, we applied the algorithm to real data in the field of telecommunication. The results 

were then validated by SMEs who provided positive feedback and found that our algorithm 
outperforms the previously used classical approaches. Users of such a model are also convinced 

by its output because it relies on the behaviour of historical data and generates real-time ranking 

of events occurring on a network component in terms of abnormality. 
 

A first perspective of this work is to mathematically formalize a model/algorithm using the 

extracted information from different sub-scores in order to enhance existing root cause analysis 

methods based solely on alarms data. A second perspective is to combine alarms data with other 

type of non-numeric features, e.g., textual data, to build a more complete anomaly detection 
approach that covers novel aspects that have not been addressed before. Such pioneering work 

can be initiated by drawing inspiration from [17]. 
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