

Mechanisms of Hydrate Blockage in Oil-water Dispersions Based on Flow Loop Experiments

Vinicius R. de Almeida, Eric Serris, Gianluca Lavalle, Ana Cameirão, Jean-Michel Herri, Emilie Abadie, Nicolas Lesage, Annie Fidel-Dufour

▶ To cite this version:

Vinicius R. de Almeida, Eric Serris, Gianluca Lavalle, Ana Cameirão, Jean-Michel Herri, et al.. Mechanisms of Hydrate Blockage in Oil-water Dispersions Based on Flow Loop Experiments. Chemical Engineering Science, 2023, 273, pp.118632. 10.1016/j.ces.2023.118632. emse-04032496

HAL Id: emse-04032496 https://hal-emse.ccsd.cnrs.fr/emse-04032496v1

Submitted on 24 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Mechanisms of Hydrate Blockage in Oil-water Dispersions Based on Flow Loop Experiments

Vinicius De Almeida^{1,*}, Eric Serris¹, Gianluca Lavalle¹, Ana Cameirão¹, Jean-Michel Herri¹, Emilie
 Abadie², Nicolas Lesage², Annie Fidel Dufour²

⁴ ¹Mines Saint-Etienne, Univ Lyon, CNRS, UMR 5307 LGF, Centre SPIN, F – 42023 Saint-Etienne, France

⁵ ²TotalEnergies, CSTJF, Avenue Larribau, Pau Cédex 64018, France

6 *Corresponding author: vinicius.de-almeida@emse.fr (V. De Almeida)

7

8 **Abstract:** Hydrate formation poses a threat to the safety of petroleum transport in flow lines due to the 9 risk of plugging. In this work, conceptual mechanisms of hydrate formation and plugging in oil-water 10 systems are proposed, based on flow loop tests at 30%, 50% and 80% water cut (water fraction). The 11 experiments were conducted using Kerdane oil, water (with 30 g/L of NaCl) and natural gas at 75 bar and 12 4 °C. The employment of several instruments, such as acoustic emission, permittivity, and flowmeter, to 13 cite a few, allowed identifying the different flow patterns until hydrate blockage and detecting the phase 14 that carries the hydrates. A model based on density measurement is proposed to calculate the fraction of 15 hydrates flowing locally. It was observed that there are local accumulations of most of the hydrates in a small portion of the flowing volume, which, together with deposition, ends up leading to plugging. 16

Keywords: flow assurance, petroleum flowlines, hydrate formation, mechanisms of plugging, flow loop
experiments, oil-water dispersions.

19 **1** Introduction

The operational safety and economical regards involving multiphase flow transport in petroleum flowlines are studied in an engineering analysis process called flow assurance. Flow assurance's most important issues are the appearance and deposition of solids in deepwater long-distance flow lines due to the high pressures and low temperatures (Olajire, 2020). In case of pipeline blockage, the operation must be interrupted for remediation, risking the occurrence of accidents and financial losses. Among the flow assurance issues, hydrate problems might be the most significant challenge nowadays (Cardoso et al., 2015; Jamaluddin et al., 1991; Sloan and Koh, 2008).

Gas hydrates are crystalline compounds formed from a network of hydrogen-bonded water molecules entrapping light natural gas molecules (Englezos, 1993; Khurana et al., 2017). These crystals are studied in different applications, including, for example, their use as an energy source (Shaibu et al., 2021). In the oil and gas industry, hydrates form when the undesired water content in flow lines is in interaction with 31 gas under high pressure and low temperature (Sloan, 2003; Sum et al., 2009). Gas hydrates have a dual 32 effect on multiphase flow: (i) they change the characteristics of the slurry flow and the flow pattern 33 (Delahaye et al., 2008; Ding et al., 2016); (ii) the particles may agglomerate or form deposits (Bassani et 34 al., 2017; Chen et al., 2014; Stoner and Koh, 2021; Straume et al., 2016; Wang et al., 2020) due to the 35 capillary forces (Colombel et al., 2009), which affect the rheological properties (Chen et al., 2022; Ding 36 et al., 2019; Fidel-Dufour et al., 2006; Liu et al., 2020; Pham et al., 2020; Sinquin et al., 2004; Song et al., 37 2019), possibly leading to the onset of plugging.

38 The formation of gas hydrates in oil-water systems has been the object of many research. The first 39 studies proposed that hydrates form a shell around water droplets in water-in-oil systems with an inward 40 growth (Melchuna et al., 2016; Sloan et al., 2011; Turner, 2005), or a shell around oil droplets in oil-in-41 water systems that has an outward growth (Melchuna et al., 2016; Sloan et al., 2011). The models assume 42 that hydrate formation occurs at the oil-water interfaces, as the gas is mainly dissolved in the oil phase. 43 As a result, for the shell approach, hydrates always entrap the dispersed phase. As an alternative to the 44 shell approach, a "sponge approach" has been recently proposed, where hydrates are porous structures 45 that entrap only the water phase (Bassani et al., 2019). While most of the data available in the literature 46 are limited to oil continuous systems, there is an increasing demand for water continuous test cases. 47 Indeed, in order to maintain a petroleum reservoir explorable, the pressure must be kept constant, and this 48 is done by means of continuous water injection.

49 A unified hydrate formation flow model for different flow characteristics (oil-dominated, gas-50 dominated, gas condensate, and high water cut system) does not exist. Identifying which phase, oil or 51 water, transports hydrates at different conditions could help to better understand hydrate blockage. The 52 literature has not yet reported a methodology that allows this analysis. Although agglomeration and 53 deposition have commonly been considered the dominant mechanisms of plugging, it is possible that 54 changes in the multiphase flow due to hydrate formation may play an important role in hydrate blockage 55 risk. While solid agglomeration and multiphase flow are often studied separately, an analysis combining 56 these two is necessary for addressing this costly flow assurance problem in offshore petroleum 57 exploration.

In this sense, the objective of this work is to present new insights about the two-way coupling between flow regime and hydrate formation. This paper aims to answer the following questions: (i) How do different oil-water systems affect hydrate formation? (ii) How do hydrates act on the flow pattern and on the flow characteristics? (iii) How do hydrate plugs form? To answer these questions, flow loop 62 experiments were conducted to study the different stages of hydrate slurry formation and plugging at low, 63 intermediate, and high water cuts. The facility is equipped with a unique combination of instruments that 64 allows detecting the continuous phase, tracking hydrate particles, and detect which phase carries the hydrates. The impact of hydrate formation on multiphase flow and the main cause of plugging for each 65 scenario are discussed. An extensive analysis is carried out in order to identify the flow regime at each 66 67 different stage of the tests. A simplified model using the density measured by a flowmeter is proposed to calculate the local accumulations of hydrates in the flow. Finally, based on this model, a methodology is 68 69 proposed to classify the different tests according to their heterogeneity in hydrate distribution along the 70 pipe.

71 2 Experimental methodology

72 2.1 Flow loop description

The Archimede flow loop, illustrated in Figure 1, consists of a pipeline that is approximately 56 meters 73 74 long, divided into three sections: a vertical downward section, a slightly inclined or horizontal section, 75 and a vertical upward section. The vertical sections have a pipe internal diameter of 15.7 mm, while the 76 slightly inclined or horizontal section has a pipe internal diameter of 10.2 mm. The temperature is 77 controlled by a cooling system composed of two circulating baths (one for the horizontal section and the 78 other for the vertical sections), which send a refrigerated fluid (mixture of water and ethanol) to the heat 79 exchanger pipes. In order to limit heat exchange with the room, the entire flow loop apparatus is jacketed 80 with an insulating material. A Moineau pump, which allows a flow rate of up to 500 L/h, provides the 81 power for the circulation of the liquid in the pipeline.

The flow loop is equipped with several probes, listed in Table 1, that measure temperature, absolute pressure, pressure drops, the gas flow rate injected by an automatic gas compensation system, density, and flow rate (monitored by means of a Coriolis flowmeter). Furthermore, the apparatus is equipped with a high-speed camera (HSC), a Particle Vision Microscope (PVM), a Focused Beam Reflectance Measurement (FBRM), an acoustic emission technology system (AE) and a permittivity probe.

87

Table 1. Probes installed in the Archimede flow loop, with their notations and features.

Instrument	Notation / Measurements	Feature

Temperature probes	T ₁ -T ₁₀	Nine equally distributed sensors along the loop and one additional for room temperature. Measurements in °C every 1.0 s.
Pressure probe	Pabs	Absolute pressure of the gas in the separator. Measurements in bar every 1.0 s.
Pressure drops probes	$\Delta p_1, \Delta p_2, \Delta p_4, \ \Delta p_h$	Pressure drops at the downward and upward vertical sections (Δp_1 and Δp_2 , in bar), gravitation pressure drop on the right vertical pipe of the separator (Δp_4 , in mbar), and horizontal section (Δp_h , in bar). Measurements every 1.0 s.
Coriolis flowmeter (density and flow rate)	ρ, Q	Measures the density (in kg/m^3) and the flow rate (in L/h) at the downward section. Measurements every 1.0 s.
Gas injection	pc, Q _G	Automatic gas compensation system with an absolute pressure and a gas flow meter probe. Measurements in NL/min every 1.0 s.
Acoustic emission	AE	Measures the absolute energy (in aJ) every 0.5 s. using 4 or 6 sensors, as shown in Figure 1, identified as 1A to 4A (in blue) or from 1B to 6B (in red).
Focused beam reflectance measurement	FBRM	Measures chord counts (per second) in a 1-1000 μ m range every 5.0 s.
Particle vision measurement	PVM	Microscope coupled with a camera that takes pictures of the flow at a resolution of 1050 x 825 μ m every 5.0 s.
Permittivity probe	ε _r	It measures the relative permittivity near the wall every 3 to 6 s.
High-speed camera	HSC	Monochromatic camera installed in front of a 52 x 12 mm visualization window. Up to 1GB/s or 211 fps at a maximum resolution of 2560 x 2048 pixels.

Figure 1. Schematic illustration of the Archimède flow loop.

91 2.2 Experimental conditions and protocol

The experiments are conducted with oil, saline water and natural gas. Table 2 specifies the physical properties of the fluids at room pressure and temperature, while Table 3 provides the composition of the natural gas. Table 4 specifies the control parameters according to their variation range. Each experimental condition, defined by a combination of water cut and flow rate, was repeated at least once.

Table 2. Fluids used for the experiments and their properties	Table 2. Fluids	used for the e	experiments a	and their	properties.
---	-----------------	----------------	---------------	-----------	-------------

Fluid	Description	Fluid properties
Salted water	30 g of NaCl per L of deionized water.	Density: 1023.8 g/L Viscosity: 0.0026 Pa.s
Kerdane oil	Hydrocarbons, C11-C14, n-alkanes, isoalkanes, cyclics, <2% aromatics.	Density: 815 g/L Viscosity: 0.0017 Pa.s

98

Table 3. Composition of the natural gas.

Gas	%mol
Methane	91.7
Ethane	5.9
Propane	0.6
Carbon dioxide	0.8
Nitrogen	0.8
i-butane	0.1
n-butane	0.1

99

100

Table 4. Control parameters for the experiments.

Parameter	Values
Flow rate	200 L/h, 400 L/h
Water cut	30%, 50%, 80%

101

102 The experimental protocol, illustrated in Figure 2, can be summarized in four main steps:

i. Controlling the flow rate at 200 or 400 L/h.

- 104 ii. Cooling down the temperature to a minimum of 4 °C.
- 105 iii. Fast pressurizing to 75 bar.
- 106 iv. Maintaining the pressure constant by means of the gas compensation system.

96

Figure 2. Experimental protocol.

During the last step (iv), the injected gas flow rate is measured in order to calculate the amount of gas consumed for hydrate formation. Some intermediate steps (flow rate control to 100 L/h, temperature to 8 °C and absolute pressure to 8 bar) are applied in order to reduce the influence of room temperature on the results during emulsification, as shown in Figure 2.

113 2.3 Data synchronization

114 Due to the many instruments that are installed in the flow loop, where each one of them is placed in a 115 different position, a methodology to synchronize the data was developed. In order to compare the same portion of the flow when it passes in front of two different instruments, the time required for the flow to 116 117 move from one of the instruments to the other is calculated. This calculation is a function of the volume 118 between the instruments and the flow rate measured by the Coriolis flowmeter. When this time correction 119 is applied, an indication is given on the x-axis of the graphs (see, for instance, Figure 5). The procedure 120 applied for this paper consisted of fixing the flowmeter as a reference and then correcting the time data 121 set of the other instruments in a way to synchronize them with the time data sets obtained with the 122 flowmeter.

123 **3** Methodology to calculate the hydrate volume

With the aim to determine the hydrate fraction and the water conversion as a function of time, a model
based on mass and volume balances is proposed. The model has the following assumptions:

• The mass of gas dissolved in the oil phase is constant after the onset of hydrate formation.

- The fraction of each gas component being consumed for hydrate formation is proportional to its
 mole fraction in the free gas.
- The hydrate density is constant and equal to 910 g/L, which is approximately the density of
 methane hydrates (Sloan and Koh, 2008).
- The hydration number, that is, the ratio between the number of water molecules and gas molecules
 consumed for hydrate formation, is constant and equal to 6.0.
- 133 The mass balance, considering the mass of free gas (m_G) , the mass of free water (m_W) and the mass 134 of hydrates (m_H) , is given by the following equation:

$$m_G + m_W + m_H = m_G^0 + m_W^0 + m_{G,inj} \tag{1}$$

where the superscript 0 corresponds to the instant of onset of hydrate formation. The term $m_{G,inj}$ is the mass of gas injected by the gas compensation system since the onset of hydrate formation. The volume balance between gas volume (V_G), water volume (V_W) and hydrate volume (V_H) is represented by the following equation:

$$V_G + V_W + V_H = V_G^0 + V_W^0 \tag{2}$$

One should notice that the oil phase and the dissolved gas were not considered in equations (1) and (2). This is because the oil mass is constant over time, and the amount of dissolved gas is assumed to be constant after the onset of hydrate formation. The gas density can be calculated from the pressure, temperature and composition of the gas using the Soave–Redlich–Kwong equation of state, and can be used to relate the mass and volume of the gas:

$$\rho_G(p,T) = \frac{m_G}{V_G} \tag{3}$$

As previously mentioned, hydrate density is assumed to remain constant at 910 g/L, and it is the ratio between hydrate's mass and volume:

$$\rho_H = \frac{m_H}{V_H} \tag{4}$$

146 The water density is also constant and given by:

$$\rho_W = \frac{m_W}{V_W} \tag{5}$$

147 Finally, the hydration number is:

$$N_{h} = \frac{\left(m_{W}^{0} - m_{W}\right) / M_{W}}{\left(m_{G}^{0} + m_{G,inj} - m_{G}\right) / M_{G}}$$
(6)

where M_W is the water molar mass and M_G is the gas molar mass. Substituting the equations (3)-(5) into equation (1), and then combining them with equations (2) and (6), we obtain the following system of equations, where V_W , V_G and V_H are the unknowns to be determined:

$$\begin{bmatrix} \rho_{W} & \rho_{G} & \rho_{H} \\ 1 & 1 & 1 \\ \frac{\rho_{W}}{M_{W}} & -\frac{N_{h}\rho_{G}}{M_{G}} & 0 \end{bmatrix} \begin{bmatrix} V_{W} \\ V_{G} \\ V_{H} \end{bmatrix} = \begin{bmatrix} m_{G}^{0} + m_{G,inj} + m_{W}^{0} \\ V_{G}^{0} + V_{W}^{0} \\ \frac{m_{W}^{0}}{M_{W}} - N_{h} \left(\frac{m_{G}^{0} + m_{G,inj}}{M_{G}} \right) \end{bmatrix}$$
(7)

151 Once the volume of each phase is known, it is possible to calculate the global hydrate fraction in the 152 system relatively to the oil and water phases, which are the phases that circulate in the loop with the 153 hydrates. The hydrate fraction is given by the following expression:

$$\alpha_H = \frac{V_H}{V_H + V_W + V_O} \tag{8}$$

154 where V_0 is the oil volume, which is constant.

155 **4 Results and discussion**

162

The results of the carried-out experiments, summarized in Table 5, are discussed in six subsections. In the first one, it is introduced the methodology for identifying the continuous phase for characterizing the flow pattern before hydrate formation. The subsequent three subsections present the results of hydrate formation for tests at low, intermediate and high water cut. The fifth subsection presents a methodology to quantify the local hydrate fraction and to characterize the heterogeneity of the system. The last subsection presents a summary of the main outcomes.

Time with **Hydrate** Water Flow Water Experiment hydrates cut rate conversion fraction until plug #1 18.7% 8.0% 13.4 min 30% 200 L/h #2 11.1% 4.1% 6.1 min

Table 5. List of experiments.

#3		400 L /h	13.2%	4.9%	3.2 min
#4	_	400 L/n -	9.6%	3.6%	3.8 min
#5	- 50%	- 200 L/h - -	3.7%	2.4%	6.6 min
#6			2.2%	1.4%	3.9 min
#7			2.9%	1.8%	4.7 min
#8			4.6%	2.9%	5.8 min
#9		400 L/h	10.6%	6.6%	7.3 min
#10	_		18.5%	11.7%	13.7 min
#11	_		14.6%	9.2%	9.3 min
#12		200 L /ŀ-	7.8%	8.0%	92.1 min
#13	- 200/	200 L/II -	10.3%	10.6%	120.1 min
#14	- 80%	400 L /h	11.7%	11.9%	26.9 min
#15	_	400 L/h -	16.3%	16.4%	37.3 min

164 4.1 Permittivity measurements to identify the continuous phase

Identifying the continuous phase and whether the dispersed system is oil-in-water or water-in-oil before hydrate formation is important because hydrates preferentially form at oil-water interfaces, and thus their shape, kinetics and dynamics are strongly affected by the two-phase flow pattern. In this work, a combination of the following three measurements is used to identify the dispersed phase before hydrate formation: the dielectric, the local water fraction calculated from the density, and the images from the camera.

171 The dielectric of saline water with 30 g NaCl/L is 87.9, while the dielectric of the Kerdane oil is 2.7, 172 both at 4 °C, values obtained from tests in the flow loop apparatus. The local or instantaneous water 173 fraction ($\alpha_{l,W}$) that passes through the flowmeter is calculated from the measured density (ρ), using the 174 equation:

$$\rho = \rho_W \alpha_{l,W} + \rho_0 (1 - \alpha_{l,W}) \tag{9}$$

175 where ρ_W and ρ_O are the densities of water and oil.

In order to obtain the dielectric as a function of the water fraction, an algorithm is proposed, as illustrated in Figure 3. In every 30-second slot of the whole measurement, the highest, lowest and timeaveraged values of dielectric are calculated, as depicted in Figure 3(a). The same procedure is performed for the calculated water fraction, as represented in Figure 3(b). These values of dielectric and water fraction are synchronized in such a way that, for each interval of 30 seconds, the highest value of dielectric is coupled with the highest value of the water fraction, the same for their respective average and lowest values, as shown in Figure 3(c). This method is applied to the entire dataset before hydrate formation.

183 184

Figure 3. Representation of the algorithm to obtain the dielectric as a function of the water fraction.

The proposed method allows obtaining a dataset (dielectric vs. water fraction) that helps to identify the dispersed phase. Validation of the results is achieved by comparison with camera images in Figure 4. At 200 L/h the dispersions are not completely homogeneous. At 30% water cut and 200 L/h, the water fraction can vary locally from 15% to over 50% (Figure 4(a)). For a test at 50% water cut and 200 L/h, the local water fraction can range from 20% to 80% (Figure 4(c)). This heterogeneity can be clearly observed in the images from the camera, showing the presence of droplets whose size covers several millimeters. As the flow rate increases, at 400 L/h, the heterogeneity reduces because the higher shear rate
breaks the droplets. This can be observed in the images, which show a thinner dispersion than at 200 L/h,
confirmed by our measured dielectric and calculated water fractions, which show a shorter range (see
Figure 4(b,d,f)).

195 The results also show that there is a direct relation between the local water fraction and the dielectric, 196 with the dielectric increasing as the water fraction increases. At 30% water cut, oil has been identified as 197 the continuous phase. At 200 L/h, this is highlighted in the images from the camera (Figure 4(a)) that 198 water droplets are dispersed in the oil continuous phase (bright droplets dispersed in the dark background), 199 whereas at 400 L/h (Figure 4(b)) the dielectric values are much closer to the oil dielectric than to the water 200 dielectric. At 50% and 80% water cut, water has been identified as the continuous phase as the dielectric 201 values are much closer to the water dielectric than to the oil dielectric (Figure 4(c-f)). Also, images from the camera show that oil droplets, which are lighter and concentrated preferably at the top of the window 202 203 due to gravity, are dispersed in the water continuous phase.

Figure 4. Analysis of the flow regime comparing dielectric vs. water cut (left panels) to images obtained
from the camera (right panels) as a function of water cut and flow rate.

207 4.2 Hydrate formation at low water cut

208 Figure 5 shows the time evolution of dielectric and density (top panel), of dielectric and absolute 209 energy for the sensor 1A (central panel), and of pressure drops and flow rate (bottom panel) for a test 210 conducted at 30% water cut and 200 L/h. Hydrate formation was detected after 17.5 minutes, as evidenced 211 by the sudden decrease in density and dielectric at that time (Figure 5(a)). The decrease in density and 212 dielectric is attributed to the reduction in water fraction as water is consumed for hydrate formation. From 213 the onset of hydrate formation (at 17.5 minutes) to hydrate blockage (at 30.0 minutes, when the experiment 214 ends), the flow had different stages. Initially, during the first three minutes, the particles were dispersed 215 everywhere in the flow, as can be deduced from the absolute energy (Figure 5(b)), which significantly 216 increased and remained at high values for three minutes. High values of absolute energy are indicators of 217 hydrate transit and low values correspond to the same level prior to the formation of hydrates (de Almeida 218 et al., 2022). However, at 20.5 minutes, the flow regime began exhibiting intermittent behavior, with some 219 parts of the flow transporting hydrates (peaks of absolute energy) and others containing only liquid. As 220 the absolute energy peaks were mostly in phase with the peaks of density and dielectric (Figure 5(a)), 221 which in turn correspond to the water-governed flow, it is concluded that the hydrate particles are 222 transported by the water phase. On the other hand, the troughs of absolute energy correspond to the oil-223 governed flow, as they were mostly in phase with the troughs of dielectric (Figure 5(b)) and density 224 (Figure 6).

225 During the first three minutes after hydrate formation, as the particles were evenly dispersed in the 226 liquid, the horizontal pressure drop increases significantly (blue line in Figure 5(c)). This increase in 227 pressure drop is believed to be due to an increase in apparent viscosity that occurs as more interfaces are 228 created when hydrates form. However, as the flow starts to became more heterogeneous, at 20.5 minutes, 229 the horizontal pressure drop reduced, due to a reduction of the interfacial area between the phases. 230 Meanwhile, the local accumulation of hydrates in parts of the pipeline started to cause significant 231 restrictions. This can be noted, for instance, from the pressure drop in the right vertical pipe of the separator 232 $(\Delta p_4, \text{ cyan line in Figure 5(c)})$, which reduced when hydrates passed through the separator. This indicates 233 that, when hydrates pass therein, they cause a restriction at the bottom of the separator that temporarily 234 interrupts the flow. This causes the suction of liquid from the right vertical pipe of the separator, explaining 235 why the liquid level in that part of the separator reduced. The hydrate plugging was observed after 30

236 minutes, when the flow rate indicated zero, causing the end of the experiment. It was therefore a sudden 237 event and was caused by a restriction in the bottom pipeline of the separator.

238

Figure 5. Experiment at 30% water-cut and 200 L/h (#1 in Table 5), showing the time evolution of (a) 240 dielectric and density, (b) dielectric and absolute energy, and (c) pressure drops and flow rate.

241 The visual observation that peaks of density and absolute energy (shown in Figure 5) are in phase, 242 which indicates that hydrates are carried by the water phase, can be verified statistically by using a time-243 lagged cross-correlation (Cheong, 2020). This gives the time synchrony between two data sets and consists 244 in incrementally shifting one data set over time and repeatedly calculating the correlation to the other data 245 set. If the peak correlation is at the center (no time lag), this indicates the signals are mostly in-phase at 246 that time interval. To obtain the correlation between two signals, the Pearson correlation can be used 247 (Schober and Schwarte, 2018). This is a correlation coefficient that ranges from -1 to +1, where a 248 coefficient +1 means that all values from one data set increase as the values from the other one increase 249 in a perfectly linear relationship, while a coefficient -1 means that all values from one data set decrease as

250 the values from the other one increase, also in a linear relationship. A coefficient of zero means that there
251 is no relationship between the data sets.

Figure 6 shows a comparison between density and absolute energy (sensor 1A) at the top panel (the last six minutes of the experiment), and the correlation coefficient between these two data sets for a period of three minutes at the bottom panel. The peak for the correlation coefficient occurs near the center, for a time lag of 4 seconds, which is very low compared to the period it takes for the flow to circulate around the loop. This proves that these signals are in phase.

257

Figure 6. Time-lagged cross-correlation analysis between density and absolute energy (sensor 1A) for a
test at 30% water cut (#1 in Table 5).

Hydrate formation could be detected by the images from the PVM. It is shown in Figure 7 three images: the first one was taken before hydrate formation, the second one was obtained immediately after hydrate formation, and the third one at the end of the test, just before hydrate blockage. It is shown in the first image (Figure 7(a)) a droplet with a perfectly spherical shape, most likely a water droplet dispersed in oil. Once hydrates form, as shown in Figure 7(b-c), they have an irregular shape and the appearance of a porous structure rather than solids with well-defined surfaces.

267

Figure 7. PVM images for the test at 30% water-cut and 200 L/h (#1 in Table 5).

268 Three additional tests were performed at 30% water cut, as listed in Table 5, with similar results being 269 observed. The induction time, that is, the time required for the onset of hydrate formation, varied between 270 14.5 and 24.6 minutes. For all the tests, water was the carrier phase for hydrates. Furthermore, it was 271 observed that plugging at 400 L/h occurs faster than at 200 L/h despite less water conversion. This can be 272 explained by considering that at a higher flow rate, the flow is more homogeneous (see, for instance, 273 Figure 4). Therefore, when hydrates form, the appearance of more interfaces between the phases is 274 expected to increase the apparent viscosity and, as a result, the transportability of the system is reduced. 275 When summarizing the results from the test at 30% water cut, the most important outcomes are:

- The flow is initially water-in-oil before hydrate formation, as explained in section 4.1 by analyzing
 the permittivity data and images from the camera.
- During the onset of hydrate formation, hydrates are homogeneously distributed during the first few minutes, as can be deduced from the absolute energy in Figure 5(b), which consistently remains at high values for three minutes after the onset. The horizontal pressure drop (Figure 5(c)) has its highest values during this early stage of hydrate formation, as there are more interfaces between the phases and shear due to flow if the system is homogeneous. Ding et al., 2019 observed similar behavior, with the apparent viscosity being higher immediately after hydrate formation than during the stages of agglomeration, growth, and deposition.
- Water droplets rapidly coalesce, forming large pockets of sponge structures (seen in the PVM images, Figure 7) formed by water and hydrates. This was observed by synchronizing and comparing the peaks of dielectric, density and absolute energy in Figure 5(a-b), after 20 minutes.
 Images from the camera, shown in the top panel of Figure 8, also captured an intermittence, with the images becoming darker after hydrate formation (central image) and later presenting an intermittence (two images on the right) between parts of the flow whose images are transparent

(mostly with oil) and parts that are dark (due to the presence of hydrates, which block the lighting
positioned behind the visualization window). The reason why hydrates stay preferably with the
water phase can be due to the higher affinity between hydrates and water than between hydrates
and oil (Bassani et al., 2019).

- A complete separation into two phases, oil and water with hydrates, is observed. The presence of
 large pockets of this porous structure containing hydrates and water may easily cause plugging,
 especially during transit towards points of singularity, where deposition or local accumulation of
 hydrates increases over time.
- 299 Based on test results at 30% water cut, a conceptual model for hydrate formation and plugging at 300 low water cut in oil-water dispersed systems is proposed, shown in Figure 8. The model consists of 301 four stages. The first stage is the entrainment of water droplets into the oil phase due to the shear 302 caused by the flow. The second stage is the formation of hydrates on the surfaces of water droplets. 303 As hydrates form, they eventually break down inside the water droplets. In the third stage, the water 304 droplets with hydrates become porous structures that may easily adhere to the wall, cause some 305 deposition, and they quickly coalesce to form large pockets of water that carry the hydrate particles. 306 In the final stage, as the pockets of water with hydrates continue to grow, they eventually plug the 307 pipeline. Plugging is a sudden event, and it occurs when porous-structured pockets containing water 308 and hydrates are large enough to block the pipe.

Figure 8. Depiction of the conceptual model for hydrate blockage at low water cut.

311 4.3 Hydrate formation at intermediate water cut

312 Similar to the previous section, Figure 9 shows the time evolution of dielectric and density (top panel), 313 dielectric and absolute energy (second panel), dielectric and chord counts (third panel), and pressure drops 314 and flow rate (bottom panel). Hydrates formed around 7 minutes, when there was a sudden reduction in 315 dielectric and density (Figure 9(a)) along with a net increase in absolute energy (Figure 9(b)). An 316 intermittent behavior was observed after hydrate formation, with some parts of the flow containing more 317 oil (low density and dielectric) than others. For this test, it was also observed that it was the water phase 318 that transported the hydrates, since regions of high density and dielectric (which contain more water) had 319 the highest values of absolute energy. This is clear by noting in Figure 9(b) that the troughs of dielectric 320 and absolute energy were in phase. Hydrate formation was also detected by the FBRM during the last 321 stage of the experiment, after 12 minutes, when the flow is intermittent. It is possible to see in Figure 9(c)322 that the chord counts increased and showed similar oscillatory behavior to the dielectric, density and 323 absolute energy, which confirms the presence of more particles and droplets in the part of the flow that 324 contains more water.

There was also a temporal oscillation in the horizontal pressure drop, which is periodic and whose amplitude increases with time (Figure 9(d)). The portion of the flow that contains an accumulation of hydrates is expected to have a local apparent viscosity that increases over time and causes the blockage of the pipe. Plugging probably occurred in the downward section, as the pressure drop in this section (Δp_1) decreased whenever the hydrates passed through it and reached zero at the end of the experiment. This occurs because an increase in pressure loss due to viscosity or deposition counterbalances the gravitational differential pressure (positive for downward flow).

Figure 9. Experiment at 50% water-cut and 400 L/h (#10 in Table 5), showing (a) dielectric and density,
(b) dielectric and absolute energy, (c) dielectric and chord counts, and (d) pressure drops and flow rate.

For the tests at 50% water cut, hydrate particles have a regular shape, and seem to be solid structures, as observed in the PVM images. Figure 10(a) shows a PVM image before hydrate formation with oil droplets of regular spherical shape. Once hydrates form, as shown in Figure 10(b-c), hydrate particles also have a regular spherical shape, indicating that these particles are entrapping oil droplets.

Figure 10. PVM images for a test at 50% water-cut and 400 L/h (#10 in Table 5).

A total of seven tests were conducted at 50% water cut, three of which were conducted at 200 L/h and four of which were conducted at 400 L/h. The main outcomes from these tests are:

- An oil-in-water dispersed system is the flow regime before hydrate formation, as shown in section
 4.1.
- The initial oil-in-water dispersion is completely disrupted after hydrate formation. This is because
 the hydrates, that formed on the surfaces of oil droplets, have more affinity to the water phase.
 Therefore, they are detached from the oil and preferentially carried by the water phase. The
 conclusion that hydrates are carried by the water phase is based on the correspondence between
 the density, dielectric, absolute energy and chord counts measurements, whose peaks are in phase,
 as shown in Figure 9(a-c).
- A separation of phases occurs, with oil droplets coalescing and forming large oil pockets, while hydrates flow suspended in the water phase. This heterogeneous behavior causes an increase in pressure loss in the region of the flow that contains more hydrates. This can be observed in Figure 9(d) due to the increase in horizontal pressure drop (blue line) as hydrates pass through the horizontal section.
- Hydrates apparently entrap part of the oil droplets that are dispersed in the water phase, as seen in
 the PVM images (Figure 10) where there are particles with a regular shape.
- An intermittent flow forms, characterized by two regions: one containing only oil, and another containing porous hydrate structures that entrap more and more the water phase, and hydrates entrapping oil as well, increasing the pressure loss due to viscosity in these regions. The main cause of plugging was due to a blockage of hydrates in specific parts of the loop, particularly in the downward section, as shown in Figure 9(d) where the pressure drop in the downward section

363 (cyan line) going to zero as hydrates pass through it just before plugging, when the flow rate364 indicates zero as well.

365 Based on the results of tests at 50% water cut, a conceptual model is proposed for oil-water dispersed 366 systems at intermediate water cut. The model in four stages is illustrated in Figure 11. The first stage 367 consists of the entrainment of oil droplets into the water phase due to the shear caused by the flow. The 368 second stage is the beginning of hydrate formation around oil droplets. In the third stage, the presence of 369 hydrates causes the coalescence of oil droplets, forming oil pockets, while hydrates detach from the oil 370 droplets and flow suspended in the water phase. Hydrates suspended in water will result in the formation 371 of porous structures that induce a higher local pressure loss. In the fourth stage, the system consists of an 372 intermittent flow, formed by a region containing oil and another region containing mainly water and 373 hydrates. Plugging eventually occurs when the local increase in pressure loss due to viscosity in the region 374 of the flow containing the hydrates is high enough to stop the flow. Images from the camera, shown in the 375 top panel of Figure 11, confirm the different stages until plugging. In the first one (left image), before 376 hydrate formation, droplets have a regular shape. The second one is darker, after the onset of hydrate 377 formation, as hydrates form around droplets. The last two, one on the right, show an intermittence, where 378 one is dark because it is from a part of the flow that has hydrates, and the other one is transparent, from a 379 part of the flow with only liquid, during oil-dominated flow.

380

Figure 11. Depiction of the conceptual model for hydrate blockage at intermediate water cut.

383 4.4 Hydrate formation at high water cut

384 Figure 12 shows the time evolution of the dielectric together with density (panel (a)), dielectric with 385 absolute energy (panel (b)), dielectric and chord counts (panel (c)), along with the time evolution of the 386 horizontal pressure drop and flow rate (panel (d)) for a test at 80% water cut and 200 L/h. Hydrates formed 387 after a few minutes, observed due to the gradual increase of absolute energy during the first ten minutes 388 of experiments. After ten minutes, an important amount of hydrates is formed, enough to rapidly increase 389 the chord counts (Figure 12(c)) detected in the FBRM range, which is 1-1000 µm. An oscillatory behavior 390 is detected, for all the measurements, after 10 minutes, indicating that the flow is heterogeneous and, once 391 again, parts of the flowing volume contain more hydrates than others: the transit of hydrates is therefore intermittent. Figure 12(a) shows that the density oscillates in a way that the troughs are around 950 kg/m³, 392 393 which can be a mixture of all the phases, while the crests are at more than 1000 kg/m^3 , which means that 394 there is mostly water on this part of the flow. Density and dielectric are in phase, as the time lag for a 395 maximal Kendall correlation between the two data sets is 4 seconds. As a reminder, the tests are carried 396 out with saline water, which has a density of more than 1000 kg/m³, while hydrates have a density of around 910 kg/m³ and oil has a density of around 815 kg/m³. Therefore, with hydrates, the flow will be 397 398 heterogeneous in the sense that there is a region that consists of water as a single phase and another region 399 containing hydrates with oil flowing dispersed in the water continuous phase. Indeed, in Figure 12(b) one 400 can notice that absolute energy and dielectric are in exact antiphase, i.e., the higher values of absolute 401 energy (regions containing more hydrates) correspond to the troughs of dielectric (regions containing more 402 oil).

The results shown in Figure 12(b) indicate that most of the hydrates entrap the oil phase, as evidence by the absolute energy being nearly 80 times higher when there is oil than when there is only water as a single phase. Although most of the hydrates flow entrapping oil droplets, it is expected that some hydrates may break apart from the oil droplets and flow suspended in the water continuous phase (de Almeida et al., 2022).

409 Figure 12. Experiment at 80% water-cut and 200 L/h (#12 in Table 5), showing the time evolution of (a)
410 dielectric and density, (b) dielectric and absolute energy, (c) dielectric and chord counts, and (d)
411 horizontal pressure drop and flow rate.

Using the method proposed in subsection 4.1 to calculate the time-lagged cross-correlation between density and absolute energy, for this test at 80% water cut, it is shown in Figure 13 that the time lag between the two data sets is about 1.3 minutes, which is approximately half of the period of oscillation of the curves. One can also notice that the lowest correlation occurs near the center, for a time lag of zero. This proves that the parts of the flow with more hydrates (peaks of absolute energy) are the same parts of the flow with more oil (valleys of density).

418

Figure 13. Time-lagged cross-correlation analysis between density and absolute energy for the test at
80% water cut (#12 in Table 5).

421 To gain better understanding of the formation of this oscillatory behavior, Figure 14 shows an enlarged 422 portion of Figure 12(b,c) at two different moments: after a few minutes of hydrate formation (left panels), 423 and close to the end of the experiment (right panels). By analyzing the absolute energy along with the 424 chord counts, one notices a different pattern between the two cases. On the left, hydrates are mostly spread 425 throughout the flow, with a front carrying more particles. In contrast, on the right panel, hydrates are 426 mostly collected at the front, with dispersed hydrates that flow with the continuous phase, while part of 427 the flow will contain mainly water without hydrates or dispersed oil droplets. This is likely due to the difference in velocity between suspended particles of different sizes. Smaller particles accumulate over 428 429 time behind large hydrate particles because they are faster than the larger ones.

Figure 15 shows some images which visually confirm the intermittent behavior captured by the signals. The images on the left were taken during the passage of large agglomerates (the "front" part of the flow containing hydrates entrapping oil droplets), while images on the right are taken during the passage of parts of the flow containing mostly water as a single phase. The images observed on the right contain less and less hydrates over time, which corresponds to the reduction of absolute energy in that region of the flow (see Figure 14(b), between 86.5 and 87.5 minutes).

Figure 14. Comparison between dielectric, absolute energy and chord counts in two 3-minutes intervals
for the experiment at 80% water cut and 200 L/h (#12 in Table 5).

436

440

Figure 15. Images from the HSC for the experiment at 80% water cut and 200 L/h (#12 in Table 5)
showing that parts of the flow contain hydrates all the time (images on the left), while others have a
reduction in the number of particles over time (images on the right).

We conclude the section proposing a conceptual model for hydrate formation and plugging at high water cut in oil-water dispersed systems, based on our experiments at 80% water cut. The model,

446 represented in Figure 16, contains four stages. The first stage is the formation of an oil-in-water dispersion 447 due to the shear caused by the flow. The second step includes the onset of hydrate formation around oil 448 droplets. Hydrates will trap the oil droplets, while part of the hydrates detaches from the oil surfaces and 449 flow suspended in the water continuous phase. In the third stage, due to the difference in velocity between 450 particles of different sizes, the flow gradually becomes heterogeneous. Small particles seem to accumulate 451 more and more behind large particles, since they can flow faster than the large ones. In the fourth stage, 452 as one region of the flow contains an important local hydrates fraction and has a high enough pressure 453 loss due to viscosity, the plug may eventually occur. For this case, hydrate blockage is a gradual event, 454 and it takes longer than for tests at intermediate or low water cut to occur.

In Figure 16, a few images from the camera are shown to illustrate how they compare to the different stages. The first image, on the left, shows the flow before hydrate formation. The second image was taken at the early stages of hydrate formation, when the droplets become darker, as hydrates form around them. The two images on the right are from the two different structures during the last stage, when one part of the flow contains hydrates entrapping oil suspended in water and the other part contains mostly water.

461 Figure 16. Depiction of the conceptual model for hydrate blockage at high water cut.

462 4.5 Estimating the local hydrate fraction

460

It was concluded in previous sections that hydrates are not evenly distributed in the flow. In fact, some parts of the flow contain more hydrates than others, and this uneven distribution is an important cause of plugging. Knowledge of the local hydrate fraction is essential to identify why the plugging occurs, which is necessary for the development of strategies aimed at limiting the risk of plugging. For this, in this subsection, it is proposed a simplified model based on the density measurement obtained from the Coriolis flowmeter to estimate the local fraction of each phase ($\alpha_{l,0}$ for oil, $\alpha_{l,W}$ for water, and $\alpha_{l,H}$ for hydrate) flowing in the loop.

The density measured by the Coriolis is influenced by the densities of the three phases that flow in the pipeline (water, hydrates and oil). This can be mathematically expressed as:

$$\rho = \rho_H \alpha_{l,H} + \rho_W \alpha_{l,W} + \rho_0 \alpha_{l,O} \tag{10}$$

It was explained in previous sections that hydrates are transported preferentially by the water phase at low and intermediate water cut, or preferentially by the oil phase at high water cut. In this sense, it is assumed that the proportion of local fraction of hydrates relative to the carrier phase is uniform in space and equal to the global proportion of those phases in volume. In other words, locally in the flow, the quantity of hydrates relative to the phase that transports the hydrates is everywhere the same.

Therefore, if hydrates are transported by the water phase, it is assumed that, at any given instant, the local fraction of hydrates is proportional to the local water fraction via the global hydrate-to-water volume fraction:

$$\frac{\alpha_{l,H}}{\alpha_{l,W}} = \frac{V_H}{V_W} \tag{11}$$

However, if hydrates are preferentially transported by the oil phase, it is assumed that, at any given time, the local hydrate fraction is proportional to the local oil fraction via the global hydrate-to-oil volume fraction:

$$\frac{\alpha_{l,H}}{\alpha_{l,O}} = \frac{V_H}{V_O} \tag{12}$$

It should be noted that the volumes of the three phases (V_W, V_0, V_H) are time-dependent and must be calculated in advance using the model proposed in section 3. Finally, the sum of all phases results in the simple relation:

$$\alpha_{l,H} + \alpha_{l,W} + \alpha_{l,O} = 1 \tag{13}$$

The model represented by equations (10)-(13) can be used to calculate the local fractions that pass through the Coriolis flowmeter. At low water cut, as illustrated in Figure 8 and Figure 11, where hydrates are transported by the water phase, equations (10), (11) and (13) are used. By combining these equations,
the following expression can deduced for the local hydrate fraction:

$$\alpha_{l,H} = \frac{\rho - \rho_0}{\rho_H - \rho_0 + (\rho_W - \rho_0) \frac{V_W}{V_H}}$$
(14)

490 At high water cut, as illustrated in Figure 16, where hydrates flow preferably with the oil phase, it is 491 used equations (11), (12) and (13), from which the following expression is deduced:

$$\alpha_{l,H} = \frac{\rho - \rho_W}{\rho_H - \rho_W + (\rho_O - \rho_W) \frac{V_O}{V_H}}$$
(15)

492 Figure 17 shows the application of equation (14) for a test at 30% water cut and 200 L/h (#1 in Table 493 5). The hydrate fraction and local hydrate fraction are shown in Figure 17(a), while the absolute energy 494 from sensor 1A is shown in Figure 17(b). The peaks observed in the local hydrate fraction are in phase 495 with the peaks observed in the absolute energy, which indicates that the model is accurately capturing the 496 regions containing more hydrates and regions with more liquid. Despite the final global hydrate fraction 497 in the whole system (in orange) being nearly 7%, the local hydrate fraction can vary between 0 and 498 approximately 18%. It is also important to consider that, due to the porosity, water is trapped inside the 499 hydrate particles and, therefore, the volume fractions of the structures containing hydrates and water (see 500 Figure 8) are expected to be much larger than the calculated local hydrate fractions.

502 Figure 17. Hydrate fractions and absolute energy for a test at 30% water-cut and 200 L/h (#1 in Table 5).

501

Figure 18 shows hydrate fraction, local hydrate fraction and absolute energy for a test at 50% water cut and 400 L/h (#9 in Table 5). The global hydrate fraction in the system just before plugging (orange line, top panel) is approximately 6.6%, but due to the heterogeneous suspension of hydrates and their accumulation in some parts of the liquid, the local hydrate fraction (blue line, top panel) that passes through the Coriolis varies between 0 and 11.3%. Once more, the peaks of the local hydrate fraction are in phase with the peaks of absolute energy (bottom panel).

509

510

Figure 18. Local hydrate fraction and absolute energy for a test at 50% water-cut and 400 L/h (#9 in
Table 5).

The application of equation (15) for a test at 80% water cut and 200 L/h (#12 in Table 5) is shown in Figure 19. The hydrate fraction (orange line, top panel) is approximately 8.5% just before plugging, but due to the heterogeneity of the flow, the local hydrate fraction may be up to 13.3%. One can notice that the peaks observed for local hydrate fraction are in phase with the absolute energy (bottom panel).

The proposed model can be used to predict plugging by monitoring local peaks of the hydrate fraction. However, it is important to discuss the limitations of the model that led to the development of equations (14) and (15). It can only be used when all the hydrates are being transported by one phase only, water or oil. In this sense, further experiments combined with the implementation of other techniques to obtain the local hydrate fraction could validate the proposed model. Despite its limitations, equations (14) and (15) 522 can be used for a rapid estimation of the local hydrate in the system and help to better understand the 523 degree of heterogeneity of the flow.

Figure 19. Apparent hydrate fraction and absolute energy for a test at 80% water-cut and 200 L/h (#12 in
Table 5).

524

527 To conclude the analysis, a methodology to classify the tests according to their heterogeneity is 528 proposed here. It consists of calculating the volume fraction of the flow (relative to the global volume of 529 liquid and hydrates inside the flow loop) that contains 50% of all the hydrates (the upper half of data) 530 formed globally in the system. This means that an integration of the local hydrate fraction (equations (14) 531 or (15)) over time is performed during the last lap around the loop, just before plugging, in a decrescent 532 order from the highest to the lowest hydrate fraction, while keeping track of the volume as a function of 533 the flow rate measured by the Coriolis. For instance, a system that is highly heterogeneous will have 50% 534 of the hydrates accumulated in a very small fraction of the flow.

535 This method is applied to all the tests listed in Table 5. The results are shown in Figure 20, which 536 shows the time for plugging since the onset of hydrate formation as a function of the volume (in fraction) 537 occupied by the 50% of the hydrates (the upper half of data) flowing in the pipeline.

538 The results indicate that tests at high water cut (in red) are less prone to plug and are more 539 homogeneous, with 50% of the hydrates concentrated in a volume fraction between 26% and 34% of the 540 flow volume. As the water cut reduces, the slurry flow regime becomes increasingly heterogeneous and 541 plugs faster than at high water cut. For the tests at intermediate water cut (in blue), hydrates are 542 concentrated in a volume fraction between 17% and 28% of the volume, while for tests at low water cut, 543 they are concentrated in a volume fraction between 10% and 23%.

544

545

Figure 20. Time for plugging as a function of the heterogeneity of the system.

546 Summary of results 4.6

547 As previously discussed, from the literature, the conceptual models of hydrate formation and plugging 548 in oil-water dispersed systems assume that the formation of large particles that cause plugging occurs 549 mainly due to agglomeration. Agglomeration models have been extensively studied. In this work, it was 550 observed, however, that there are other mechanisms that deserve better attention and could be very 551 important for a better understanding of how plugging occurs.

552 Separation of phases has been observed in the tests, whose main outcomes are summarized in Table 553 6. The separation of phases changes the flow regime in a way that presents distinct structures along space, 554 comparable to an intermittent flow. Parts of the flowing volume have higher concentrations of hydrates 555 than others. This can be because structures of different sizes or densities will flow at different velocities, 556 which facilitates the formation of the intermittent flow. It was also observed, especially at low and 557 intermediate water cut, that the dispersed phase rapidly coalesces (large water pockets at low water cut,

or large oil pockets at intermediate water cut). This mechanism is not well understood and requires additional studies. The analysis proposed in section 4.5 showed that this separation of phases is more significant at low and intermediate water cut, and it can lead to plugging in a few minutes.

561

Table 6. Summary of conceptual mechanisms for hydrate blockage from low to high water cuts.

Water cut	Model
Low	A water-in-oil dispersion is the initial flow regime. When hydrates form, they
	break into water droplets. Water droplets coalesce, forming large pockets of
	water with suspended hydrates. Deposition occurs, and hydrates become highly
	concentrated in a portion of the flowing volume, which eventually causes
	plugging.
Intermediate	An oil-in-water dispersion is the flow regime in the beginning. When hydrates
	form, they preferably break into the water phase, while oil droplets coalesce.
	This leads to deposition and concentration of hydrates in parts of the flow,
	eventually causing plugging.
High	An oil-in-water dispersion is the initial flow regime. Hydrates initially form
	around oil droplets. As they continue forming and entrapping the oil droplets,
	part of them breaks into the water continuous phase. Suspended particles seem
	to flow faster than hydrates with entrapped oil, resulting in a gradual transition
	to an intermittent flow.

562

563 **5 Conclusions**

In this work, flow loop tests were carried out with hydrate formation in oil-water flow at 30%, 50% and 80% water cut. New mechanisms on how the slurry flow after hydrate formation is and how hydrate blockage occurs were proposed. The main conclusion from the experiments is that there is a formation of a heterogeneous flow that results from a separation of phases. The resulting flow patterns are characterized by parts of the flow containing more hydrates than others. Deposition was also an important mechanism that contributed to plugging formation.

570 At low water cut, hydrate formation completely modifies from the initial water-in-oil dispersion to a 571 flow pattern composed of large water pockets with hydrates that rapidly plug the system. At intermediate water cut, a rapid separation of phases is observed, disrupting the oil-in-water dispersion and forming a flow with a pattern composed of two main structures: one being a large pocket of oil, and another region containing hydrates suspended in the water phase. At high water-cut, hydrates apparently entrap the oil phase, as it was shown that hydrates flow mostly with the oil phase, although part of the hydrates may break loose and become suspended in the water continuous phase.

A simplified model based on density measurement was proposed to estimate the local hydrate fraction and quantify the heterogeneity of the system. It was shown that tests at high water cut are less heterogeneous, which explains why they flow much longer than at intermediate or low water cut. The extension of the tests to other conditions, the improvement and validation of the model could be conducted in a further work for a better understanding of the mechanism of plugging due to the formation of these heterogeneous flows and the quantification of the transportability of the system.

583

584 ACKNOWLEDGMENTS

585 The authors would like to acknowledge the financial support from TotalEnergies in the framework of 586 the Archimede 5 project. We would like to thank the technical support provided by the staff of Mines 587 Saint-Etienne. We also thank Mr. P. Glénat, who recently retired from TotalEnergies, for sharing his 588 valuable experience and knowledge, which greatly contributed to the development of this work.

589

590 **REFERENCES**

- Bassani, C.L., Barbuto, F.A.A., Sum, A.K., Morales, R.E.M., 2017. Modeling the effects of hydrate wall
 deposition on slug flow hydrodynamics and heat transfer. Appl Therm Eng 114, 245–254.
 https://doi.org/10.1016/j.applthermaleng.2016.11.175
- Bassani, C.L., Melchuna, A.M., Cameirão, A., Herri, J.M., Morales, R.E.M., Sum, A.K., 2019. A
 multiscale approach for gas hydrates considering structure, agglomeration, and transportability under
 multiphase flow conditions: I. phenomenological model. Ind Eng Chem Res 58, 14446–14461.
 https://doi.org/10.1021/acs.iecr.9b01841
- Cardoso, C.A.B.R., Gonçalves, M.A.L., Camargo, R.M.T., 2015. Design options for avoiding hydrates in
 deep offshore production. J Chem Eng Data 60, 330–335. https://doi.org/10.1021/je500601f

- Chen, J., Liu, J., Chen, G.J., Sun, C.Y., Jia, M.L., Liu, B., Si, S., Ren, N., 2014. Insights into methane
 hydrate formation, agglomeration, and dissociation in water + diesel oil dispersed system. Energy
 Convers Manag 86, 886–891. https://doi.org/10.1016/j.enconman.2014.06.056
- Chen, L., Koh, C.A., Sun, B., 2022. Insight into the plugging mechanism in water-continuous hydrate
 slurries. Fuel 316. https://doi.org/10.1016/j.fuel.2022.123360
- 605 Cheong, J.H., 2020. Four ways to quantify synchrony between time series data. 606 https://doi.org/10.17605/OSF.IO/BA3NY
- Colombel, E., Gateau, P., Barré, L., Gruy, F., Palermo, T., 2009. Discussion of Agglomeration
 Mechanisms between Hydrate Particles in Water in Oil Emulsions. Oil and Gas Science and
 Technology 64, 629–636. https://doi.org/10.2516/ogst/2009042
- de Almeida, V., Serris, E., Cameirão, A., Herri, J.-M., Abadie, E., Glénat, P., 2022. Monitoring gas
 hydrates under multiphase flow in a high pressure flow loop by means of an acoustic emission
 technology. J Nat Gas Sci Eng 97, 104338. https://doi.org/10.1016/j.jngse.2021.104338
- Delahaye, A., Fournaison, L., Marinhas, S., Martínez, M.C., 2008. Rheological study of CO2 hydrate
 slurry in a dynamic loop applied to secondary refrigeration. Chem Eng Sci 63, 3551–3559.
 https://doi.org/10.1016/j.ces.2008.04.001
- Ding, L., Shi, B., Liu, Y., Song, S., Wang, W., Wu, H., Gong, J., 2019. Rheology of natural gas hydrate
 slurry: Effect of hydrate agglomeration and deposition. Fuel 239, 126–137.
 https://doi.org/10.1016/j.fuel.2018.10.110
- Ding, L., Shi, B., Lv, X., Liu, Y., Wu, H., Wang, W., Gong, J., 2016. Investigation of natural gas hydrate
 slurry flow properties and flow patterns using a high pressure flow loop. Chem Eng Sci 146, 199–
 206. https://doi.org/10.1016/j.ces.2016.02.040
- 622 Englezos, P., 1993. REVIEWS Clathrate Hydrates, Ind. Eng. Chem. Res.
- Fidel-Dufour, A., Gruy, F., Herri, J.M., 2006. Rheology of methane hydrate slurries during their
 crystallization in a water in dodecane emulsion under flowing. Chem Eng Sci 61, 505–515.
 https://doi.org/10.1016/j.ces.2005.07.001
- Jamaluddin, A.K.M., Kalogerakis, N., Bishnoi, P.R., 1991. Hydrate plugging problems in undersea natural
 gas pipelines under shutdown conditions.
- Khurana, M., Yin, Z., Linga, P., 2017. A review of clathrate hydrate nucleation. ACS Sustain Chem Eng.
 https://doi.org/10.1021/acssuschemeng.7b03238

- Liu, Z., Vasheghani Farahani, M., Yang, M., Li, X., Zhao, J., Song, Y., Yang, J., 2020. Hydrate slurry
 flow characteristics influenced by formation, agglomeration and deposition in a fully visual flow
 loop. Fuel 277. https://doi.org/10.1016/j.fuel.2020.118066
- Melchuna, A., Cameirão, A., Herri, J.M., Glénat, P., 2016. Topological modeling of methane hydrate
 crystallization from low to high water cut emulsion systems. Fluid Phase Equilib 413, 158–169.
 https://doi.org/10.1016/j.fluid.2015.11.023
- 636 Olajire, A.A., 2020. Flow assurance issues in deep-water gas well testing and mitigation strategies with 637 respect to gas hydrates deposition in flowlines _ А review. J Mol Liq. https://doi.org/10.1016/j.molliq.2020.114203 638
- Pham, T.K., Cameirão, A., Melchuna, A., Herri, J.M., Glénat, P., 2020. Relative pressure drop model for
 hydrate formation and transportability in flowlines in high water cut systems. Energies (Basel) 13.
 https://doi.org/10.3390/en13030686
- Schober, P., Schwarte, L.A., 2018. Correlation coefficients: Appropriate use and interpretation. Anesth
 Analg 126, 1763–1768. https://doi.org/10.1213/ANE.0000000002864
- Shaibu, R., Sambo, C., Guo, B., Dudun, A., 2021. An assessment of methane gas production from natural
 gas hydrates: Challenges, technology and market outlook. Advances in Geo-Energy Research.
 https://doi.org/10.46690/ager.2021.03.07
- Sinquin, A., Palermo, T., Peysson, Y., 2004. Rheological and Flow Properties of Gas Hydrate
 Suspensions, Oil & Gas Science and Technology-Rev. IFP. https://doi.org/10.2516/ogst:2004005
- Sloan, D., Koh, C., Sum, A.K., 2011. Natural Gas Hydrates in Flow Assurance. Gulf Professional Printing.
 https://doi.org/10.1016/C2009-0-62311-4
- 651 Sloan, E.D., 2003. Fundamental principles and applications of natural gas hydrates. Nature 426, 353–359.
- 652 Sloan, E.D., Koh, C.A., 2008. Clathrate Hydrates of Natural Gases, Third Edition. ed. CRC Press.
- Song, G.C., Li, Y.X., Wang, W.C., Liu, S., Wang, X.Y., Shi, Z.Z., Yao, S., 2019. Experimental
 investigation on the microprocess of hydrate particle agglomeration using a high-speed camera. Fuel
 237, 475–485. https://doi.org/10.1016/j.fuel.2018.09.155
- Stoner, H.M., Koh, C.A., 2021. Perspective on the role of particle size measurements in gas hydrate
 agglomeration predictions. Fuel. https://doi.org/10.1016/j.fuel.2021.121385
- 658 Straume, E.O., Kakitani, C., Merino-Garcia, D., Morales, R.E.M., Sum, A.K., 2016. Experimental study
- of the formation and deposition of gas hydrates in non-emulsifying oil and condensate systems. Chem
- 660 Eng Sci 155, 111–126. https://doi.org/10.1016/j.ces.2016.07.046

- Sum, A.K., Koh, C.A., Sloan, E.D., 2009. Clathrate hydrates: From laboratory science to engineering
 practice. Ind Eng Chem Res. https://doi.org/10.1021/ie900679m
- 663 Turner, D.J., 2005. Clathrate Hydrate Formation in Water-in-oil Dispersions. Golden.
- 664 Wang, Z., Tong, S., Wang, C., Zhang, J., Fu, W., Sun, B., 2020. Hydrate deposition prediction model for
- deep-water gas wells under shut-in conditions. Fuel 275. https://doi.org/10.1016/j.fuel.2020.117944