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Context and problem formulation

Functions defined over clouds of points

® Metamodel functions assumed to be time consuming.

® In this presentation, we consider functions having inputs in the form of bag of vectors (or
point clouds).

® These types of functions are encountered in many domains, such as: image processing,
design of experiments and optimization, ...

In the following we consider the notations below:

® X: space of all sets of n unordered points {xg,...,x,} where x; ¢ RY , i =1,... nand
Nin < n < Nmax-
e X € X is a set of points and will be referred to as a cloud of points.
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Mixed aspect: no order and varying size

Comparing two clouds of points with different sizes

The functions of interest are permutation-invariant with respect to their inputs.
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Figure: Two clouds of points in d = 2 dimensions with n = 15 points for the blue cloud and n = 10 points for

the red one.
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Example of a related industrial problem

A set of points model

e Each point (vector) represents the
positions of a turbine.

® The set of points corresponds to the
positions of all the turbines.

¢ Find an optimal layout of turbines
minimizing the wake effects.
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Use of kernels methods, related works and topics

Kernel methods
® Need of regression on such complex input functions.

® Use of kernel methods for their capacity of extending many statistical inference tools on
non-vectorial data.

Learning functions defined over sets of objects with kernels

® Kernels on bags of vectors, applied to SVM Classification on images in [6].

® Same technique to define kernel on graphs by averaging over kernels between paths in [10]
to measure similarity between shapes.

¢ (Classification on text data with a set representation view in [11].

® A kernel between sets of points is used in [4] to optimize the layout of a wind farm.
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The main content of this presentation

Focus of this presentation
® Deal with varying-size clouds of points as the global input of interest.
e Adopt Gaussian process regression: using kernel trick, closed form expression of lot of

statistics (variance of prediction).

® Show numerical performances of Gaussian processes depending on the kernel on new
test functions.

® Discuss the ability of extrapolation of the predictors: testing on rare data.
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Semi-definite positive kernels

Feature Mapping, Aronszajn (1950)

Theoreme, Aronszajn [1]
k is a positive definite kernel if and only if there exists a Hilbert space H, and a function

¢+ X — H such that VX, X', k(X, X') = (¢(X), #(X"))

Substitution with Exponential

I
|
A\

e Firstly, we consider covariance kernels of the form: k(X, X’) = ozexp(—w(X X ))

® Semi-definite positiveness is equivalent to W being Hermitian (symmetric in the real case)
and conditionally negative definite [2].

® In other words, for any M distinct points and ¢ € RM with - ¢; = 0, the following
inequality must hold: SV, J-Ail cigV(Xi, X;) <0

e \We can define Gaussian process over clouds of points with any kernel satisfying the
above conditions. )
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Modeling clouds of points

Through measures
Suppose we have two clouds X = {xi,..xp}, X' = {x{, ..., x},}
e Define X := Py = %Z;’:l Jx, and X = Py = % jm:1 6X1g, the respective discrete
measures.
® Note that this mapping is bijective and there is no ambiguity in the modeling.

Through vectors
o X = (wi(X), ..., wo(X)) and X’ := (w1(X’), ..., wo(X")) can be two vectors of
characteristic features of the clouds.

| .

What distances between X and X’ or mappings ?

With appropriate distances between X and X’ (or mapping into an RKHS), we can define

kernels between X and X'. )
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Kernel through measures and vectors

Woasserstein Distance

For two measures 1 and v defined over a space M, the Wasserstein distance of positive cost
function p and order p is defined as follows: Wy = infcn(uu) [gu g 20 X )Pd7(x, X'). In the
following p is the Euclidean distance and p = 2.

v

Sliced Wasserstein Distance (see Appendix)

® et S={a € R? ||a|| = 1}. Consider the projected empirical measure of Px on the line
directed by o € S denoted o * Px with: a x Px = %Ele d<xi o>
* SWZ(Px, Px:) = [¢W3(a * Px,ax Px/)da. Implementation using POT [5].

2
® The covariance kernel k(X, X’) = a%xp(—%) is symmetric and semi-definite

positive as in Carriere, Cuturi, and Oudot [3]. It will be denoted SWS.
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Kernel through measures and vectors

Embedding based kernel: MMD and n-MeanMap

e Consider the embedding map into an RKHS # (equipped with k) as defined in Muandet
et al. [8] Px —> UX(') = f Px(X)kq.[(X, )dX

o k(X,X') = <Wl%|l’ Hl‘:ﬁ)ﬂ is a semi-definite positive (s.d.p) kernel denoted n-MeanMap.

e |t is the same case with k(X, X’) = azexp(—”m—;ggﬂl%) denoted as MMD.

® Note that kg is defined over the space of the vectors. It can belong to Matérn kernels
family for instance.

Vector-based, relevant-features kernel

| A\

® We consider a last kernel of the form k(X, X') = o®exp (= Y7, 'W'(X);{Z'(X')'z) with
J

(wi(X), ..., wo(X)) a vector of features. Among the features we can have the mean, the
diameter, the number of points or spectral information. It is denoted RFK.

v
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Design of experiments, learning process and test clouds

Random cloud design and learning process

The random cloud design of experiments is implemented as follows:

® The size of the design is chosen proportionally to the average of the cloud of points sizes.
® The size of each cloud is randomly picked in n € {Nmin, - .., Nmax} and each point is
uniformly sampled in the domain of the function.

® The hyper-parameters of the kernels are found by maximizing the log-likelihood of the
observed (design) data.

Test on random (normal) and geometrically modified clouds of points (extrapolation)

® The random test is of the same type as the design. The size of test clouds is 1000.

® To assess the exploratory abilities of the kernels, we evaluate their prediction performance
on clouds of points modified geometrically with dilation and rotation.
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lllustration of geometrical transformation
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Figure: Illustration of the dilation transformation of clouds: initial cloud at top left with its mean (red bullet),

the 5 isotropic dilations at top right, 5 vertical dilations at bottom left and 5 horizontal dilations at bottom

right. Note that the horizontal and vertical ranges vary between the plots.
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Test function

Inspired from wind-farms (see Appendix for other test functions)

Mimicking wind farms

® We consider the following family of test functions mimicking wind-farms productions

Fo({X1, ..., Xn}) = Z( 1T ij,g(xi)) fo(x;) (1)
AT
where :

® f.0(xi) expresses the energy loss over x; that is caused by x;. Its parametrized by x; and
6 € (0,27) (the direction of wind)

® fy is a constant and corresponds to maximal production of x; (if it was alone)

® x; € R? and n € {10, 11, .., 20}
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Some examples of £, ¢(.)

Figure: Representation of f, with & = 90° at top left, § = 45° top right, § = 0° bottom left, and averaged

directions at bottom right. We denote the corresponding functions respectively Foo, Fas, Fo, Faod.
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Q? values on wind-farm proxy: random and rotated clouds of

points.

The Q? are high on random and rotated clouds of points.

Functior—Xernels | MMD | n-MeanMap | RFK | Slice-Wass
Fo 0.906 | 0.647 0.897 | 0.828
Fas 0.868 | 0.623 0.893 | 0.821
Foo 0.899 | 0.639 0.871 | 0.843
Faod 0.906 | 0.734 0.799 | 0.824
Table: Q? of 4 kernels on all the wind farm proxy functions, the testing clouds come from a random design.
Function—Remels | MMD | RFK | Slice-Wass
Fo 0.808 | 0.863 | 0.780
Fus 0.780 | 0.877 | 0.802
Foo 0.800 | 0.881 | 0.797
Faod 0.701 | 0.771 | 0.775

Table: Q2 observed on rotated clouds of points: lot of RFK features are rotation-invariant.
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Function—Kemels | MMD | RFK | Slice-Wass
Fo 0.933 | 0.952 | 0.893
Fas 0.939 | 0.954 | 0.933
Foo 0.942 | 0.931 | 0.879
Fa0d 0.940 | 0.974 | 0.975
Table: Q? observed on isotropically dilated clouds of points
Functigi—Kemels | MMD | RFK | Slice-Wass
Fo 0.05 | -15.535 | -10.033
Fas 0.519 | -0.879 | 0.397
Foo 0.518 | 0.711 0.631
Faod 0.103 | -2.415 | -0.827

Table: Q? observed on horizontally dilated clouds of points

Note the poor performances yielded on horizontally dilated clouds of points !

Q? values on wind-farm proxy: isotropic and horizontal dilation
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Predictors vs functions: horizontal dilation

The functions do not vary a lot with horizontal dilations.

— RFK
— MMD
] — Slice_Wass
— Prod F.0

— RFK
— MMD
] — slice_Wass
—— Prod_F_45

] — Slice_Wass
—— Prod_F_90

— Slice_Wass
— Prod_F_a0d

Figure: Wind farm proxy outputs as a function of the horizontal dilation ¢: function output in green, Gaussian
process with RFK, MMD and Slice-Wass kernels in black, red, and blue. Wind orientations are 0°, 45°, 90° and
the 40 directions (i.e., Fo, Fas, Foo, Faoq) from left to right and top to bottom. The curves are averaged over 50
clouds.
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MMD-based kernels: hyper-parameters adaptation

MMD-based kernels adapt to geometrical properties of wind-farms functions through the
hyper-parameters of the embedding kernel.

I 0° direction
Emm 45 direction
90 direction
N Average direction

‘e

Figure: Vectors of length scales of the MMD embedding Matérn 5/22kernel jearned by maximum likelihood on
the wind farm proxy for various wind directions. Left: reminder of the turbine contributions for winds at
90°,45°,0° and 40 directions (left to right, top to bottom). Right: (#1,62)" vectors of length scales of the
embedding kernel.

Vector v =(theta_1,theta_2)
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Conclusions

Modeling a cloud as a discrete measure
® Modeling a cloud as a discrete measure helps having more possibilities of defining kernels
and can yield interpretable results.
Different kernels
® MMD based kernels yield the best results on many examples based on their embedding
representation.
® |n clouds of points context, MMD based kernels seem to be more adapted to functions
with different directions of variations whereas the others are not.
® The extrapolation shows that based on the anisotropic variation of functions, the
performances of prediction are very different.
Design of experiments
® |t can be interesting to define new criteria for design of experiments over clouds of points
depending on the application.
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Test for other dimensions d > 3.

Study the size of the design vs performances.

Define criteria of design of experiments over clouds of points.

Extend metamodeling to other related problems such as Bayesian optimization.
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Distance between laws: Wasserstein Distance

Substitution with Hilbertian distance: Wasserstein Distance in 1D Case

¢ Definition and properties see Carriere, Cuturi, and Oudot [3] and Kolouri, Zou, and Rohde
[7]

® Let 1 and v be two nonnegative measures in R with p(R) = v(R) = 1. The Wasserstein
distance of order 2 between p and v is defined as folllows:

2 2 12 /
WZ (:ua V) PG;—ln(;L,I/) / /I‘KXR |X X | ( X, dx )

Let Cu(x) = [*__du, Cu(x) = [*__ dv their cumulative distribution function.
Pseudo-inverse: Vr € [0,1],C;;*(r) = min,{x € RU{—o00} : C\(r) > x}
Then W3(u,v) = ||C;1 - C,j1||%p([0 1)» see Peyré, Cuturi, et al. [9]

W3(u, v) is symmetric and conditionally negative definite. (Kolouri, Zou, and Rohde [7])

If i and v are defined in R x R, the above condition is no longer guaranteed.
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Other test functions

Mindist and Inertia

Mindist Function: returns the shortest distance between points as value

O minDist({Xh ~-~7Xn}) = mini;éj ||Xi - X.i||'
Inertia function

> Finert({xla ...,Xn}) = Z?:l HX,‘ _ )_<H2 with )_< = %27:1 2
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Geometrically modified clouds of points

For a given cloud of points X = {xi, ...,x,}, we note respectively, X¢, X9, X9, X3, its rotated,
isotropically dilated, horizontally dilated and vertically dilated transformations. We have

X? = {Rox1 + (I = R))X, ..., Roxn + (I — R9)X} |
X3 = {Dsx1 4+ (I — D§)X, ..., Dsxn + (I — Ds) X},
X3, = {Dspx1 + (I = Dsp) X, ..., Dspxn + (I — Dsp) X},
X3, = {Dsyx1 + (I — Ds,)X, ..., Dsyxn + (I — Ds, )X} .

Rotations and dilations are done with respect to the point cloud means, X. In addition,

cos@ —sinf 6 0 6 0 10
Ro_[sin@ cos@]’D‘s_{O 6]’D6h_[0 1]’D5"_[0 (5]’

where 0 and § are the rotation and dilation factors.
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clouds of points

Kernels

Function MMD | n-MeanMap | RFK | Slice-Wass

Finert 0.734 | 0.506 0.988 | 0.905

Fminpist -0.051 | 0.035 0.997 | 0.587
Table: Summary of the Q2 observed on Fpinpist and Finert
Functigi—emels | MMD | RFK | Slice-Wass
Finert 0.901 | 0.982 | 0.845
FminDist -0.802 | 0.998 | 0.280
Table: Summary of the Q? observed on Fpinpist and Finert
Function—Kemels | MMD | RFK | Slice-Wass
Finert 0.422 | 0.988 | 0.854
FrminDist -0.025 | 0.998 | 0.206

Table: Q2 observed on rotated clouds of points for the Finer and Fominpise functions.

Q? values on Inertia and Mindist: random, dilated and rotated

29 /25



	Context and problem 
	Gaussian process over clouds of points
	Conclusions and perspectives
	Bibliography
	Appendix

