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Context and problem formulation

Functions defined over clouds of points
• Metamodel functions assumed to be time consuming.
• In this presentation, we consider functions having inputs in the form of bag of vectors (or

point clouds).
• These types of functions are encountered in many domains, such as: image processing,

design of experiments and optimization, . . .

In the following we consider the notations below:
• X : space of all sets of n unordered points {x1, . . . , xn} where xi ∈ Rd , i = 1, . . . , n and
nmin ≤ n ≤ nmax.

• X ∈ X is a set of points and will be referred to as a cloud of points.
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Mixed aspect: no order and varying size

Comparing two clouds of points with different sizes
The functions of interest are permutation-invariant with respect to their inputs.
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Figure: Two clouds of points in d = 2 dimensions with n = 15 points for the blue cloud and n = 10 points for
the red one.
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Example of a related industrial problem

A set of points model
• Each point (vector) represents the

positions of a turbine.
• The set of points corresponds to the

positions of all the turbines.
• Find an optimal layout of turbines

minimizing the wake effects.
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Use of kernels methods, related works and topics

Kernel methods
• Need of regression on such complex input functions.
• Use of kernel methods for their capacity of extending many statistical inference tools on

non-vectorial data.

Learning functions defined over sets of objects with kernels
• Kernels on bags of vectors, applied to SVM Classification on images in [6].
• Same technique to define kernel on graphs by averaging over kernels between paths in [10]

to measure similarity between shapes.
• Classification on text data with a set representation view in [11].
• A kernel between sets of points is used in [4] to optimize the layout of a wind farm.
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The main content of this presentation

Focus of this presentation
• Deal with varying-size clouds of points as the global input of interest.

• Adopt Gaussian process regression: using kernel trick, closed form expression of lot of
statistics (variance of prediction).

• Show numerical performances of Gaussian processes depending on the kernel on new
test functions.

• Discuss the ability of extrapolation of the predictors: testing on rare data.
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Semi-definite positive kernels

Feature Mapping, Aronszajn (1950)
Theoreme, Aronszajn [1]
k is a positive definite kernel if and only if there exists a Hilbert space H, and a function
ϕ : X 7−→ H such that ∀X ,X ′, k(X ,X ′) = ⟨ϕ(X ), ϕ(X ′)⟩H.

Substitution with Exponential

• Firstly, we consider covariance kernels of the form: k(X ,X ′) = σ2exp(−Ψ(X ,X ′)
2θ2 ).

• Semi-definite positiveness is equivalent to Ψ being Hermitian (symmetric in the real case)
and conditionally negative definite [2].

• In other words, for any M distinct points and c ∈ RM with
∑M

i=1 ci = 0, the following
inequality must hold:

∑M
i=1

∑M
j=1 cicjΨ(Xi ,Xj) ≤ 0

• We can define Gaussian process over clouds of points with any kernel satisfying the
above conditions.
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Modeling clouds of points

Through measures
Suppose we have two clouds X = {x1, ..xn}, X ′ = {x ′1, ..., x ′m}
• Define X̃ := PX = 1

n

∑n
i=1 δxi and X̃ ′ := P ′

X = 1
m

∑m
j=1 δx ′j , the respective discrete

measures.
• Note that this mapping is bijective and there is no ambiguity in the modeling.

Through vectors
• X̃ := (w1(X ), ...,wo(X )) and X̃ ′ := (w1(X

′), ...,wo(X
′)) can be two vectors of

characteristic features of the clouds.

What distances between X̃ and X̃ ′ or mappings ?

With appropriate distances between X̃ and X̃ ′ (or mapping into an RKHS), we can define
kernels between X and X ′.

9 / 25



Kernel through measures and vectors

Wasserstein Distance
For two measures µ and ν defined over a space M, the Wasserstein distance of positive cost
function ρ and order p is defined as follows: W p

p = infπ∈Π(µ,ν)
∫
M×M ρ(x , x ′)pdπ(x , x ′). In the

following ρ is the Euclidean distance and p = 2.

Sliced Wasserstein Distance (see Appendix)
• Let S = {α ∈ R2, ||α|| = 1}. Consider the projected empirical measure of PX on the line

directed by α ∈ S denoted α ∗ PX with: α ∗ PX = 1
n

∑n
i=1 δ<xi ,α>

• SW 2
2 (PX ,PX ′) =

∫
S W2

2 (α ∗ PX , α ∗ PX ′)dα. Implementation using POT [5].

• The covariance kernel k(X ,X ′) = σ2exp(−SW 2
2 (PX ,PX ′ )

2θ2 ) is symmetric and semi-definite
positive as in Carriere, Cuturi, and Oudot [3]. It will be denoted SWS.
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Kernel through measures and vectors

Embedding based kernel: MMD and n-MeanMap
• Consider the embedding map into an RKHS H (equipped with kH) as defined in Muandet

et al. [8] PX 7−→ µX (.) =
∫
PX (x)kH(x , .)dx .

• k(X ,X ′) = ⟨ µX
||µX || ,

µX ′
||µX ′ ||⟩H is a semi-definite positive (s.d.p) kernel denoted n-MeanMap.

• It is the same case with k(X ,X ′) = σ2exp(− ||µX−µX ′ ||2H
2θ2 ) denoted as MMD.

• Note that kH is defined over the space of the vectors. It can belong to Matèrn kernels
family for instance.

Vector-based, relevant-features kernel

• We consider a last kernel of the form k(X ,X ′) = σ2 exp
(
−
∑o

j=1
|wj (X )−wj (X

′)|2
θ′j

2

)
with

(w1(X ), ...,wo(X )) a vector of features. Among the features we can have the mean, the
diameter, the number of points or spectral information. It is denoted RFK.

11 / 25



Design of experiments, learning process and test clouds

Random cloud design and learning process
The random cloud design of experiments is implemented as follows:

• The size of the design is chosen proportionally to the average of the cloud of points sizes.
• The size of each cloud is randomly picked in n ∈ {nmin, . . . , nmax} and each point is

uniformly sampled in the domain of the function.
• The hyper-parameters of the kernels are found by maximizing the log-likelihood of the

observed (design) data.

Test on random (normal) and geometrically modified clouds of points (extrapolation)
• The random test is of the same type as the design. The size of test clouds is 1000.
• To assess the exploratory abilities of the kernels, we evaluate their prediction performance

on clouds of points modified geometrically with dilation and rotation.
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Illustration of geometrical transformation
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Figure: Illustration of the dilation transformation of clouds: initial cloud at top left with its mean (red bullet),
the 5 isotropic dilations at top right, 5 vertical dilations at bottom left and 5 horizontal dilations at bottom
right. Note that the horizontal and vertical ranges vary between the plots. 13 / 25



Test function

Inspired from wind-farms (see Appendix for other test functions)
Mimicking wind farms
• We consider the following family of test functions mimicking wind-farms productions

Fθ({x1, ..., xn}) =
n∑

i=1

( ∏
j , j ̸= i

fxj ,θ(xi)

)
f0(xi) (1)

where :
• fxj ,θ(xi) expresses the energy loss over xi that is caused by xj. Its parametrized by xj and

θ ∈ (0, 2π) (the direction of wind)

• f0 is a constant and corresponds to maximal production of xi (if it was alone)

• xi ∈ R2 and n ∈ {10, 11, .., 20}
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Some examples of fx ,θ(.)
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Figure: Representation of fp with θ = 90◦ at top left, θ = 45◦ top right, θ = 0◦ bottom left, and averaged
directions at bottom right. We denote the corresponding functions respectively F90, F45, F0, F40d .
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Q2 values on wind-farm proxy: random and rotated clouds of
points.
The Q2 are high on random and rotated clouds of points.

Function Kernels MMD n-MeanMap RFK Slice-Wass
F0 0.906 0.647 0.897 0.828
F45 0.868 0.623 0.893 0.821
F90 0.899 0.639 0.871 0.843
F40d 0.906 0.734 0.799 0.824

Table: Q2 of 4 kernels on all the wind farm proxy functions, the testing clouds come from a random design.

Function
Kernels MMD RFK Slice-Wass

F0 0.808 0.863 0.780
F45 0.780 0.877 0.802
F90 0.800 0.881 0.797
F40d 0.701 0.771 0.775

Table: Q2 observed on rotated clouds of points: lot of RFK features are rotation-invariant.
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Q2 values on wind-farm proxy: isotropic and horizontal dilation

Function
Kernels MMD RFK Slice-Wass

F0 0.933 0.952 0.893
F45 0.939 0.954 0.933
F90 0.942 0.931 0.879
F40d 0.940 0.974 0.975

Table: Q2 observed on isotropically dilated clouds of points

Function
Kernels MMD RFK Slice-Wass

F0 0.05 -15.535 -10.033
F45 0.519 -0.879 0.397
F90 0.518 0.711 0.631
F40d 0.103 -2.415 -0.827
Table: Q2 observed on horizontally dilated clouds of points

Note the poor performances yielded on horizontally dilated clouds of points !
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Predictors vs functions: horizontal dilation
The functions do not vary a lot with horizontal dilations.
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Figure: Wind farm proxy outputs as a function of the horizontal dilation δ: function output in green, Gaussian
process with RFK, MMD and Slice-Wass kernels in black, red, and blue. Wind orientations are 0◦, 45◦, 90◦ and
the 40 directions (i.e., F0, F45, F90, F40d) from left to right and top to bottom. The curves are averaged over 50
clouds.
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MMD-based kernels: hyper-parameters adaptation
MMD-based kernels adapt to geometrical properties of wind-farms functions through the
hyper-parameters of the embedding kernel.
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Figure: Vectors of length scales of the MMD embedding Matérn 5/2 kernel learned by maximum likelihood on
the wind farm proxy for various wind directions. Left: reminder of the turbine contributions for winds at
90◦,45◦,0◦ and 40 directions (left to right, top to bottom). Right: (θ1, θ2)

⊤ vectors of length scales of the
embedding kernel.
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Conclusions

Modeling a cloud as a discrete measure
• Modeling a cloud as a discrete measure helps having more possibilities of defining kernels

and can yield interpretable results.
Different kernels
• MMD based kernels yield the best results on many examples based on their embedding

representation.
• In clouds of points context, MMD based kernels seem to be more adapted to functions

with different directions of variations whereas the others are not.
• The extrapolation shows that based on the anisotropic variation of functions, the

performances of prediction are very different.
Design of experiments
• It can be interesting to define new criteria for design of experiments over clouds of points

depending on the application.
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Perspectives

• Test for other dimensions d ≥ 3.
• Study the size of the design vs performances.
• Define criteria of design of experiments over clouds of points.
• Extend metamodeling to other related problems such as Bayesian optimization.
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Thanks For Your Attention !
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Distance between laws: Wasserstein Distance

Substitution with Hilbertian distance: Wasserstein Distance in 1D Case
• Definition and properties see Carriere, Cuturi, and Oudot [3] and Kolouri, Zou, and Rohde

[7]
• Let µ and ν be two nonnegative measures in R with µ(R) = ν(R) = 1. The Wasserstein

distance of order 2 between µ and ν is defined as folllows:

W2
2 (µ, ν) = inf

P∈Π(µ,ν)

∫ ∫
R×R

|x − x ′|2P(dx , dx ′)

• Let Cµ(x) =
∫ x
−∞ dµ, Cν(x) =

∫ x
−∞ dν their cumulative distribution function.

• Pseudo-inverse: ∀r ∈ [0, 1], C−1
µ (r) = minx{x ∈ R ∪ {−∞} : Cµ(r) ≥ x}

• Then W2
2 (µ, ν) = ||C−1

µ − C−1
ν ||2Lp([0,1]), see Peyré, Cuturi, et al. [9]

• W2
2 (µ, ν) is symmetric and conditionally negative definite. (Kolouri, Zou, and Rohde [7])

• If µ and ν are defined in R× R, the above condition is no longer guaranteed.
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Other test functions

Mindist and Inertia
Mindist Function: returns the shortest distance between points as value
• FminDist({x1, ..., xn}) = mini ̸=j ||xi − xj ||.

Inertia function
• Finert({x1, ..., xn}) =

∑n
i=1 ||xi − X̄ ||2 with X̄ = 1

n

∑n
i=1 xi
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Geometrically modified clouds of points

For a given cloud of points X = {x1, ..., xn}, we note respectively, X θ
r , X δ

d , X δ
dh, X

δ
dv its rotated,

isotropically dilated, horizontally dilated and vertically dilated transformations. We have

X θ
r = {Rθx1 + (I − Rθ)X̄ , ...,Rθxn + (I − Rθ)X̄} ,

X δ
d = {Dδx1 + (I − Dδ)X̄ , ...,Dδxn + (I − Dδ)X̄} ,

X δ
dh = {Dδhx1 + (I − Dδh)X̄ , ...,Dδhxn + (I − Dδh)X̄} ,

X δ
dv = {Dδvx1 + (I − Dδv )X̄ , ...,Dδvxn + (I − Dδv )X̄} .

Rotations and dilations are done with respect to the point cloud means, X̄ . In addition,

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
,Dδ =

[
δ 0
0 δ

]
,Dδh =

[
δ 0
0 1

]
,Dδv =

[
1 0
0 δ

]
,

where θ and δ are the rotation and dilation factors.
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Q2 values on Inertia and Mindist: random, dilated and rotated
clouds of points

Function
Kernels MMD n-MeanMap RFK Slice-Wass

Finert 0.734 0.506 0.988 0.905
FminDist -0.051 0.035 0.997 0.587

Table: Summary of the Q2 observed on FminDist and Finert

Function
Kernels MMD RFK Slice-Wass

Finert 0.901 0.982 0.845
FminDist -0.802 0.998 0.280
Table: Summary of the Q2 observed on FminDist and Finert

Function
Kernels MMD RFK Slice-Wass

Finert 0.422 0.988 0.854
FminDist -0.025 0.998 0.206

Table: Q2 observed on rotated clouds of points for the Finert and FminDist functions. 29 / 25
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