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The dislocation microstructure developing during plastic deformation strongly influences the
stress-strain properties of crystalline materials. Resent theoretical investigations based on the 2D
continuum theory of straight parallel edge dislocations were able to predict a periodic dislocation
microstructure. The results obtained, however, can only be considered as a very first step toward
the understanding of the origin of dislocation patterning. One of the most challenging problems is
the modeling of the formation of the fractal like dislocation microstructure. So, it is crucial to de-
termine the statistical properties of such a structure developing at ideal multiple slip orientation. In
the paper, by X-ray line profile analysis and the novel method of high resolution electron backscat-
ter diffraction (HR-EBSD) a complex experimental characterization of dislocation microstructure
developing in uniaxially compressed Cu single crystals is presented. With these methods, the maps
of the internal stress, the Nye tensor, and the geometrically necessary dislocation (GND) density
were determined at different load levels. It is found from the fractal analysis of the GND maps that
the fractal dimension of the cell structure is decreasing with increasing average spatial dislocation
density fluctuation. Moreover, it is shown that the evolution of different types of dislocations can
be successfully monitored with the HR-EBSD based technique.

PACS numbers: 62.25.-g, 61.72.Lk, 64.70.qj, 45.70.Ht

I. INTRODUCTION

It was first observed nearly 60 years ago that disloca-
tions created during the plastic deformation of crystalline
materials tend to form different patterns with the mor-
phology depending on the mode, temperature and rate
of deformation. There is an equally longstanding discus-
sion regarding the physical origin of these patterns. A
large variety of approaches have been proposed to model
the instability leading to the spatial variation of the dis-
location density, many of which are based upon analo-
gies with pattern formation in other physical systems. It
has been argued that dislocation patterns can be under-
stood by the tendency toward the minimization of some
kind of elastic energy functional (Hansen and Kuhlmann-
Wilsdorf1, Holt2, Rickman and Vinas3), but the theo-
ries have never been worked out in details. Another ap-
proach proposed is to model the dislocation patterning as
a reaction-diffusion phenomenon of the mobile and immo-
bile dislocation densities (Walgraef and Aifantis4, Pontes
et al.5). The fundamental problem with this approach
is that it is completely phenomenological, i.e., one can
not see how the different terms appearing in the evolu-
tion equations are related to the properties of individual
dislocations.

In a recent series of papers6–8 a new theoretical ap-

proach based on a continuum theory of dislocations, de-
rived from the evolution of individual dislocations, was
proposed for modeling the patterning process. Accord-
ing to the theory the main source of the instability is the
nontrivial mobility of the dislocations caused by the fi-
nite flow stress, while the characteristic length scale of the
pattern is selected by the “diffusion” like terms appear-
ing in the theory due to dislocation correlation effects.
Since, however, the theory is developed for a rather ide-
alized 2D dislocation configuration, further experimental
and theoretical investigations are needed to create a gen-
eral comprehensive theory of dislocation patterning.

One of the most challenging issues is the characteri-
zation and modeling of the self-similar fractal-like dislo-
cation cell structure formed in FCC crystals oriented for
ideal multiple slip (for details see the pioneering works
of Zaiser and Hähner9,10). For developing an appropri-
ate theory of the problem one should determine experi-
mentally the statistical properties of the fractal-like dis-
location microstructures. Since copper single crystal is
an easily processable model material, this paper reports
about detailed experimental investigations performed on
compressed Cu single crystals oriented for ideal multiple
slip. In order to get a complex picture of the dislocation
cell structure, as a first step, the earlier investigations
performed by X-ray line profile analysis and TEM in-
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vestigations on samples compressed up to different stress
levels (Székely et al.11) were revisited. It should be noted,
that with the X-ray detectors available nowadays one can
achieve much better signal to noise ratio than earlier.
This improves considerably the accuracy of the param-
eters obtained from the X-ray profiles. Moreover, as a
relatively recently developed method high-angular reso-
lution electron backscatter diffraction (HR-EBSD) inves-
tigations were also performed on the samples. With this,
the maps of the internal stress and the geometrically nec-
essary dislocation (GND) density developing in the sam-
ples could be determined. Some of the aspects of the ap-
plied methods are developed exclusively for the specific
requirements of the addressed problem, consequently in
the first half of the paper the applied experimental meth-
ods are explained in detail. In the second part the ob-
tained experimental results are discussed. The obtained
statistical results (e.g. fractal dimension) have been con-
firmed by the simulations done by Bakó and Hoffelner12,
which predict the formation of dislocation cell structures
with non-trivial fractal dimension in the absence of climb
for multiple slip oriented FCC materials. Nevertheless,
the earlier TEM observations by courtesy of Essmann in
the work of Hähner and Zaiser13 on uniaxially deformed
copper single crystals validates many of our results re-
garding the statistical parameters.

II. EXPERIMENTAL METHODS

A. Sample preparation

In order to study the dislocation cell formation mech-
anism in face-centered cubic (FCC) materials, a high pu-
rity copper single crystal was used. For the compression
tests rectangular prism shaped samples with dimensions
of 2.5× 2.5× 5 mm3 were cut with an electrical discharge
machine (EDM). The orientation of each surface was of
(100) type. For removing the amorphous layer created by
EDM the specimens were etched in a 30% HNO3 solution
for 10 minutes. To reduce the initial dislocation density
the samples were heat treated at 600 oC for 6 hours in
a vacuum furnace. The average dislocation density in an
undeformed sample was determined by X-ray line profile
analysis (XPA) (the details of the method applied are ex-
plained below in Sec. II B). It was found that it is below
the 1× 1013 m−2 lower limit that one can determine by
X-ray profile analysis.

The samples were compressed from the direction of the
squared shaped surfaces ensuring uniaxial deformation in
the [001] direction corresponding to ideal multiple slip.
The EBSD and XPA measurements were performed on
the [010] surface.

Six different samples with the same size and orienta-
tion were deformed up to different strain levels. The
resolved shear stress τ∗ vs. strain ε curve of the sample
with the highest terminal deformation is shown in Fig. 1.
The black dots on the curve mark the maximum stresses

and strain levels of the 6 different samples. (Up to the
maximum stress levels the stress-strain curves obtained
on the other samples follow the same curve as the one
plotted within 5% of error.) The black line in the fig-
ure shows the hardening rate Θ = dτ/dε as a function
of strain. As it is expected for ideal multiple slip14 the
Θ(ε) curve consists of a nearly horizontal (stage II) and
a decreasing (stage III) linear part. This is indicated by
the dotted lines in the figure.
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Figure 1. Resolved shear stress (τ∗) and hardening rate (Θ)
vs. strain (ε) obtained on a compressed Cu single crystal ori-
ented for (001) ideal multiple slip. The black dots on the
curve mark the stress levels until which the 6 different sam-
ples were compressed.

From the six specimens prepared three are close to the
strain level corresponding to the transition from stage
II to stage III. As it is seen below this strain region is
critical for the statistical properties of the dislocation cell
structure developing during the deformation.
Finally, in order to prepare the samples for TEM and

HR-EBSD measurements, electropolishing was applied at
20 V, 1.2 A using Struers D2 electrolyte for 30 seconds.

B. X-ray line profile analysis

X-ray line profile analysis is a well-established method
to determine the average dislocation density, the average
squared dislocation density and the dislocation polariza-
tion from the measured intensity profile. In our analysis
the “restricted moments” method developed by Groma et
al.15–17 was applied. In the evaluation of the measured
data the asymptotic behavior of the different order re-
stricted moments are analyzed. The kth order restricted
moments are defined as

vk(q) =

∫ q

−q
q′kI(q′)dq′∫∞

−∞ I(q′)dq′
, (1)

where q is the varying integration limit the restricted mo-
ment vk(q) depends on, I(q

′) is the intensity distribution
near to a Bragg peak, in which q′ = 2(sin θ− sin θ0)/λ, λ
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is the wavelength of the applied X-rays, and θ and θ0 are
the half of the diffraction and Bragg angles, respectively.

As it is explained in detail in15 for large enough q values
the asymptotic form of the 2nd order restricted moment
reads as

v2(q) = 2Λ⟨ρ⟩ ln
(

q

q0

)
, (2)

were ⟨ρ⟩ is the average dislocation density, q0 is a parame-
ter determined by the dislocation-dislocation correlation,
and Λ is a constant depending on the dislocation Burgers

vector b⃗, the line direction l⃗, and the diffraction vector

g⃗. Λ is commonly written in the form Λ = π|⃗g|2 |⃗b2|C/2
where C is called the contrast factor. (For its actual value
a detailed deduction and explanation can be found in15.)
From the intensity profiles measured the values of Λ⟨ρ⟩
and q0 can be obtained by fitting a straight line on the
asymptotic part of the v2(q) versus ln(q) plot. It should
be noted that if the dislocation density is less than about
1013 m−2 the instrumental broadening is in the same or-
der as the one caused by the dislocations, so dislocation
density below this limit cannot be accurately determined
by the X-ray profile analysis performed in a laboratory
setup applied in the investigations.

Beside the 2nd order restricted moment for our analysis
the 4th order restricted moment is also important. In the
asymptotic regime it is15:

v4(q) = Λ⟨ρ⟩q2 + 12Λ2⟨ρ2⟩ ln2
(

q

q1

)
, (3)

where ⟨ρ2⟩ is the average dislocation density fluctuation,
and q1 is a parameter. For the better visualization it is
useful to consider the quantity

v4(q)

q2
= Λ⟨ρ⟩+ 12Λ2⟨ρ2⟩

ln2
(

q
q1

)
q2

, (4)

which asymptotically tends to Λ⟨ρ⟩. The actual values
of the parameters Λ⟨ρ⟩, Λ⟨ρ2⟩, and q1 can be determined
by fitting the form given by Eq. (4) to the asymptotic
regime of the v4(q)/q

2 versus q plot.
An important statistical parameter of the dislocation

microstructure developed is the relative dislocation fluc-
tuation defined as

σ =

√
⟨ρ2⟩ − ⟨ρ⟩2

⟨ρ⟩2
(5)

that can be determined from the 4th order restricted mo-
ment.

It should be noted that the measured intensity I(q′)
often contains a background which has to be subtracted
before the calculation of the restricted moments. Since
however, the background has different contribution to
the 2nd and 4th order restricted moments, determining
the average dislocation density from both moments offers

a internal checking possibility whether the background
level was selected correctly.
The profile measurements have been performed with a

Cu rotating anode Cu X-ray generator at 40 kV and 100
mA with wavelength λ = 0.15406 nm. In order to reduce
the instrumental broadening the symmetrical (220) re-
flection of a Ge monochromator was used. The Kα2 com-
ponent of the Cu radiation was eliminated by an 0.1 mm
slit between the source and the Ge crystal. The profiles
were registered by a linear position sensitive DECTRIS
MYTHEN2 R detector with 50 µm spatial resolution and
1280 channels. The sample-detector distance was 0.7 m
resulting in an angular resolution in the order of 0.004◦.
During the measurements approx. 1x1 mm2 surfaces of
the samples were illuminated by the x-ray, so the param-
eters obtained from x-ray measurements correspond to
average values over areas much larger than the typical
dislocation cell size (see below).
The evaluation method applied is demonstrated on the

intensity distribution (Fig. 2) obtained on the sample
compressed up to 43.12 MPa resolved shear stress. The
corresponding restricted moments are shown in Fig. 3.
As it is shown in the figure the different parameters can
be determined with an accuracy of less than a few per-
cents.
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Figure 2. The X-ray line profile obtained at g⃗ = (020) on
the sample compressed up to 43.12 MPa. In order to elim-
inate the effect of the noise the peak intensity should be at
least 103 − 104 times higher than the background, and a sub-
sequent background subtraction should be carried out.

C. HR-EBSD

EBSD measurements were carried out in a FEI Quanta
3D scanning electron microscope (SEM) equipped with
an Edax Hikari EBSD detector. Diffraction patterns were
recorded with 1×1 binning (640 px × 480 px resolution)
using an electron beam of 20 kV, 16 nA. In order to carry
out statistical analysis on the collected data a 20 µm × 20
µm area was mapped with a step size of 100 nm on each
sample. The HR-EBSD technique utilizes image cross-
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Figure 3. The raw data (blue lines) and the fitted restricted
moments (orange lines).

correlation on the recorded diffraction patterns18. The
local strain tensor components can be determined, and a
lower bound estimate of the GND density can be given
using the commercially available software. The method
requires an ideally stress-free diffraction pattern as refer-
ence, that is often difficult to obtain experimentally. In
the absence of such reference, it is noted that the scales
should be implemented as relative and not absolute mea-
sures. Image cross-correlation based HR-EBSD calcula-
tions were performed using BLG Vantage CrossCourt v.4
software that provided the components of the elastic dis-
tortion (βel

ij) and the stress tensor (σij) and the also the
values of the GND density (ρGND).
From the distortion map the Nye dislocation density

tensor αij defined as19

αij = −eklj∂kβ
el
il (6)

can also be determined where eijk is the Levi-Civita sym-
bol. Since, however, in the HR-EBSD measurement the
distortion tensor is measured directly on the sample sur-
face, only those components of αij can be calculated that
are independent from the derivation in the direction per-
pendicular to the sample surface. So, in a coordinate
system with z axis perpendicular to the sample surface
only the iz components of the Nye tensor

αiz = ∂yβ
el
ix − ∂xβ

el
iy i = x, y, z (7)

can be directly determined from a HR-EBSD measure-
ment. With some additional assumptions one can deter-
mine further components of the αij tensor20 but since
to see the validity of the assumptions required is not
straightforward only the αiz were used in the investiga-
tions presented.

Since

αij =
∑
t

btil
t
jρ

t, (8)

where the superscript t denotes a given type of disloca-

tion present in the system with Burgers vector b⃗t, line

direction l⃗t, and dislocation density ρt, from the mea-
sured Nye tensor components, one can make an estimate
on the dislocation population in the different slip systems
(for details see below).
Furthermore, to characterize the GND density the

scalar quantity

ρGND =
1

b

√
α2
xz + α2

yz + α2
zz (9)

was introduced. The GND density and the αiz tensor
components were determined using a C++ code devel-
oped by some of the Authors21,22.

III. STRESS-MAP ANALYSIS WITH THE
RESTRICTED MOMENT METHOD

It was already demonstrated earlier by Groma et
al. and Wilkinson et al.23–25, that for a dislocation en-
semble of parallel edge dislocations the asymptotic part
of the probability distribution of the internal stress p(σ)
decays as

p(σ) ≈ b2µ2

8π2
C⟨ρ⟩ 1

σ3
(10)

where µ is the shear modulus and C is a “geometrical”
constant, similar to the contrast factor in the case of X-
ray peaks, depending on the type of dislocation, the nor-
mal direction of that surface of the sample, on which the
measurements are carried out and the stress component
σ considered. So, like for X-ray line broadening, in the
asymptotic regime the second order restricted moment
v2(σ) is linear in ln(σ). From its slope one can determine
the quantity ρ∗ = C < ρ > often referred to as “formal
dislocation density”. It should be noted, however, that
the stress value obtained by HR-EBSD in a given scan-
ning point is the average stress on the area illuminated by
the incoming electron beam. As a result at large enough
stress levels the probability distribution p(σ) measured
deviates from the inverse cubic decay, it turns to a much
faster decaying regime21. Nevertheless, for most cases
one can easily identify a linear regime on the second or-
der restricted moment v2(σ) versus ln(σ) plot (see Fig. 4).
From the deviation of the inverse cubic decay we can de-
fine a characteristic length scale rd = µb/σd where σd is
the stress level where the probability distribution start
to deviate from the inverse cubic regime. In the investi-
gations performed rd ≈ 75 nm. This means, that short-
range dislocation structures (such as dipoles) narrower
than rd are not “seen” by this method. So, compared to
X-ray line profile analysis HR-EBSD somewhat underes-
timates the dislocation density (for details see below).
Since from the HR-EBSD analysis one can obtain 5 in-

dependent stress components (σ33 is assumed to vanish
in the HR-EBSD analysis) a “formal” dislocation den-
sity ρ∗ij = b2µ2/(8π)Cij⟨ρ⟩ can be determined from the
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stress maps corresponding to different ij stress compo-
nents, where the parameter Cij is the “contrast factor”
of the ijth stress component. Unlike for the X-ray line
broadening there is no existing analytical calculation to
give the precise value for Cij . In the theoretical paper on
the internal stress distribution23 Cij is calculated only
for the shear stress generated by edge dislocations in
isotropic materials in the coordinate system defined by
the Burgers and line direction vectors of the dislocations.
In this specific case Cshear = π/[2(1−ν)2)] where ν is the
Poisson’s ratio. According to our experimental results for
the case studied in the paper Cij varies significantly (by
a factor of about 5). In the results presented below we
give only the average of the 5 formal dislocation densi-
ties normalized by Cshear. The issue, however, requires
further investigations.

A typical stress map, stress probability distribution,
and the corresponding second order restricted moment
can be seen on Fig. 4.
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Figure 4. Stress map, stress probability distribution, and the
corresponding second order restricted moment v2 versus ln(σ)
obtained on the sample compressed up to 43.12 MPa.

A. TEM investigations

A TEM specimen was fabricated from the bulk copper
single crystal deformed up to 43.12 MPa resolved shear
stress with the aim of qualitative comparison of disloca-
tion structures with those obtained from GND density
maps. The TEM lamella preparation was carried out us-
ing a FEI Quanta 3D FEG dual-beam SEM-FIB micro-
scope. The initial fabrication process was carried out at
30 kV acceleration voltage and ion currents of 1-30 nA.
The final polishing consisted of low current (0.2 − 0.5
nA) and low voltage (2 − 5 kV) ion polishing. It is
noted that to be able to investigate very large disloca-
tion cells unusually large (20 µm × 20 µm) specimens
were fabricated requiring extra care during the prepara-
tion process26–28. Bright field images of the dislocation
network were recorded on a 6 × 6 cm2 4k× 4k CETA
16 CMOS camera with 14 µm pixel size, controlled by
VELOX software in a Titan Themis G2 200 transmission
electron microscope operated at 200 kV (see Fig.13).

IV. FRACTAL ANALYSIS

The dislocation cell structure developing under uni-
directional deformation at ideal multiple slip is known
to be a so called “hole” fractal9 consisting of connected
“walls” and “cell interiors” with a power law type size
distribution. Since the GND maps obtained by HR-
EBSD measurements allow us to study the dislocation
microstructure on a much larger area than one can do
with TEM (applied traditionally for microstructure char-
acterization) we performed fractal dimension analysis on
the GND maps at different stress levels. We have ap-
plied two different methods, the “traditional” box count-
ing and the correlation dimension analysis.

A. Box-counting algorithm

A common algorithm to determine the fractal dimen-
sion of a set is the well known box-counting algorithm29.
In the method we cover the image with an equidistant
grid of lattice spacing L, and then count the number of
boxes N containing GNDs above a threshold level (for
details see below). The fractal dimension DH is

DH =
d ln(N)

d ln(L)
, (11)

that is obtained by fitting a straight line to the ln(N)
versus ln(L) plot. (DH is often referred to as Hausdorff
dimension.) The advantage of the method is that it is
numerically a cheap, fast and a fairly precise procedure.
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B. Correlation dimension

One can also measure the geometrical randomness of
points through the so-called correlation integral, which
may be estimated for large enough systems with the cor-
relation sum30

C(ϵ) =
1

N(N − 1)

N∑
i̸=j

H (ϵ− |ri − rj |) (12)

where ϵ is the threshold distance, N is the number of
non-zero points, H is the Heaviside step function, ri and
rj are the coordinates of the set points. The correlation
integral scales with the threshold distance as30

C(ϵ) ∝ ϵDc , (13)

where Dc is the correlation dimension. One can easily
see, that for points on a circle the correlation dimension
Dc = 1, for points on a sphere Dc = 2 and for points
evenly distributed in a sphere Dc = 3. For the analysis
of 2D embedded geometrical structures one may expect
that 1 ≤ Dc ≤ 2.

C. Image filtering

The GND maps measured can not be analyzed with
the method explained above in a straightforward man-
ner. One issue is that the maps are obviously not bi-
nary ones so, one has to introduce some threshold value
above which we consider the map intensity to be 1 and
0 below. The fractal dimension obtained may depend on
the threshold value chosen. Another problem we face is
that the GND map contains numerous random points.
They may correspond to individual dislocations or nar-
row dislocation multipoles but certainly they should not
be considered during the fractal analysis.

A simple method for global binarization is the so-called
Otsu’s method31,32. (It is analogous to Fischer’s Dis-
criminant Analysis33 method and equivalent to a glob-
ally optimized k-means clustering method34,35.) In the
simplest form it returns a binarised intensity map thresh-
old by maximizing the inter-class variance. In order to
get this threshold value first the probability distribution
of the point intensity p(I) is calculated numerically with
some appropriate binning level chosen. After this, with a
threshold level t the histogram p(I) is cut into two sub-
histograms separated by the threshold, and the quantity

σ2
w(t) = P0(t)σ

2
0(t) + P1(t)σ

2
1(t) (14)

is calculated, where P0 and P1 are the probabilities of
the two classes separated by t, while σ2

0 and σ2
1 are vari-

ances of the two classes. The threshold for the image
binarization is selected by minimizing σw(t).
Otsu’s method performs exceptionally well when the

histogram obtained on the image has a bimodal distri-
bution and the background and foreground values are

separated by a deep valley. However, if the image is cor-
rupted with additive noise or the variation of intensities
between background and foreground are large compared
to the mean difference, the histogram may degrade.

One may observe a fluctuating salt-and-pepper like
noise on the raw Nye-tensor component maps and GND
density maps (Fig. 5). This prevents the direct applica-
bility of Otsu’s method. In order to eliminate this noise,
a smoothing window was applied to the measurable Nye-
tensor components. The maps were convoluted with a
circular averaging window of radius r = 150 nm. The
application of a smoothing window results in a more pro-
nounced dislocation wall structure (Fig. 5). A globally
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Figure 5. Example for αyz maps and GND density maps
obtained with and without smoothing for the sample com-
pressed up to 43.12 MPa. a) αyz map without smoothing,
b) with smoothing, c) GND map without smoothing, d) with
smoothing.

applied binarization method discussed above may ignore
those dislocation walls, which may have a lower dislo-
cation density than the thickest dislocation ensembles.
In order to avoid this problem a multiscale binarization
method was developed. The area map was subdivided
into squared sub-areas and Otsu’s method was applied
separately for each sub-area (Fig. 6). By repeating this
algorithm with areas with different sizes and by adding
up the maps binarized with different scales we could ob-
tain a purely bimodal histogram for the image (Fig. 6).
The effect of the method for the intensity histograms is
seen in Fig. 7. After the multiscale binarization method
explained above the histogram is clearly bimodal allowing
to define a threshold level. Those pixels were considered
as dislocation walls which had a higher value than the
intensity value corresponding to the minimum of the his-
togram valley. This method is a powerful tool to obtain
not only the global, but also the globally invisible, locally
present dislocation walls (see Fig. 6).
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Figure 6. a) Otsu’s binarization method with box size of 1
µm, b) 5 µm, c) the added binary maps at all binarization
sizes, and d) the map after the final binarization.
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box) image filtering.

D. Burgers vector analysis

As it was discussed above only the αiz, i = x, y, z;
components of the Nye-tensor can be determined from
a HR-EBSD measurement without any further assump-
tion regarding the dislocation system (Fig. 13). There-
fore, according to Eq. (8) the vector constructed from the
available Nye-tensor components

B⃗ = (αxz, αyz, αzz) (15)

is

Bi =
∑
t

btiρ
t cos(ϑt) (16)

where ϑt is the angle between the line direction of the
tth type dislocation and the surface normal vector. To
characterize the type and sign of the dislocation at a
given point of the scanned surface the method introduced
in36 is followed, that is, the quantity

ai = cos (φi) =
B⃗ · b⃗i
Bbi

(17)

can be calculated where the index i goes through all the 6
Burgers vectors existing in the FCC crystal36. Certainly,
one cannot determine the relative population of the dif-

ferent type of dislocations from B⃗, but according to the
definition given by Eq. (17) if the ρt density of one of the
Burgers vectors is dominantly larger than the other ones,
the absolute values of the corresponding ai are close to
1. Therefore, ai values can help to describe the type of
dislocations at the sample surface. To visualize this the
product of the ai value and the local GND density was
calculated at each measurement point and plotted for the
6 possible Burgers vectors. (Typical results can be seen
in Fig. 16.)

V. RESULTS AND DISCUSSION

As a first step X-ray line profile measurements with
{020} Bragg reflection were performed on the (010) sur-
face of the 6 samples deformed up to different stress lev-
els. According to earlier investigations on deformed Cu
single crystals oriented for ideal multiple slip17 for this
reflection Λ = 0.783. The intensity distributions were
analysed with the restricted moment method explained
earlier. Both the 2nd and the 4th order restricted mo-
ments were evaluated.
As it can be seen in Fig. 8 the Taylor linear relation

between the square root of the dislocation density and
the resolved shear stress is fulfilled. A relatively small
deviation can be seen at lowest τ∗ = 17.43 MPa stress
level. They are definitely larger then the accuracy of the
determination of formal dislocation density. The devia-
tions can be attributed to the fact that for small defor-
mation level in stage II the dislocation population may
differ from the one obtained in the investigations pre-
sented in17. As a consequence the contrast factor can be
somewhat different from the one used. The results are
in agreement with the earlier investigations of Székely et
al.11. However, as it mentioned earlier, the X-ray detec-
tor used in the measurements reported here has a much
better signal-to-noise ratio than the one used earlier re-
sulting in a much more improved accuracy of the current
study.
In Fig. 9 the v4(q)/q2 restricted moments are plotted

for the undeformed and the 6 deformed samples. It can
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⟨ρ⟩ − τ∗ relation, where ⟨ρ⟩ is the average
dislocation density measured by X-ray and τ∗ is the resolved
shear stress.

be seen even without any curve fitting that the asymp-
totic part of the curves tend to a constant value that
increases monotonically with the applied stress. Since
the asymptotic value of the v4(q)/q2 is proportional to
the average dislocation density this is in accordance with
the results discussed above. It is remarkable, however,
that the maximum values of the curves normalized with
the asymptotic value are not monotonous with the stress.
It has a clear maximum at 36.11 MPa stress level. After
performing the fitting of the function given by Eq. (4)
the σ value defined by Eq. (5) can be determined.
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Figure 9. The v4(q)/q2 versus q curves at different compres-
sion levels. The corresponding resolved shear stresses are in-
dicated in the upper right corner.

In agreement with the “phenomenological” feature
mentioned above the σ versus τ curve exhibits a sharp
maximum at τ = 36.11 MPa (see Fig. 10) correspond-
ing to the stage II to stage III transition stress level
(see Fig. 1). (For the undeformed sample it is assumed
that the dislocation network is nearly homogeneous, so
the fluctuation is zero.) The results obtained are in
agreement with the ones reported earlier on the same
material11.

As it was suggested earlier by Mughrabi et al.37,38

0 10 20 30 40 50 60
* [MPa]

0

1

2

3

4

Figure 10. The σ(τ∗) function is represented, where σ is the
average dislocation density fluctuation.

the dislocation system can be envisaged as a compos-
ite of “hard” dislocation walls with dislocation density of
ρw and “soft” cell interiors with dislocation density ρc.
Within this model

⟨ρ⟩ = fρw + (1− f)ρc (18)

and

⟨ρ2⟩ = fρ2w + (1− f)ρ2c (19)

where f is the volume fraction of the cell walls. Since
according to earlier investigations37,38 f is in the order
of 0.1, and ρw is an order of magnitude higher than ρc
the second term in ⟨ρ2⟩ can be neglected so

⟨ρ2⟩ ≈ fρ2w (20)

With this the quantity ρappw = ⟨ρ2⟩/⟨ρ⟩, that can be de-
termined directly from the X-ray line profile, is

ρappw = ρw
1

1 + (1−f)ρc

fρw

. (21)

If the dislocation content in the cell interiors is much
smaller than in the cell walls i.e. (1 − f)ρc ≪ fρw then
the “apparent” dislocation density ρappw ≈ ρw. Accord-
ing to Fig. 11 in stage II, ρappw increases monotonically
and at the stage II to III transition stress level it has a
maximum. In stage III at large enough stress it tends to
saturate.
Based on the X-ray line profile results it can be con-

cluded that during stage II the dislocation distribution
becomes more and more inhomogeneous, dense disloca-
tion walls are formed with an increasing ρw dislocation
density. At a given deformation level, however, the dis-
location density in the walls reaches a maximum level,
dislocation annihilation prevents the further increase of
the dislocation density. This process is called dynamic
recovery37. In stage III new walls and an increase of the
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Figure 11. The “apparent” dislocation density ρappw as a func-
tion of the resolved shear stress.

dislocation density in the cell interiors is needed to accu-
mulate more dislocations. According to Fig. 11, for large
enough stress levels the term (1 − f)ρc/f/ρw is in the
order of unity, (ρapp droops down to about the half of its
maximum value).

As it is seen above X-ray line profile analysis is a
rather powerful method to determine some average sta-
tistical properties of the dislocation microstructure, but
certainly it is not able to say anything about the actual
dislocation morphology.

Beside the traditionally applied TEM39 the relatively
recently developed HR-EBSD method offers a new per-
spective to directly study the dislocation microstructure.
A big advantage of the HR-EBSD is that a much larger
area can be studied than by TEM. Moreover, the sample
preparation is much easier. Figure 12 shows the GND
maps obtained on the 6 deformed samples. At each de-
formation level a clear cell structure can be seen with
increasing volume fraction of the cell walls. In Fig. 13
the maps of the three αiz components, the GND density,
the stress component σyy, and a TEM picture obtained
on the sample deformed are plotted. Similar pictures
were obtained for the other stress levels studied.

According to Fig. 13, as it was assumed earlier37,38,
long-range internal stresses develop in the cell interiors.
Unlike X-ray line profile analysis, HR-EBSD is a direct
method to determine the local stress state of the sample,
so the result obtained is a direct evidence of the presence
of long-range internal stresses.

The dislocation density was also determined from the
stress maps by the restricted moment analysis of the in-
ternal stress distribution. In order to reduce the error,
the average of the ρ∗ij values were calculated for the 5 in-
dependent components of the stress tensor. The results
obtained are plotted in Fig. 14. As it is seen there is cor-
relation between the ρσ average dislocation density ob-
tained from the stress maps and the ⟨ρ⟩ density found by
the X-ray line profile analysis, but the relation is clearly
not linear. One can also note, that in some points (for
example in the fourth), higher difference present. This
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Figure 12. The GND density maps obtained on samples de-
formed up to (a) 17.43, (b) 26.5, (c) 36.11, (d) 43.12, (e) 55.04,
and (f) 67.22 MPa.

is probably due to the local nature of the HR-EBSD,
but also due to the fact that the measurements were car-
ried out on different samples, not on the same surface
and place. Moreover, the Cij geometrical factor may
vary with stress and due to the finite volume illuminated
by the electrons we cannot detect the small dislocation
dipoles (see above). So, the HR-EBSD internal stress
analysis is a possible method for the determination of the
dislocation density, but the issue requires further investi-
gations to be able to produce dislocation density values
with high precision.

The average GND density ρGND defined by Eq. (9) was
also determined from the Nye’s tensor maps. According
to Fig. 14, as a general trend ρGND increases with increas-
ing deformation but due to the large dislocation density
fluctuation, in order to get more precise GND density val-
ues, one should perform EBSD measurements on a very
large area that was not possible with the setup used.

After the image binarization with the method ex-
plained above the fractal dimensions of the ρGND maps
plotted in Fig. 12 were also determined by both the box
counting (DH) and the correlation dimension (Dc) anal-
ysis. The results obtained are plotted in Fig. 15 It is
found that Dc ≈ 0.95DH so, the two methods give the
same fractal dimension within experimental error. This
consistent correlation confirms the formation of a spe-
cial dislocation structure with non-integer (fractal) di-
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Figure 13. The maps of the (a) α13, (b) α23, and (c) α33

components, (d) the GND, the (e) σ22, and (f) a TEM picture
obtained on the sample deformed up to 43.12 MPa. Notice
that the scale and the observation site on the TEM picture is
different than on the other ones.
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Figure 14. The dislocation densities obtained from the stress
probability distribution (black curve) and from the Nye’s ten-
sor components (green curve) versus the dislocation density
obtained by X-ray line profile analysis.

mension. It is, however, a nontrivial and somewhat un-
expected result that the fractal dimension is decreasing
with increasing relative dislocation density fluctuation σ.
With other words in the stage II. deformation regime the
fractal dimension decreases with increasing stress level
but it starts to increase in stage III. So like the relative
dislocation density fluctuation the fractal dimension also
has an extremum value at the stage II-to-III. transition.
This means that the factal dimension is not controlled
directly by the average dislocation density but the rela-
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Figure 15. In the upper image, the correlation dimension
Dc is presented versus the Hausdorff-dimension DH obtained
by box counting. In the down figure, the average disloca-
tion density fluctuation is shown in function of the Hausdorff-
dimension.

tive dislocation density fluctuation. This behavior has a
rather important implication for the general form of the
theory of dislocation patterning. A proper theory should
predict the dislocation density fluctuation, not only the
average dislocation density.

In Sec. IVD, a method was outlined to analyze Burgers

vectors based on the projection of vector B⃗ to the differ-
ent possible Burgers vectors36. For the sample deformed
up to 43.12 MPa the different ρGND · ai maps obtained
are plotted in Fig. 16. Similar behavior is found for the
other samples. As it is seen, some of the walls have a
positive (red) or negative (blue) net Burgers vector while
the other ones are more dipole like with a positive net
Burgers vector on one side and a negative one on the
other side.

This picture somewhat refines the composite model
proposed by Mughrabi et al.37,38. In the original form
of the model the sources of the long-range stress are the
two dislocation walls allocated on the two sides of a cell
wall. The dislocation walls are formed by the reaction of
dislocations in two slip systems resulting a Burgers vec-
tor parallel to the surface of the cell wall, i.e., the GND
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Figure 16. The ρGND · ai, i = 1..6 maps obtained on the
sample compressed up to 43.12 MPa.

structure imagined is dipole like. However, an elongated
region with finite length d having a net Burgers vector
can also generate long-range internal stress within the
connected d × d sized area. So, the sources of the long-
range stresses are not necessary dipole-like walls as as-
sumed earlier.

VI. SUMMARY AND CONCLUSIONS

Copper single crystals oriented for (100) ideal multi-
ple slip were compressed uniaxially up to different stress
levels. The dislocation microstructures developing in the
samples were studied by X-ray line profile analysis and
HR-EBSD.

The main conclusions are:

� It is shown that HR-EBSD offers a new efficient
method to study dislocation microstructure with

much less sample preparation effort than TEM con-
ventionally applied;

� The presence of the long-range internal stress de-
veloping in the cell interiors is directly seen by HR-
EBSD measurements. Moreover, the stress maps
can be directly measured.

� Some of the walls have a positive or negative
net Burgers vector while the other ones are more
dipole-like with positive net Burgers vector on one
side and negative one the other side;

� According to X-ray line profile investigations on
compressed Cu single oriented for ideal multiple
slip the relative dislocation density fluctuation ex-
hibits a sharp maximum at stage II to III transition
stress level;

� The most important finding of the investigations is
that the dislocation cell structure is well described
by a hole fractal with fractal dimension decreasing
monotonically with the relative dislocation density
fluctuation. So, it is directly controlled by the level
of fluctuations developing in the system.

The results obtained can be directly compared to the
prediction of the theoretical models, so they can help
to inspire and validate them. Finally, it is important to
emphasize that there are still a lot of issues that should be
addressed. One very important question is related to size
effect, especially the formation of cells in micropillars,
that may lead to new interesting results. Moreover, it
would be important to study in-situ the cell formation
process.
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