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Abstract

In recent years, we have observed rapid changes in the customer demand along with shorter product
life cycles. In addition, sustainability concerns about production systems are growing, especially due to
energy supply fluctuations in terms of either availability or cost. Among these challenges, energy efficiency
is of the utmost importance, and Reconfigurable Manufacturing Systems (RMS), most notably through
their scalability feature, could represent a valuable solution: production resources can be reorganized
promptly to adapt throughput to external factors, such as uncertain demand or Time-Of-Use prices.
Although the aforementioned challenges concern day-to-day management, they should be anticipated at
the design stage of the production system, whose behavior might otherwise not meet expectations and
hinder the competitiveness of the company. One possibility is to consider the expected performance of
such a system from the viewpoint of different productivity and energy-efficiency criteria, through line
balancing and future production planning. This can be modeled as a bi-level optimization problem,
in which the line balancing of the RMS is the upper level and the configuration planning is the lower
level. We consider three criteria, namely the number of workstations, the expected service level and
the expected energy cost, taking into account demand uncertainty through scenarios. A three-phase
matheuristic is developed and its performances on instances derived from the literature are discussed.
The results show that consistent energy cost savings can be achieved, even with very few configurations.

Keywords: Reconfigurable Manufacturing Systems, Scalability, Time-Of-Use energy prices,
Scenario-based Optimization, Multi-objective Metaheuristic, Bi-level Optimization

1. Introduction

With globalization, individual consumption of products has increased drastically in recent decades.
This change in the behavior of consumers has led to high volatility in markets demand, making it harder
to forecast the throughput requirements of production systems [1]. Meanwhile, the production of goods
implies the significant use of several resources, raising sustainability issues [2].

In this regard, and driven by global warming, greenhouse gas emissions and energy consumption
have became a worldwide concern. Since the industrial sector (comprising refining, mining, manufactur-
ing, agriculture, and construction) is accountable for a share of more than 50% of the end-use energy
consumption [3], companies are increasingly being urged towards energy efficiency. This is also true
specifically for what concerns electricity consumption: the International Energy Agency reports [4] that
the industrial sector accounted for 22% of total final electricity consumption in 2020, a figure which is
expected to grow to 46% in 2050 due to the electrification of several processes. Manufacturing systems
(MS) are among the most energy-consuming industrial systems, and are therefore deeply affected by
energy-efficiency issues, particularly electricity usage, from design through to management [5]. However,
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MS are confronted with increasingly volatile availability of electric energy, due not only to electric load
management policies [e.g. 6], but also to the growing focus on renewable energy sources [7]. This has
led to studies into how to use electric energy efficiently in MS, by considering it in the form of vari-
ous objectives and/or constraints, namely: total energy consumption [8], power peak limitation [9] and
Time-Of-Use (TOU) pricing [10].

Designed to cope with market changes, reconfigurable manufacturing systems (RMS), introduced by
[11], are usually composed of several workstations connected by a conveyor and/or a gantry to transport
the parts. Each workstation comprises several machines in parallel, which may be Computer Numerical
Control (CNC) machines, Reconfigurable Machine Tools (RMTs) or other types of resources (e.g. cobots)
[12]. This allows an RMS to evolve from configuration to configuration in order to offer the appropriate
production setting for each usage [13]. It is therefore standard for manufacturers to use RMS to manage
product variety [14], or uncertainty over future demand fluctuations [15]. RMS have also been studied
to assess whether they can help dealing with sustainability challenges: for instance, [2] states that RMS
must pursue the energy efficiency of products and processes in this respect.

In this paper, we seek to investigate the possibility of using RMS to deal with a TOU energy pricing
scheme so as to minimize energy-related production costs. For instance, an energy-aware configuration
could be implemented during expensive periods, with a trade-off in productivity that could be balanced,
to meet the demand, by using more productive, more energy-consuming configurations during periods
with lower energy costs.

However, while energy-related operational costs are usually considered only at an operational level,
the choice of the available system configurations is a critical decision at the design stage as it will
impact the performance of the RMS through its lifetime [1]. It would thus be beneficial to consider the
energy performance of configurations at the design stage. By doing so, once the system is designed, the
operational decision of finding the most-fitting configuration planning w.r.t. a given energy pricing profile
would actually minimize energy-related production costs. Naturally, in order to anticipate at design stage
the possible operational behaviour of the system in the presence of fluctuating energy prices, uncertainty
about the future demand needs to be taken into account. Meanwhile, it is known that considering in
an integrated way different problems that are usually solved independently can increase the quality of
solutions [16, 17].

Although works exist that study the usage of RMS to minimize energy consumption (the recent
survey [18] reviews some of them), we are not aware of studies focusing on how to use them to deal
with variable energy prices and minimize energy-related costs – a possibility that seems interesting to
investigate. Even less considered in the literature, and possibly more interesting, seems the study of how
energy costs consideration from the earliest stages of a production system can impact its design, and
the possible added value of an integrated approach to the problems of system design and configuration
planning.

On this basis, we suggest to tackle jointly the determination of the RMS configuration set at the
design level, and the planning of how to use them at operational level, with the aim to obtain a more
energy-efficient reconfigurable system. More specifically, we suggest to model both problems as a bi-level
optimization problem. A three-step metaheuristic approach to this problem is presented, in which uncer-
tainty concerning the demand to be met is handled through demand scenarios [19]. Three objectives are
considered that are not aggregated and have the same level of priority: the installation cost; the expected
values of both the energy cost w.r.t. a TOU profile, and the service level, in order not to disregard the
production performance. The goal is to determine a set of tradeoff solutions (with regard to the three
objectives) which are nondominated in the sense of Pareto dominance. This work is an extension of the
conference article [20], with a full definition of the problem considered, extensive numerical experiments
and a detailed analysis of the results obtained and their managerial implications.
The remainder of the paper is organized as follows: Section 2 reviews related works in the literature.
Section 3 outlines the problem under consideration. Section 4 delves into the details of the proposed
approach, Section 5 describes the computational experiments, and Section 6 provides some managerial
insights. Finally, Section 7 looks at the conclusions and perspectives of this work.

2. Literature review

Reconfigurable manufacturing systems were introduced in the late 1990s [11] with the objective of
achieving a tradeoff between productivity and flexibility, and of building a production system at the
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frontier of flexible manufacturing systems and dedicated lines.
Dedicated lines are manufacturing systems designed to produce a single model at a high rate. In

these systems, a single static configuration is used [21]. Because of this static nature, it is extremely
costly to adapt the system to a different model [22] and handling simultaneously multiple model would
usually require to implement multiple lines [23].

At the opposite end of the spectrum, flexible manufacturing systems are designed to produce different
models within the same system, taking advantage of the similarities between the models to share specific
tools and skills [24, 25, 26]. However, the set of models to be produced is static, which usually leads
either to consider a very restrictive family of models, thus being at risk to be unable to produce future
models, or to consider a very large family, which implies prohibitive investment costs and therefore a
non-competitive price per part.

Reconfigurable manufacturing systems are developed to be dynamically reconfigured in order to adapt
to changing product specifications. Six core characteristics define an RMS: modularity, integrability,
diagnosability, customization, convertibility, and scalability [13]. Among these features, the last three
are related to productivity and flexibility issues:

1. the customization feature focuses on the ability to handle multiple models in the system (sometimes
referred to as flexibility corridor). However, it is worth mentioning that RMS are not always used
in a multiple models setting: single-model RMS are also used and have received attention from
researchers (see, e.g., [27, 28, 29]).

2. the convertibility feature corresponds to the ability to change the functionalities of the RMS over
time to integrate new models, which enables the designer to consider an initial setting based on a
small family of models (or even a single model) without risking to miss on future models [30].

3. the scalability feature is the ability to modulate the throughput volume and is commonly used to
meet a changing demand [11].

In the following, we focus on the various topics related to the problem at hand, basing our literature
review on advances in RMS and energy efficiency, the notion of scalability, and the link between demand
uncertainty and production system design.

Though RMS are designed to increase the responsiveness of manufacturing systems to unforeseen
changes [12], their configuration and design is made difficult due to uncertainty in demand. To address
this issue, [31] defines a multi-period stochastic programming model of an RMS and considers an uncer-
tain demand. The objective consists in minimizing total costs (such as production, storage, configuration
and reconfiguration costs). To ensure the response capability of the production system to future market
expansions, demand should be considered at the design stage. This characteristic, which is related to
scalability, enables future rapid and incremental throughput upgrades.

The concept of scalability is made possible by adding parallel resources to workstations, or removing
them, and is motivated by the need to adapt the production level to the actual demand in terms of
product quantity. Considering this characteristic, [32] investigate a model for assessing the performance
of different policies (scaling rate, Work In Process level, inventory level and backlog level) in the context
of a make-to-order RMS according to different demand scenarios. [33] propose a combinatorial definition
of the line balancing problem associated with RMS optimizing its scalability at the design stage. In
[34] a scalability planning methodology for RMS is explored. The approach consists in changing the
capacity of an existing system through successive reconfigurations in order to minimize the number of
machines required to ensure a new throughput. [35]study a production planning system that integrates
characteristics of RMS, with a focus on the scalability and convertibility of production capacities. In [36],
multi-model and scalable RMS are explored. The objective is to minimize design and reconfiguration
costs while respecting a given demand spread over multiple production periods. In their work, it is
possible to (i) upgrade or downgrade the RMS depending on forecasted demands for each period, or
(ii) select and reconfigure the reconfigurable manufacturing tools for all periods based on longer-term
estimates.

Some authors have investigated the potential of RMS to improve energy efficiency. Based on a 6R
methodology (Reduce, Reuse, Recycle, Recover, Redesign, Remanufacture) analysis, [2] show that RMS
can contribute to this goal. They also underline that scalability is one of the drivers of improvements
to energy and resource efficiency and thus of more sustainable production systems, as it provides the
right capacity at the required times and thus reduces the wastage of various resources. [37] provide an
analysis of the metrics that could be affected by modifications to the six core features of an RMS, and
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show that scalability can be an important lever to lower energy usage (total consumption, losses based
on inactivity, energy intensity) and energy-related costs.

A few works have explored energy efficiency as a criterion for RMS. [38] introduce the concept of
energy-efficient RMS and investigates a discrete event simulation model to evaluate the energy efficiency
of systems. [39] study the problem of balancing an RMS so as to minimize the peak of production-related
electric power consumption. However, multiple objectives can be optimized in a production system.
Thus, several papers consider energy measures in addition to productivity/cost assessments. [40] inves-
tigate a multi-objective production planning problem that considers energy consumption, throughput,
and inventory holding costs to assess the performance of the planning. A configuration gives rise to a
production plan, leading to a total energy consumption. The recent review [18] mentions some other
works that investigate energy consumption optimization in RMS.

Although some research projects have investigated energy efficiency in RMS, the operational control
of RMS subject to Time-Of-Use (TOU) pricing has attracted little attention in the literature. This
topic is more prevalent in production planning and scheduling. For instance, in [41], the objective is to
minimize energy consumption costs in the context of a single machine production scheduling problem
subject to different production modes (switch on/off, stand-by) while accounting for variable energy
prices. In [42] several insights are provided on the proper management of an unrelated parallel machine
scheduling problem under TOU pricings with the objective of minimizing the total electricity cost.
Recently, in [43], a job-shop scheduling problem is investigated in order to optimize production and
economic criteria, namely total production time (makespan) and costs subject to TOU tariffs.

Despite the inclusion of energy-related objectives and/or constraints in recent works, the survey by
[7] shows that there is still little research on the use of RMS to improve energy efficiency in production.
Meanwhile, as stressed in [44], decisions taken at the design stage of production systems can affect their
operational behaviour from the point of view of energy efficiency. It is therefore important to address
such issues from the design stage, and from the perspective of different time horizons.

Few works have simultaneously investigated the design and usage of RMS . [17] consider the integra-
tion of long-term and short-term decisions in the design and reconfiguration of modular assembly systems.
The integrated approach is divided into four sequential steps, namely the definition of configurations,
the layout and assembly process of cells, the production planning and the planning of reconfigurations.
Once the initial candidate designs are chosen, the equipments and operation sequencing are arranged by
an assembly cell configuration tool, followed by production planning based on simulation. To compute
the system designs, expected product demands according to low/medium/high demand scenarios are
considered. However, it might be difficult, or even intractable to handle all features of an integrated
problem at once, so nested optimisation approaches may be required [45]. For instance, in [46], the
authors investigate a bi-level approach for process plan generation of RMS. The lower-level has an ob-
jective based on energy losses and ensures that the process plan respects parts requirements, while the
upper-level checks the feasibility of the obtained solution as to selected machines and tools.

The first studies that have considered a bi-level model to optimize energy costs in the context of
RMS are those of [47, 48]. In these works, a balancing problem is investigated in order to obtain a
set of configurations that can be used to determine a production plan to match a given demand while
minimizing the total energy cost based on a Time-Of-Use (TOU) pricing scheme. However they do not
take into account the difference in the available information about the demand that the decision-makers
of the two levels (design, planning) have, as well as the multiple criteria to consider in the design stage.
In Section 3, we further define the problem and propose a methodology to address it.

Table 1 summarizes the reviewed scientific contributions and their features, and allows a comparison
with this work. The column problem type describes the typology of adressed problems, i.e., design,
layout, planning or scheduling of production systems. Energy features are energy consumption, elec-
tricity costs or peak power consideration. These features are generally more common in scheduling
and planning problems, and less on works about RMS. Such features appear in the reviewed works as
objective functions (O), indicators (I) or constraints (C). Productivity features correspond to the time
performance of a production system. Economic features aggregate various costs, e.g. exploitation costs
or configurations/reconfigurations costs. The column uncertainty refers to whether a paper considers it,
and its source. RMS features columns display the considered caracteristic of RMS. The column method
shows the investigated approaches: Integer Linear Programming (ILP), Mixed-Integer Nonlinear Pro-
gramming (MINLP) or general Discrete Optimization (DO); Genetic Algorithm (GA), Multistart Evo-
lutionary Local Search (MSxELS) or other types of heuristic approaches, e.g. matheuristic algorithms;
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Discrete Event Simulation (DES); System Dynamics (SD); Petri Nets (PN); Constrained K-Shortest
Paths (CKSP); Timed Net Condition/Event Systems (TNCES). Finally, the column objective displays
whether the investigated problem is mono-objective or multi-objective, and in the latter case, whether
an aggregated objective function is used. As can be seen, the study at hand addresses a set of features
that is underrepresented in the literature.

3. Problem description

We consider the design of a paced reconfigurable manufacturing system with uncertain demand taking
into account the design cost as well as the future energy cost and service level associated with the future
usage of the system. We thus face a bi-level optimization problem composed of a line balancing problem
as the upper level, and a configuration planning problem as the lower level.

The line balancing problem occurs at the design stage. A set {1, . . . , n} of operations required to
produce a single model of product has to be assigned to a set {1, . . . ,m} of stations. Each operation must
be assigned once and to exactly one station, with a set P of precedence relations and an upper bound n̄
on the number of operations per station, restricting the possible assignments. An operation j is defined
by a processing time tj and consumes an energy ej , with both values being independent of the station
to which the operation is assigned. The RMS is assumed to be a parallel-serial line with crossover [see
e.g. 49], i.e., parts move along the stations in a serial manner but several identical resources can be used
in parallel at each station. Each configuration i is thus defined by the number ri,k of resources of each
station k. In such a system, the workload of a station is the sum of the processing times of operations
assigned to it, divided by the number of resources. The line is paced , therefore the takt time Ti of
configuration i is defined by its bottleneck station, and can be calculated according to (1):

Ti = max
k∈1,...,m

{∑n
j=1 tj .xj,k

ri,k

}
(1)

However, the demand to be met is uncertain and we consider a set D of demand scenarios with an
associated probability σd.

The objective is to determine a set of nondominated assignments x of operations to stations (in the
sense of Pareto dominance) with regard to the three following criteria, and without any priority among
them:

1. the number of stations of x, so as to reduce the cost of the line;

2. the expected value of the service level, which is defined for x w.r.t demand d ∈ D as the percentage
of d that can be met by using the configurations associated with x;

3. the expected value of the per-produced-unit energy cost, defined for a planning as the economic
cost of the energy consumption associated with the configurations used by the planning when
dealing with the demand d.

The configuration planning problem occurs when the RMS is installed and already operational. At
this stage, although the balancing is set and cannot be changed, reconfigurations of the RMS are possible
and can be performed by changing the number of resources of each station. Indeed, the basic configuration
that can be derived from a balancing x has only one resource on each station, but other configurations
can be obtained from it by incrementing the number of resources of stations. Since the line is paced, its
takt time can only be reduced by increasing by one the number of resources of the bottleneck station,
potentially leading to a new bottleneck station [33]. This process can be repeated until either the
maximum overall number of resources R̄ is reached, or the bottleneck station already has the maximum
number r̄ of resources per station. We denote C(x) the set of configurations that can be derived from
the balancing x, and Ti the takt time of the configuration i ∈ C(x). Since a reconfiguration only implies
switching certain resources on or off, we assume that reconfiguration times and costs can be neglected.
The planning problem then consists in deciding how to use the configurations of C(x) over a time horizon
H to meet the demand associated with a given scenario taking into account a TOU pricing scheme for
energy costs. In such a scheme, the time horizon is partitioned in a set Π of periods p of duration
vp with associated energy unit cost wp . We assume that for any configuration i ∈ C(x), the energy
consumed per unit of time qi can be calculated by adding, for each station, the energy needed to process
the operations assigned to the station and a residual energy consumption during idle time. The residual
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reference
problem
type

energy features productivity features
economic
features uncertainty

RMS features
method objectiveenergy

consumption
electricity

cost

power
peak

time
horizon throughput

service
level customization scalability convertibility

[13] Design C O X GA mono
[27] Design O X ILP, CKSP mono
[28] Design O X X ILP mono
[32] Design I demand X SD
[33] Design O O X complete enum. aggr
[36] Design O X X X ILP mono
[38] Design I I X TNCES
[39] Design O C ILP mono
[44] Design O C MSxELS mono
[34] Planning C O X GA mono
[35] Planning C O X X X DO, PN mono
[40] Planning O O O X X ILP aggr
[41] Scheduling O C X ILP, GA mono
[42] Scheduling O C X ILP, heuristic mono
[43] Scheduling O C C O X ILP, heuristic mono

[17]
Design
Planning

C O
breakdown,
demand

X X
heuristic,

DES
mono

[31]
Design
Planning

O demand X
stochastic

ILP mono

[46]
Design
Planning

O X MINLP mono

[47]
Design
Planning

O O X matheuristic aggr

[48]
Design
Planning

O O X matheuristic aggr

this
work

Design
Planning

O O O demand X matheuristic multi

Table 1: Synthesis of the reviewed literature.
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energy consumption of a station k is considered to be proportional by a factor α to the product of the
idle time, the number of resources ri,k and the energy consumption of operations assigned to k. Equation
2 illustrates the computation of qi:

qi =
1

Ti

m∑
k=1

 n∑
j=1

ej .xj,k + α.ri,k.

(
Ti −

∑n
j=1 tj .xj,k

ri,k

) ∑n
j=1 ej .xj,k∑n
j=1 tj .xj,k


=

1

Ti

m∑
k=1

 n∑
j=1

ej .xj,k

 .

(
1 + α

(
ri,k.Ti∑n
j=1 tj .xj,k

− 1

)) (2)

No guarantee is given that the RMS will be able to satisfy the given demand, i.e., that the takt time
mini∈C(x){Ti} of its most productive configuration will be tight enough. Therefore, the configuration
planning problem does indeed have two objectives, which (unlike those of the upper-level problem) are
considered in lexicographic order: first, the highest possible percentage of the demand is met; second, the
planning to satisfy this maximum demand percentage with minimum per-produced-unit energy-related
economic cost is determined.

One aspect that it is of the utmost importance in understanding the problem under study is the
reasons behind its bi-level nature. The problem consists in designing an RMS so as to optimize the three
aforementioned criteria, two of which require to consider the optimal solution of the operational problem
of configuration planning. It is then clear that the two problems are located on two hierarchically and
temporally separated decision layers. Design decisions must be taken at a moment in time in which
the demand to be fulfilled is not known, forcing the decision maker to proceed by considering demand
scenarios; at a later moment, when the system has been designed, another decision maker will have to
determine a configuration planning to optimally (w.r.t. service level and energy costs) fulfill a demand
that will, by then, be known. Yet, the two decision layers are strongly interconnected: on the one
hand the performance of a balancing cannot be assessed without solving the configuration planning
problem for each demand scenario, while on the other hand the planning problem cannot be solved if the
configuration set is not known in advance. Bi-level optimization is the methodological framework used
to formalize and address the overall problem as being made made up of two subproblems –an upper-level
or master problem and a lower-level or slave problem– for which such a relation exists. However, the
separation between the two problems can affect the way in which elements that are common to the two
are addressed. In the particular case of the bi-level problem studied here, this holds for the production
demand. Demand is a random variable at the upper level, which is unsurprising since at the design stage
it cannot be known: this uncertainty is addressed by means of scenario-based optimization, where every
scenario features an assumed demand value. Incidentally, this gives rise to as many slave problems as
the scenarios: for each such subproblem, when the production planning must be decided, demand is no
longer unknown and can be considered as a deterministic data item for all intents and purposes.

To recap, the problem at study is a bi-level optimization problem, with a multi-objective, scenario-
based master problem, and a set of slave problems which are mutually independent, deterministic and
have two lexicographically ordered objectives.

Table 2 summarizes all the notations used. The decision variables can be defined as follows:

• xj,k = 1 if operation j is assigned to station k, 0 otherwise;

• uk = 1 if station k is used, 0 otherwise;

• yi,p,d ∈ [0; 1]: percentage of period p during which production planning uses configuration i when
scenario d occurs.

Using the aforementioned notations, the bi-level optimization problem at hand can then be expressed
as a mixed integer nonlinear program (3). In this model, (3a-3c) represent the three criteria to optimize
at the upper level. In the upper-level problem, (3d) and (3e) are classical balancing assignment and
precedence constraints, respectively, and (3f) ensures that the upper bound on the number of operations
per station is not exceeded and also links variables x and u. The constraints (3g) eliminate symmetrical
solutions. Note that the decision variables from the lower level yi,p,d are referred to as y⋆i,p,d in the
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upper level since they correspond to the optimal values of these variables for the corresponding lower-
level problem. The |D| lower-level problems are defined with the criterion to optimize (3j) as well as
constraints (3k) and (3l), which ensure that the planning horizon is respected and the demand is met,
respectively.

Minimize zm =

m∑
k=1

uk (3a)

Maximize zsl =
∑
d∈D

σd.

min

d; H

min
i∈C(x)

{Ti}


d

(3b)

Minimize zec =
∑
d∈D

σd.
∑

i∈C(x)

vp.wp.qi.y
⋆
i,p,d

min

d; H

min
i∈C(x)

{Ti}


(3c)

s.t.

m∑
k=1

xj,k = 1 ,∀j ∈ 1, . . . , n (3d)

m∑
k=1

k.xj,k ≤
m∑

k=1

k.xg,k ,∀(j, g) ∈ P (3e)

n∑
j=1

xj,k ≤ n̄.uk ,∀k ∈ 1, . . . ,m (3f)

uk ≤ uk−1 ,∀k ∈ 2, . . . ,m (3g)

xj,k ∈ {0; 1} ,∀j ∈ 1, . . . , n, k ∈ 1, . . . ,m (3h)

uk ∈ {0; 1} ,∀k ∈ 1, . . . ,m (3i)

y⋆d = argminyd

∑
i∈C(x)

∑
p∈Π

vp.wp.qi.yi,p,d ,∀d ∈ D (3j)

s.t.
∑

i∈C(x)

yi,p,d ≤ 1 ,∀p ∈ Π (3k)

∑
i∈C(x)

∑
p∈Π

vp
Ti

.yi,p,d ≥ min

d;
H

min
i∈C(x)

{Ti}

 (3l)

0 ≤ yi,p,d ≤ 1 ,∀i ∈ 1, . . . , n, p ∈ Π (3m)

4. A three-phase matheuristic approach

To tackle this problem, we developed a multi-objective matheuristic in three phases. Phase 1 aims
to generate some balancing and the resulting configurations. Phase 2 focuses on the planning of these
configurations, for each balancing, taking into account the demand scenarios and the energy cost profile,
and evaluating the three objective functions. Phase 3 aims to filter the balancing solutions to keep only
those presenting an interesting tradeoff between the three objective functions.

4.1. Phase 1: generation of the designs

Phase 1 aims to generate interesting balancing solutions and their associated configurations. A
Multi-Objective Simulated Annealing (MOSA) is developed [50]. The MOSA focuses on the generation
of balancing solutions, during the initialization and determines new solutions at each step, which are
evaluated through the derived configurations, obtained using the iterative process presented in the pre-
vious section. The configurations vary in terms of the number of resources allocated to each station.
The whole set of configurations is considered when evaluating a balancing. We aim to assess it on the
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three criteria of the bi-level problem; however, during Phase 1, it is not possible to evaluate exactly the
expected energy cost, which depends on the configuration planning. To assess it, we use a proxy function,
given by a hypervolume of per-time-unit energy consumption qi and takt time Ti of each configuration
i. Only the non-dominated configurations regarding q and T are kept, i.e., those such that there are
no configurations derived from the same balancing with a better value regarding both q and T . The
values of qi and Ti are normalized as follows: q̃i =

qi−qL
qU−qL

and T̃i =
Ti−TL

TU−TL
where qL, qU , TL and TU are

respectively lower and upper bounds for q and T . Assuming that configurations are sorted in decreasing
order of Ti, equation 4 shows how the hypervolume is computed:

H = (1− T̃1)(1− q̃1) +
∑
i≥2

(
T̃i−1 − T̃i

)
(1− q̃i) (4)

This equation can be interpreted as a sum of the geometrical areas of rectangles defined by values qi
and Ti of the configurations, as illustrated in Figure 1.

0 T̃

q̃

H

×

××
×

×
×

×

(T̃1, q̃1)

(T̃6, q̃6)

1

1

Figure 1: Computation of the hypervolume for a set of configurations

At each step of the MOSA, a new balancing is randomly chosen in the neighborhood of the current
balancing. Here we consider a neighborhood composed of all feasible balancing solutions that can be
obtained by the current one by moving exactly one operation j from its current workstation to another
one. A feasible balancing has a maximum of m stations, a maximum of n̄ operations per station and
complies with precedence constraints. The station to which the operation is assigned in the neighbor
can be a new station with only this operation on it, and if a station becomes empty it is closed.

The new balancing and the current one are compared according to the three objectives of this phase
(the number of stations, the expected service level and the hypervolume H). The probability of accep-
tance is the product of the probabilities of acceptance computed independently for each of these three
objectives. On the same principle as a single objective simulated annealing, the probability of accepting
a solution according to a given objective is 1 if it is better than the value of the current balancing,
otherwise it is a function exp(δfp/t) of the difference δfp between the objective values of the current
balancing and the new balancing, where t is the temperature (decreasing according to a given geometrical
descent factor β every L steps of the MOSA). The expected service level and the hypervolume objective
function take values in [0, 1], and the objective on the number of stations is normalizes to also take value
in [0, 1], by dividing it by the maximum number of stations m allowed in the system.

During the execution of the MOSA, an archive is used to keep in memory the set B of non-dominated
balancing solutions, which is returned to Phase 2 at the end of the execution of the MOSA (i.e., after a
predetermined number of steps).

In order to get a better coverage of the Pareto front, the MOSA has a multi-start. Two types of
greedy initializations are performed: a directed one (using a weighted sum objective function during
the construction of the initial solution) and a random one. The two initialization methods work on
the same principle: we iteratively build a balancing, and each step consists in assigning one operation
to the current station or to the next one (opening a new station). To respect precedence constraints,
at each step the operation is chosen among the list of operations for which all predecessors have been
assigned (called assignable operations). The procedure ensures that the maximal number of stages and
the maximum number of operations per station are complied with. The difference between the directed
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and random initialization methods lies in the probability of choosing each of the assignable operations
and in the probability of opening a new station. In the random method, each assignable operation has
the same probability of being chosen and the probability of opening a new station is randomly chosen at
the beginning of the execution. In the directed method, the probability of choosing a operation and its
station (current or new one) is proportional to a weighted sum of three values: the number of stages, the
takt time (representing the expected service level) and the energy consumption Q of the partial balancing
(representing the expected energy cost). To cover the Pareto front, different starts take different weights
in this weighted sum.

4.2. Phase 2: configuration planning

Phase 2 consists in optimally planning, via Linear Programming (LP), the usage of the configurations
of C(x) for each x ∈ B over a period H to satisfy each demand scenario d ∈ D. However, since the cases
represented by the |D| different scenarios are completely independent, they give rise to as many Linear
Programs (LPs).

In each of these LPs, the demand must be met over a time horizon H. However, a balancing x has a
maximum attainable demand H

mini∈C(x){Ti}
, corresponding to the productivity of the configuration of

x that features the lowest takt time. The demand ∆ that must be met when solving the Linear Problem
attempts for scenario d ∈ D is the minimum between d and this maximum attainable demand. Lower-
level real variables yi,p ∈ [0, 1], p ∈ P , i ∈ C(x), represent the percentage of period p spent producing
with configuration i. Since lower-level LPs are independent and each refer to a demand scenario d ∈ D
which is a constant w.r.t. it, to simplify the notation we purposefully omitted the d index to y variables,
which are to all intents and purposes the same as for model (3a)-(3m).

The LP model is:

Minimize
∑

i∈C(x),p∈Π

vp.wp.qi.yi,p (5a)

s.t.
∑

i∈C(x),p∈Π

vp
Ti

.yi,p ≥ ∆ (5b)

∑
i∈C(x)

yi,p ≤ 1 ,∀p ∈ Π (5c)

0 ≤ yi,p ≤ 1 ,∀i ∈ C(x), p ∈ Π (5d)

Since vp.yi,p is the lapse of time of TOU period p during which production uses configuration i ∈ C(x),
qi.vp.yi,p is the associated energy consumption, and term (5a) is the overall energy cost to minimize.
Constraint (5b) enforces satisfaction of demand ∆, since

vp
Ti
.yi,p is the corresponding produced quan-

tity derived from takt Ti. Finally, (5c) forbids production in period p from exceeding its duration vp:
nonetheless, production can last less than vp, in which case

∑
i yi,p < 1.

It is worth noting that since some demand values d ∈ D could not be accomplished by the config-
urations of set C(x), the assessment of the suitability of a balancing x could not be done based on the
overall energy cost of objective function (5a). This is why the energy-related term (3c) of the upper-level
problem concerns the per-produced-unit energy cost.

4.3. Phase 3: Filtering non-dominated balancing

After Phase 2, each balancing has been evaluated w.r.t. the three objectives. More specifically, for
each balancing, the value of the proxy function used during Phase 1 can be replaced by the per-produced-
unit energy cost computed in Phase 2. Dominated balancing solutions w.r.t. the final three objectives
can be discarded, i.e., those s.t. there exists another balancing with better values for all three objective
functions. This yields a final set of design solutions that form the final Pareto front of the studied
three-objective problem.

5. Computational results

In this section we describe the computational experience that we conducted to assess the performances
of our approach.
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5.1. Description of the computational experience

Four TOU cost profiles were considered, named EP1 to EP4: the first two are taken from, respectively,
[51] and [52]; the last two are derived from energy contracts negotiated by two manufacturing companies
with their electric energy providers. Profiles EP1 to EP4 are shown in Figure 2. In order to facilitate
reading, and without loss of generality, time periods are ordered in the figure from left to right from the
least to the most expensive one: this can be done because the problem does not take into account the
time at which each period occurs, but only its duration. Each TOU cost profile covers a timespan H of
24 hours; tariffs are expressed in cost units per used energy unit.

Time (h)

Cost
EP1

|
13

|
19

|
22

|
24

25

50
60

250

Time (h)

Cost
EP2

|
2

|
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|
21

|
22

|
23

|
24

27 29
40 41 42

51

Time (h)

Cost
EP3

|
12

|
24

33.16
45.65

Time (h)

Cost
EP4

|
6

|
12

|
18

|
24

33.16
45.65 46.64

61.17

Figure 2: Detail of the considered TOU profiles.

We considered a total of 46 instances, derived from as many Simple Assembly Line Balancing Prob-
lems of type 1 (SALBP-1). A core line balancing problem in Combinatorial Optimization, SALBP-1
can describe various industrial environments. SALBP-1 consists in optimally assigning the tasks of an
assembly line to a set of workstations, whose number has to be minimized, under a given maximum takt
time limit and given task processing times and precedence constraints [21]. In this paper, we consider
the whole set of 25 SALBP-1 instances from [53] and a representative sample of 21 of the instances
of [54]. For each instance, we consider 20 demand scenarios, whose values are generated uniformly in
a symmetrical interval centered on a reference value derived from the SALBP-1 instance; the interval
width is ±25% to preserve feasibility of the upper demand value of the range. Probabilities are then
associated to demand scenarios following a discretized Gaussian probability distribution. This choice is
motivated by the fact that the considered demand value represents what, in a manufacturing system,
would be the accumulation of the demands of its many clients, which could be modeled by as many
independent random variables. Then, based on the Central Limit Theorem, it is reasonable to consider
that the random variable representing the aggregated demand follows a Gaussian distribution. More
specifically, we choose a discretized distribution since the demand represents a number of manufactured
items.

For each Scholl instance, the reference value is set on the median of the demand values considered in
the group of original instances of the same name, which differ in the target takt time; for Otto instances,
the value is set on the value obtained as ⌊H

T ⌋, with T = 1000 being the takt common to all the original
instances. In order to ensure that there is a feasible solution for all scenarios, we used IBM CPLEX
12.7.1 to solve, for each instance, the SALBP-1 corresponding to the largest demand scenario (using a 3
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hours time limit). Out of the 25 instances from [53], three were disregarded, namely Mertens, Bowman
and Scholl, because no feasible solution was found for them. For all Otto instances a feasible solution
was found, thus yielding a final set of 43 instances: 22 from the Scholl set, with a number n of operations
ranging from 9 to 148, and 21 from the Otto set, all with n = 20. Finally, for each instance, we associated
each operation with an energy consumption e value proportional to its processing time t by a random
value picked uniformly between 5 and 50 and generated independently for each operation.

Since the approach contains a random component in the MOSA, 10 replications of the matheuristic
are run per instance and cost profile, and aggregated or averaged results are shown. In the MOSA, the
descent factor β for the temperature is 0.98 and the initial temperature t is 10. In each replication,
the MOSA is started 30 times: 15 directed starts, with the weights of the weighted sum varying by
steps of 0.2, and 15 randomized starts. The total number of iterations and the length l of the steps are
proportional to the number of operations n in the instance (resp. 1250n and 5n). For each instance, n̄
is set to 40% of n, r̄ to 3 and R̄ to n. All tests were conducted on an Intel Xeon E5-2660 v3 2.6 Ghz
machine with 62.65Gb RAM.

5.2. Overall performance analysis of the proposed approach

In Table 3, the quality of the yielded Pareto fronts is evaluated via a hypervolume measure, averaged
over all energy cost profiles. First, for each instance and cost profile, an overall front is obtained by
merging those resulting from the replications. The merged front is actually the best known solution
set. The hypervolume of the merged front is then computed. The indicator %mrg is the ratio of the
hypervolume of the front of a replication to the hypervolume of the merged front, and σ is the standard
deviation of hypervolume values for the replications. The average number of solutions in the front ndes,
as well as the average running time tmh in seconds, are also reported.

Hypervolume figures show that the proposed method is stable in terms of the output Pareto front of
balancing solutions: this can be seen by looking at the standard deviation of hypervolume values, which
is never greater than 0.026 and 0.062 for Otto and Scholl instances, respectively. The yielded Pareto
fronts also seem to be made up of good trade-off solutions, as the %mrg metric is never less than 97.1%
and 91.7%, for Otto and Scholl instances, respectively. This also confirms that the method is stable
w.r.t. the random component of the MOSA.

From a computational point of view, the matheuristic executes quickly, always taking less than 8
seconds for Otto instances, and in general less than 3 minutes for Scholl instances, except for Barthol2
which, due to being one of the instances with the highest number of operations (148) can take up to 8
minutes of computation. The computation times are essentially independent of the cost profile, which
only impacts Phase 2 whose running times are negligible.

5.3. Analysis of the diversity of solutions obtained in the Pareto front

Tables 4 and 5 aim to analyze the diversity of solutions obtained in the Pareto front. For each
instance and cost profile, each replication gives rise to a Pareto front of nondominated solutions, each
solution being associated with a balancing and its performances w.r.t. the three objectives zm, zsl and
zec (see equations (3a) to (3c)). The minimum and maximum values of zm, zsl, zec are averaged over the
replications and the respective relative ratios (denoted by rlr()), i.e. the average maximum over the
average minimum, are computed. The values rlr(zm), rlr(zsl), rlr(zec) compose the three first columns
of each energy cost profile in Tables 4 and 5, while the fourth is the average number of solutions in the
Pareto front.

The values obtained with each cost profile are quite similar for all four indicators, except for rlr(zec),
which was to be expected since the main impact is the difference in costs between the time periods. The
other indicators exhibit slight variations because the fronts yielded by the MOSA are not identical and
the evaluation of these solutions and the filtering of Phase 3 depend on the energy profile.

The average number of solutions in the front is strongly correlated with the amplitude ratios rlr(zm),
rlr(zsl), rlr(zec). For Otto instances, if we compute the correlation coefficient for all the pairs among
rlr(zm), rlr(zsl), rlr(zec), we get no less than 0.918 (which occurs between rlr(zm) and rlr(zsl)). Similarly,
the correlation coefficients between the three relative ratio values and ndes, the average number of
solutions in the Pareto front, are respectively 0.962, 0.871 and 0.954. Moreover, ndes is in most cases
either greater than or equal to 15.7, or strictly less than 2.2. This seems to suggest that, in general and
regardless of the cost profile, Otto instances lead to a Pareto front with either very few or a good variety

12



1, . . . , n set of operations
1, . . . ,m set of stations
n̄ maximum number of operations assigned to the same station
P set of precedences between operations ((j, g) ∈ P means that operation j is a pre-

decessor of operation g)
tj processing time of operation j
ej total energy consumed during the processing of operation j (i.e., the integral of the

power consumption profile of operation j over its processing time)
Π set of periods for the TOU energy cost
D set of demand scenarios
σd probability of occurrence of scenario d, defined such that

∑
d∈D σd = 1 (e.g., equal

to 1
|D| in case of equiprobable distribution)

H time horizon for the planning
vp duration of period p
wp energy cost during period p
α residual energy consumption factor during idle time
C(x) set of available configurations using the balancing x
ri,k number of resources used in configuration i for station k
r̄ maximum number of resources per station
R̄ maximum number of resources for the whole line
Ti takt time of the RMS when using configuration i
qi energy consumed per unit of time when configuration i is used

Table 2: Notations used for the problem data

hypervolume ndes tmh hypervolume ndes tmh

%mrg σ (s) %mrg σ (s)
Otto025 97.9% 0.012 19.8 7.35 Jaeschke 96.3% 0.000 4.5 1.53
Otto050 97.8% 0.019 2.2 4.22 Jackson 97.4% 0.000 3.0 1.95
Otto075 98.8% 0.000 1.7 3.13 Mansoor 98.1% 0.000 1.0 1.40
Otto100 97.3% 0.016 16.7 6.95 Mitchell 97.9% 0.018 4.7 4.59
Otto125 98.3% 0.014 3.2 4.93 Roszieg 97.8% 0.017 8.8 8.13
Otto150 98.7% 0.004 1.7 3.08 Heskiaoff 98.7% 0.014 3.1 6.23
Otto175 98.4% 0.001 18.7 7.00 Buxey 98.6% 0.008 18.9 12.41
Otto200 99.0% 0.000 12.2 5.99 Sawyer 97.6% 0.037 14.7 13.30
Otto225 98.8% 0.000 1.7 3.20 Lutz1 98.8% 0.009 14.8 14.41
Otto250 98.3% 0.000 15.8 7.11 Gunther 98.8% 0.015 16.2 16.09
Otto275 98.8% 0.000 4.6 4.96 Kilbridge 96.6% 0.027 12.3 15.89
Otto300 98.9% 0.000 2.1 4.20 Hahn 96.9% 0.034 4.6 16.24
Otto325 98.5% 0.001 16.9 7.05 Warnecke 96.6% 0.025 15.1 60.10
Otto350 98.9% 0.000 4.4 5.04 Tonge 97.4% 0.018 12.5 74.78
Otto375 98.5% 0.004 1.5 3.22 Wee-mag 96.3% 0.010 16.9 98.53
Otto400 97.1% 0.026 16.9 7.30 Arcus1 91.7% 0.062 8.1 75.19
Otto425 98.5% 0.014 9.6 5.58 Lutz2 95.4% 0.043 13.2 127.94
Otto450 98.5% 0.004 1.6 3.18 Lutz3 93.5% 0.043 10.6 116.27
Otto475 97.9% 0.012 15.7 6.92 Mukherje 94.3% 0.049 9.3 133.98
Otto500 98.4% 0.014 9.2 6.32 Arcus2 96.7% 0.032 11.1 160.91
Otto525 98.7% 0.004 1.5 3.26 Barthol2 95.3% 0.030 11.9 440.57

Barthold 96.3% 0.029 4.8 166.03

Table 3: Quality and features of replications w.r.t. best known solutions, averaged over all energy cost profiles.
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of solutions, and in the second case, the ranges of values of the three ratios are of equal amplitude, with
no consistent preference or disadvantage of one against the others. These correlations are in general
weaker for Scholl instances: between 0.793 (rlr(zm) and rlr(zsl)) and 0.993 (rlr(zec) and rlr(zsl)) for pairs
of objective relative ratios; between 0.507 and 0.746 between each objective and ndes. Besides, the values
of ndes are much more scattered. However, all these facts could result from Scholl instances being much
more heterogeneous in terms of features, notably the number n of operations.

It is nonetheless noteworthy that the correlation between rlr(zec) and rlr(zsl) appears to be strong
for both Otto and Scholl instances, suggesting a relation between service level and economic cost. This
can be explained as follows. As seen in Section 3, the lower-level planning problem tries first to satisfy
the highest percentage of the demand d ∈ D associated with a given scenario, and then to satisfy this
percentage with the lowest possible per-produced-unit energy cost. Section 4.2 then highlighted that any
given balancing x has a maximum attainable demand H

mini∈C(x){Ti}
: as long as d is much lower than this

limit, d can be easily met (zsl = 1) without producing during the costliest TOU period p. However, as d
approaches the maximum attainable demand, producing during period p becomes necessary, causing zec
to increase dramatically (in particular in cases such as EP1 where the most expensive period is relatively
short but with a strong cost ratio compared to less costly periods). Finally, when d ≥ H

mini∈C(x){Ti}
, we

have zsl ≤ 1 and the highest possible energy cost zec, due to the entire timespan being spent producing
with the most productive configuration of x, which in most cases is not the least consuming. Hence, we
either have values zsl = 1 and low zec values, or zsl = 1 and near-maximum zec values, or zsl < 1 and
maximum zec values, which can be empirically considered as the reason for the observed correlation.

For the number of stations, the relative ratio on Otto instances is always less than 4.55, and on
average 2.42; the figures are respectively less than 6.1 and 3.3 for Scholl instances. Indeed, a greater
number of stations enables one to increase the overall productivity, at the cost of an increase in energy
consumption, which can be worthwhile for producing only in lower price periods to satisfy the demand.
Conversely, having a low number of stations can lead to a low per-unit energy consumption, but the
demand may not be entirely met.

At each instance, cost profile and replication, at least one solution with a service level equal to 1 is
yielded, the worst one having on average a level greater than 73.7% for the 21 Otto instances, and 28.5%
for the 22 Scholl instances.

5.4. Analysis of the usage of configurations during the planning phase

In this section, we aim to analyse the number of configurations used to meet all the demands. For
each instance and cost profile Π, and for each replication and balancing solution x of the Pareto front,
we compute the expected value of the number of configurations |{i ∈ C(x) : (∃p ∈ Π) yi,p,d > 0}| used to
meet a demand scenario d, as well as the number of all the configurations used to meet at least one of
them, |{i ∈ C(x) : (∃p ∈ Π, d ∈ D) yi,p,d > 0}|. These figures are denoted in the following, respectively, as
E[#uc] and tot#uc for conciseness. E[#uc] can be seen as an indicator of the number of reconfigurations
required during the time horizon over which a demand scenario must be met; tot#uc indicates, for a
balancing solution x, how many of the configurations of C(x) are actually needed to face every possible
scenario.

Figure 3 illustrates how E[#uc] and tot#uc are computed. It depicts, in terms of percentage of
the time horizon used to attain a given demand (%H, reported on the vertical axis) how one of the
nondominated solutions x of one of the replications for cost profile EP1, instance Mukherje, reacts to all
possible demand values from d=150 to d=500.

Discrete values D = {277, 286, . . . , 461} represent the demand scenarios of the corresponding dis-
cretized Gaussian probability distribution, as shown by the boxes associated with them, but the figure
covers a wider set of demand values to assess the behavior of x beyond the considered scenarios. RMS
x has |C(x)| = 19 configurations, but –as we will show– only three are used all along the demand range
150 ≤ d ≤ 500. Hence, for the sake of simplicity, we will consider C̃(x) = {c0, c1, c2}. Configuration
features Ti (takt time) and qi Ti (per-produced-unit energy consumption) are reported in the figure: c2
is the most productive one (having by construction the lowest takt time, see Section 3); c0 is the least
energy-consuming one; finally, c1 has intermediate features, i.e., it is less consuming and less productive
than c2, but also more consuming and more productive than c0. On the left, TOU periods are indexed
from the least to the most expensive p=0 to p=3, as depicted by the red strips on the right. Demand
d=150 only requires c0, as its takt time T0 is largely sufficient to meet d in 58.6% of period p=0. The
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EP1 EP2 EP3 EP4
E[#uc] tot#uc E[#uc] tot#uc E[#uc] tot#uc E[#uc] tot#uc

mın max mın max mın max mın max mın max mın max mın max mın max

Otto025 1.00 2.22 1.0 3.0 1.00 2.47 1.0 3.0 1.00 2.08 1.0 2.4 1.00 2.14 1.0 2.7
Otto050 1.30 1.67 1.3 1.7 1.17 2.08 1.7 2.9 1.20 1.31 1.3 1.5 1.00 1.70 1.0 1.8
Otto075 1.70 1.90 1.7 1.9 1.37 1.87 1.9 2.8 1.06 1.09 1.2 1.3 1.00 1.40 1.0 1.5
Otto100 1.00 2.09 1.0 3.0 1.00 2.38 1.0 3.0 1.00 2.07 1.0 2.4 1.00 2.08 1.0 2.8
Otto125 1.47 1.66 1.5 1.8 1.00 1.85 1.0 2.6 1.00 1.36 1.0 1.4 1.00 1.53 1.0 1.8
Otto150 1.60 1.80 1.7 1.8 1.38 2.09 2.0 3.0 1.00 1.05 1.0 1.1 1.11 1.60 1.2 1.8
Otto175 1.00 2.13 1.0 3.0 1.00 2.31 1.0 3.0 1.00 2.06 1.0 2.5 1.00 2.02 1.0 2.5
Otto200 1.03 1.76 1.2 3.0 1.00 2.05 1.0 3.0 1.00 2.00 1.0 2.5 1.00 2.00 1.0 2.3
Otto225 2.32 2.36 2.8 2.9 1.45 2.09 2.4 3.0 1.82 1.82 2.7 2.7 1.08 1.80 1.1 1.8
Otto250 1.00 2.09 1.0 3.0 1.00 2.25 1.0 3.0 1.00 2.02 1.0 2.6 1.00 2.01 1.0 3.0
Otto275 1.18 1.79 1.8 3.0 1.09 2.21 1.3 3.0 1.04 1.98 1.3 2.2 1.00 1.91 1.0 2.0
Otto300 1.93 1.93 2.3 2.3 1.11 2.06 1.5 3.0 1.49 1.49 1.5 1.5 1.00 1.70 1.0 2.1
Otto325 1.00 2.03 1.0 3.0 1.00 2.21 1.0 2.9 1.00 2.00 1.0 2.3 1.00 2.14 1.0 2.7
Otto350 1.05 1.75 1.2 2.6 1.00 2.00 1.0 3.0 1.01 1.86 1.1 1.9 1.00 1.97 1.1 2.2
Otto375 1.93 2.02 2.0 2.1 1.20 1.78 2.0 3.0 1.02 1.02 1.1 1.1 1.04 1.71 1.3 1.8
Otto400 1.00 2.18 1.0 3.0 1.00 2.16 1.0 2.9 1.00 2.00 1.0 2.3 1.00 2.08 1.0 2.9
Otto425 1.09 1.89 1.1 2.9 1.00 2.23 1.0 3.0 1.00 1.90 1.0 2.2 1.00 2.06 1.0 2.4
Otto450 1.09 1.19 1.1 1.2 1.04 1.55 1.2 2.6 1.82 1.91 2.7 2.8 1.08 1.80 1.1 2.0
Otto475 1.00 2.17 1.0 3.0 1.00 2.45 1.0 3.0 1.00 2.00 1.0 2.5 1.00 2.00 1.0 3.0
Otto500 1.01 2.03 1.1 2.9 1.00 2.10 1.0 2.8 1.00 2.00 1.0 2.2 1.00 2.05 1.0 2.1
Otto525 1.72 1.82 2.0 2.1 1.35 1.95 2.0 2.7 1.03 1.03 1.3 1.3 1.19 1.64 1.3 1.9

Table 6: Average usage of configurations by proposed RMS solutions, Otto instances.

usage of c0 in p=0 increases up to a demand value of d=⌊ 13.3600
183 ⌋=255, after which the optimal solution

is to partly use c1 so as to avoid producing during p= 1. This is due to the cost ratio w1

w0
= 2 being

much greater than q1.T1

q0.T0
⪆ 1, the ratio between the per-unit energy consumptions of c1 and c0. Using

c1 gradually replaces c0 up to a value d=291, after which, based on the same principle, the usage of c1
is gradually replaced by c2. Demand d=297 is the last one that can be covered entirely by producing
during the least expensive period only, and this by using the most productive configuration: from d=298
on, a residual demand exists that is met by using c0 during period p=1. It is easy to see that this scheme
repeats up to d=500. In this example, the number of configurations used is 2 for each demand scenario,
except d=422 and the following (d=431), for which 3 are required along the same timespan. Note that
scenarios requiring two configurations do not always use the same two, e.g., d=277 uses c0 and c1, while
d=335 uses c0 and c2. The associated probability values range from 0.13% for d=271 and d=461 to
12.43% for d=364 and 12.48% for d=373 (the following): the corresponding weighted sum gives a value
of 2.045 for E[#uc]. As for tot#uc, its value is 3, as the subset of the configurations actually used for
at least one scenario has only 3 of the original 19 members.

Tables 6 and 7 provide an analysis of how the RMS solutions proposed by the matheuristic use their
configuration set, on Otto and Scholl instances, respectively. Table 6 reports, for each Otto instance and
cost profile, the average over the 10 replications of the minimum and maximum values of E[#uc] (denoted
E[#uc]mın and E[#uc]max, respectively) and tot#uc (denoted tot#ucmın and tot#ucmax, respectively)
among the Pareto front solutions of each replication. Average intervals per instance and cost profile are
thus obtained for the two figures. The same goes for Table 7 for Scholl instances.

As regards E[#uc], we notice in both Tables 6 and 7 for many instances an average minimum value,
E[#uc]mın, equal to 1: for these instances, all replications yield at least one balancing solution of the front
for which every demand scenario can be dealt with by only one configuration, and thus no reconfiguration
is required. Many of these instances occur: 16 out of 22 and 11.5 out of 21, on average over all cost profiles,
for Scholl and Otto instances, respectively. If in particular for the same instance we also have tot#ucmın

equal to 1 (e.g. Otto025 for every cost profile), then the same balancing uses the same configuration
for all scenarios. On the other hand, E[#uc]mın being strictly greater than 2 for an instance and cost
profile might indicate that every balancing solution of the front of every replication requires at least two
configurations for every possible demand scenario. Finally, we notice that E[#uc]max is always strictly
less than 3. As for tot#ucmax, we note that it is rarely strictly greater than 3.

If we look at the gap between E[#uc]mın and E[#uc]max, with all instances (Otto and Scholl) consid-
ered, we find values of 0.77 for EP1, 1.03 for EP2, 0.71 for EP3 and 0.94 for EP4. Indeed, EP1 and EP3
have similar structures: EP3 is divided into two very large periods (12h each) with an energy cost ratio
between the two not greater than 1.38, and EP1 has 13 hours with the lowest cost and 9 more where
the cost rises according to a ratio not greater than 2.4. On the other hand, EP2 and EP4 have a wide
central interval with a constant (or nearly constant) value and much shorter extreme intervals whose
costs differ significantly. This seems to explain both why the gap between E[#uc]mın and E[#uc]max is
narrower with EP1 and EP3, and why for these two the average value of E[#uc]max, all instance con-
sidered, is less than 2: presumably, in this cases the balancing solutions try to meet as much demand as
possible of the demand during the cheapest period with the least consuming configuration, and only for
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EP1 EP2 EP3 EP4
E[#uc] tot#uc E[#uc] tot#uc E[#uc] tot#uc E[#uc] tot#uc

mın max mın max mın max mın max mın max mın max mın max mın max

Jaeschke 1.00 1.62 1.0 2.0 1.00 2.00 1.0 3.0 1.00 1.90 1.0 2.0 1.00 2.00 1.0 2.0
Jackson 1.65 2.49 3.0 3.0 1.00 2.00 1.0 2.0 1.97 2.00 2.0 2.0 1.00 2.00 1.0 2.0
Mansoor 1.97 1.97 2.0 2.0 1.86 1.86 3.0 3.0 1.50 1.50 2.0 2.0 2.00 2.00 2.0 2.0
Mitchell 1.13 2.03 1.3 2.9 1.07 2.08 1.1 3.0 1.09 1.70 1.2 2.2 1.00 1.80 1.0 1.8
Roszieg 1.01 1.97 1.1 2.9 1.00 2.00 1.0 3.0 1.00 1.94 1.0 2.0 1.00 2.00 1.0 2.0
Heskiaoff 1.25 1.66 1.6 2.0 1.00 2.04 1.0 2.8 1.10 1.72 1.1 2.0 1.00 1.90 1.0 2.1
Buxey 1.00 2.06 1.0 3.0 1.00 2.04 1.0 2.9 1.00 2.00 1.0 2.3 1.00 2.01 1.0 2.8
Sawyer 1.00 1.96 1.0 2.8 1.00 2.11 1.0 2.6 1.00 2.00 1.0 2.2 1.00 2.12 1.0 2.6
Lutz1 1.00 2.13 1.0 3.0 1.00 2.17 1.0 2.8 1.00 2.00 1.0 2.1 1.00 2.04 1.0 2.8
Gunther 1.00 2.03 1.0 3.0 1.00 2.10 1.0 2.6 1.00 2.00 1.0 2.2 1.00 2.01 1.1 2.5
Kilbridge 1.00 1.81 1.1 2.7 1.10 2.19 1.1 2.9 1.08 1.63 1.2 2.0 1.00 1.86 1.0 2.2
Hahn 1.00 1.43 1.0 2.0 1.00 1.70 1.0 1.9 1.00 1.62 1.1 2.2 1.00 1.76 1.0 2.1
Warnecke 1.00 2.44 1.0 3.2 1.00 2.26 1.0 2.8 1.00 2.02 1.0 3.0 1.00 2.39 1.0 2.8
Tonge 1.00 2.27 1.0 2.6 1.00 2.28 1.0 2.6 1.00 2.06 1.0 2.6 1.00 2.28 1.0 2.7
Wee-mag 1.00 2.46 1.0 2.8 1.00 2.39 1.0 2.6 1.00 2.02 1.0 2.7 1.00 2.12 1.0 2.8
Arcus1 1.00 1.76 1.0 2.0 1.00 2.03 1.0 2.2 1.00 1.73 1.0 2.1 1.00 2.00 1.0 2.3
Lutz2 1.00 2.08 1.0 2.7 1.00 2.08 1.0 2.4 1.00 2.00 1.0 2.6 1.00 2.27 1.0 2.6
Lutz3 1.00 2.20 1.0 3.0 1.00 2.33 1.0 2.8 1.00 2.05 1.0 2.9 1.00 2.37 1.0 3.1
Mukherje 1.00 2.13 1.0 2.7 1.00 2.52 1.0 2.6 1.00 1.92 1.0 2.5 1.00 2.48 1.0 2.9
Arcus2 1.00 1.92 1.0 2.1 1.00 2.40 1.0 2.4 1.00 2.08 1.0 2.3 1.00 2.12 1.0 2.4
Barthol2 1.00 2.03 1.0 2.9 1.10 2.14 1.1 2.5 1.10 2.01 1.1 2.8 1.10 2.55 1.1 2.8
Barthold 1.06 1.85 1.2 2.1 1.20 2.00 1.2 2.0 1.07 1.83 1.1 2.0 1.24 2.01 1.3 2.1

Table 7: Average usage of configurations by proposed RMS solutions, Scholl instances.

the highest demand scenarios possibly resort to the most productive, costlier one, since the cost ratio is
not severe. For EP2 and EP4, on the other hand, when the demand to be met is high, before switching
from one of the cheapest to the most productive configuration, intermediate ones (i.e. more productive
than the cheapest ones, and less consuming than the most productive) are used, before resorting to the
most productive only to avoid production during the costliest TOU period. Of course, EP1 differs from
EP3 in that it includes a short, much more expensive TOU period of 2h, which explains the higher gap
between E[#uc]mın and E[#uc]max.

Lastly, we note that the gap between the values of E[#uc]max and tot#ucmax, when all instances and
cost periods are considered, is on average 0.49 and never greater than 1.25 overall. This seems to suggest
that in most cases, of all the configurations |{i ∈ C(x) : (∃p ∈ Π, d ∈ D) yi,p,d > 0}| that a balancing
solution x uses to meet all demand scenarios, only a few or even none are used sporadically, while most
of them are used to cope with most demand scenarios.

5.5. Comparison with dedicated lines

In order to evaluate the impact of using RMS rather than classical serial lines, the results obtained by
our approach for each of the 43 instances have been compared with 5 dedicated lines with one resource
on each workstation. These dedicated lines correspond to 5 different system paradigms that could be
adopted in industry to deal with the uncertain nature of the demand, i.e., designed to meet to the
demand associated with the quantiles 50%, 75%, 90%, 95%, 100% of the distribution. The first one aims
to meet the median demand and is widely used in industry to achieve a good service level while keeping
the number of stations relatively low. The last one considers the worst-case scenario, designing a highly
productive system, possibly at the cost of a large number of stations. In the following, we refer to the
5 paradigms as DL50% to DL100%. For all the instances and the 5 quantiles considered, an optimal
SALBP-1 solution is sought with IBM CPLEX within a time limit of 3 hours.

To provide the reader with a visual understanding of the proposed comparison, Figure 4 illustrates it
on one of the instances, by using the same graphic convention as in Figure 3. The uppermost subfigure
depicts how one of the nondominated solutions of one of the replications for cost profile EP1, instance
Mitchell, reacts to all possible demand values from d = 1800 to d = 6000. The demand scenarios of the
discretized Gaussian probability distribution are also shown. Only 2 configurations are needed to meet
the full range of demands, with the least-consuming one (green color) being sufficient to cover all scenarios
in the quantile 80% of the distribution (i.e. up to demand scenario d = 4384). The RMS solution is
capable of efficiently using very few of its configurations to reduce production time and keep energy-
related costs low while meeting the demand. The middle subfigure refers to dedicated line DL100%,
which can by definition satisfy all demand scenarios and guarantee to have zsl = 1, but at a much higher
energy cost, since with equal demand, a much higher portion of the time horizon is required to satisfy
it, and the most expensive period can be needed. Additionally, higher demand values cannot be reached
within the time horizon, giving rise to backorders. These limits are even more evident for dedicated line
DL50%, depicted by the lowermost subfigure: in this case, backorders can occur also for the demand
values associated with some of the scenarios d ∈ D, causing zsl to be stricly less than 1. The concerned
scenarios are highlighted in the figure.
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Figure 4: Comparison of an RMS nondominated solution (top) with dedicated lines DL100% (middle) and DL50% (bottom),
Mitchell instance, cost profile EP1.
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Tables 8 and 9 show the result of the comparison between RMS solutions obtained by our approach
and dedicated line solutions yielded by the SALBP-1 solver. Table 8 compares the performances of an
RMS yielded by the matheuristic and the 5 dedicated lines. The RMS for the comparison is chosen as
follows: for each replication, the solution from the Pareto front obtained by MOSA which is the nearest
(in terms of normalized distance) to the ideal point (given by the best values of each of the objective
functions) is considered; the values of the three objectives zm to zec of the 10 solutions obtained –one
per replications– are averaged, yielding a reference RMS solution denoted RMS⋆. In Table 8, for each
criterion, five columns are reported, detailing the relative performances (percentage variations) of RMS⋆

and DL100% to DL75% compared to the performance of the dedicated line, DL50% (not shown) designed
to respond to the demand associated with the 50% quantile of the distribution. For each instance, the
executions on the four energy profiles are averaged. The complementary average values, computed for
each energy profile over all the instances, are given at the bottom of the same table.

Table 9 is built similarly to Table 8 for the expected value of the used percentage of the time horizon
, E[%H], except that all quantile DL and RMS⋆ are shown and values are not relative to DL50% but
absolute values instead.

zm (min) zsl (max) zec (min)
RMS* DL DL DL DL RMS* DL DL DL DL RMS* DL DL DL DL

100% 95% 90% 75% 100% 95% 90% 75% 100% 95% 90% 75%

Otto025 -39.77 54.55 36.36 27.27 9.09 2.44 2.56 2.46 2.26 1.44 -15.43 -4.88 -1.77 -0.97 0.14
Otto050 -20.00 25.00 25.00 0.00 0.00 0.91 0.91 0.91 0.61 -0.20 -19.58 -7.38 -7.38 -2.30 0.95
Otto075 0.00 33.33 33.33 33.33 33.33 2.56 2.56 2.56 2.26 2.05 -21.38 -8.92 -8.92 -1.87 1.87
Otto100 -39.32 54.55 18.18 9.09 9.09 2.12 2.15 2.04 1.84 1.02 -16.74 -6.90 -3.86 -3.15 -0.17
Otto125 -33.00 20.00 0.00 0.00 0.00 1.11 1.11 1.01 0.91 0.20 -19.07 -7.61 -3.74 -2.97 -0.18
Otto150 0.83 33.33 33.33 33.33 33.33 2.56 2.56 2.56 2.46 2.46 -21.44 -8.16 -8.16 -3.43 -3.43
Otto175 -31.75 60.00 30.00 30.00 20.00 2.52 2.56 2.46 2.26 1.64 -16.40 -6.05 -3.63 -1.95 -0.32
Otto200 -29.17 16.67 16.67 0.00 0.00 2.14 2.15 2.15 1.84 1.02 -19.79 -9.49 -9.49 -4.38 -0.72
Otto225 0.00 33.33 33.33 33.33 0.00 2.56 2.56 2.56 2.36 1.64 -22.26 -9.76 -9.76 -1.77 -2.03
Otto250 -25.25 70.00 40.00 40.00 30.00 2.56 2.56 2.46 2.26 1.64 -17.63 -3.98 -1.47 -0.38 0.29
Otto275 -29.50 40.00 20.00 20.00 20.00 2.56 2.56 2.46 2.26 2.05 -18.08 -7.48 -4.34 -2.65 -1.37
Otto300 -25.00 25.00 25.00 0.00 0.00 2.56 2.56 2.56 2.26 2.26 -20.27 -7.68 -7.68 -3.67 -3.57
Otto325 -54.82 21.43 21.43 14.29 0.00 0.63 2.56 2.56 2.26 1.44 -17.27 -8.46 -8.46 -2.77 -1.78
Otto350 -25.00 40.00 20.00 20.00 20.00 2.56 2.56 2.46 2.46 1.64 -18.40 -8.61 -3.98 -4.24 -0.84
Otto375 0.83 33.33 33.33 33.33 0.00 0.91 0.91 0.91 0.91 0.00 -21.41 -5.92 -5.92 -3.55 -0.43
Otto400 -44.17 33.33 25.00 25.00 16.67 2.46 2.56 2.46 2.26 1.44 -16.26 -7.92 -2.64 -1.50 1.02
Otto425 -25.00 33.33 16.67 0.00 0.00 0.50 0.50 0.40 0.20 0.00 -18.59 -5.75 -0.92 -1.48 -1.01
Otto450 0.83 33.33 33.33 33.33 0.00 2.15 2.15 2.15 2.04 1.02 -21.92 -8.38 -8.38 -2.37 -0.96
Otto475 -42.73 63.64 36.36 27.27 9.09 0.73 2.56 2.46 2.26 1.44 -17.63 -6.14 -3.62 -1.66 -0.43
Otto500 -48.75 12.50 12.50 12.50 12.50 2.56 2.56 2.56 2.56 1.64 -17.75 -9.11 -9.11 -5.40 -0.01
Otto525 0.83 33.33 33.33 33.33 0.00 0.91 0.91 0.91 0.91 0.00 -21.57 -8.25 -8.25 -3.28 -0.10

Jaeschke -57.14 14.29 14.29 0.00 0.00 0.10 0.10 0.10 0.00 0.00 -16.01 -5.91 -5.91 0.00 0.00
Jackson -50.00 16.67 16.67 16.67 0.00 0.30 0.30 0.30 0.30 0.00 -16.58 -5.51 -5.51 -5.51 0.00
Mansoor -25.00 0.00 0.00 0.00 0.00 0.30 0.30 0.30 0.30 -0.50 -21.47 -8.65 -8.65 -4.74 2.46
Mitchell -32.50 16.67 0.00 0.00 0.00 1.21 1.21 1.11 1.11 0.91 -19.97 -9.88 -6.61 -6.61 -3.41
Roszieg -33.44 25.00 25.00 0.00 0.00 1.00 1.01 1.01 0.81 0.81 -17.02 -7.69 -7.69 -3.68 -3.68
Heskiaoff -36.50 20.00 20.00 20.00 20.00 1.94 1.94 1.94 1.73 1.12 -16.81 -8.24 -8.24 -2.19 0.84
Buxey -30.00 20.00 20.00 10.00 10.00 1.79 1.94 1.94 1.73 1.43 -15.87 -9.19 -9.19 -3.56 -1.60
Sawyer -28.00 20.00 10.00 10.00 10.00 1.87 1.94 1.83 1.73 1.43 -16.28 -9.09 -5.18 -3.47 -1.82
Lutz1 -38.61 22.22 11.11 11.11 0.00 1.98 2.15 1.94 1.84 1.23 -16.98 -8.47 -4.50 -2.90 -3.14
Gunther -37.75 30.00 20.00 10.00 0.00 1.17 1.52 1.42 1.32 0.91 -14.81 -7.30 -3.71 -3.46 -1.83
Kilbridge -35.94 12.50 0.00 0.00 0.00 2.39 2.46 2.36 2.25 1.64 -16.85 -8.85 -5.63 -4.85 -1.67
Hahn 2.50 60.00 20.00 20.00 20.00 3.19 3.20 2.99 2.68 2.17 -18.94 -6.53 -4.00 -2.34 -0.84
Warnecke * -61.52 26.09 17.39 *17.39 4.35 -18.39 3.73 3.63 *3.63 3.01 -27.29 -8.74 -4.76 *-4.76 -2.34
Tonge -41.25 18.75 12.50 6.25 6.25 -6.81 2.46 2.36 2.25 1.64 -19.68 -8.64 -5.00 -4.17 -1.56
Wee-mag -84.92 3.33 1.67 1.67 0.00 -44.13 1.11 1.01 1.01 0.51 -40.97 -9.15 -4.73 -4.73 -1.56
Arcus1 -6.54 30.77 15.38 15.38 7.69 1.10 3.31 3.10 3.10 2.38 -16.46 -9.63 -5.92 -5.92 -2.31
Lutz2 -63.09 29.41 17.65 8.82 0.00 -24.35 0.81 0.81 0.71 0.00 -27.58 -8.85 -6.75 -3.52 0.00
Lutz3 -36.53 22.22 16.67 11.11 5.56 -6.91 2.15 2.04 1.94 1.43 -19.28 -8.45 -4.84 -3.97 -1.81
Mukherje -30.13 26.32 15.79 10.53 10.53 -5.95 2.46 2.36 2.25 1.64 -18.55 -8.12 -4.68 -3.64 -0.97
Arcus2 -47.08 *22.22 11.11 11.11 0.00 -19.08 *1.94 1.83 1.83 0.00 -31.25 *-10.39 -6.52 -6.52 0.00
Barthol2 -60.83 *25.64 *15.38 10.26 5.13 -25.86 *2.25 * 2.15 2.04 1.33 -28.86 *-8.22 *-4.98 -3.63 -1.30
Barthold -16.88 16.67 8.33 8.33 0.00 1.40 2.56 2.46 2.26 1.64 -16.63 -8.93 -5.15 -3.74 -2.01

EP1 -34.64 29.04 19.35 14.51 7.27 0.15 1.98 1.91 1.77 1.18 -39.09 -26.14 -20.68 -14.52 -6.24
EP2 -28.59 29.04 19.35 14.51 7.27 -3.21 1.98 1.91 1.77 1.18 -8.67 0.48 0.68 1.15 1.05
EP3 -34.88 29.04 19.35 14.51 7.27 -2.90 1.98 1.91 1.77 1.18 -14.38 -1.56 -0.56 0.64 0.92
EP4 -28.50 29.04 19.35 14.51 7.27 -2.57 1.98 1.91 1.77 1.18 -17.21 -4.53 -2.66 -0.64 0.40

Overall -31.65 29.04 19.35 14.51 7.27 -2.13 1.98 1.91 1.77 1.18 -19.84 -7.94 -5.80 -3.34 -0.97

Table 8: Comparison of the reference RMS solution and the dedicated lines for the three objectives (zm, zsl, zec), using
DL50% as reference.

Some slightly degenerating cases can occur. A dedicated line associated with a quantile is obtained
by solving an SALBP-1 whose target takt time is obtained by dividing the time horizon by the target
demand and rounding down. In doing so, in case of high values for target demand, rounding can lead
to similar target takt time values for different quantiles, and the corresponding dedicated lines may be
the same. Moreover, SALBP-1 aims at minimizing the number of stations, and the actual takt time of
the optimal solution may be strictly less than the upper bound, resulting in a dedicated line performing
better than expected.

In Tables 8 and 9, starred results refer to dedicated lines which are not optimal SALBP-1 solutions,
or whose optimality has not been proved within the imposed time limit of 3 hours; in the case of instance
Warnecke, this occurs for the solution of the reference line DL50%.

Table 8 shows that when computing the average over the 43 instances, the relative performance of
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E[%H]
RMS* DL DL DL DL DL

100% 95% 90% 75% 50%

Otto025 56.28 78.82 86.67 88.89 93.00 94.98
Otto050 42.52 77.62 77.62 89.29 93.30 92.32
Otto075 35.30 75.53 75.53 88.60 90.44 95.47
Otto100 53.73 77.62 87.04 89.19 92.71 95.25
Otto125 47.86 78.02 87.34 88.36 91.82 92.41
Otto150 35.21 78.52 78.52 87.04 87.04 96.05
Otto175 53.18 79.02 87.14 89.29 92.12 96.05
Otto200 46.12 77.22 77.22 88.60 93.20 94.95
Otto225 39.40 74.64 74.64 88.36 92.42 95.85
Otto250 49.67 79.22 87.34 89.19 91.73 95.66
Otto275 51.33 78.92 86.84 89.09 90.54 95.85
Otto300 44.10 78.42 78.42 89.09 89.19 95.27
Otto325 64.56 79.02 79.02 89.29 93.00 95.85
Otto350 50.29 76.93 87.34 87.24 91.92 96.05
Otto375 33.04 78.92 78.92 83.08 91.92 92.32
Otto400 57.33 77.42 87.44 88.70 93.20 95.37
Otto425 45.75 79.22 87.34 89.19 90.24 90.84
Otto450 36.62 77.22 77.22 87.34 93.00 95.05
Otto475 58.06 77.13 85.98 89.29 93.20 95.56
Otto500 59.58 77.62 77.62 84.35 92.02 95.37
Otto525 33.97 74.04 74.04 83.38 92.22 92.32

Jaeschke 55.93 75.00 75.00 87.38 87.38 87.38
Jackson 55.55 80.00 80.00 80.00 89.69 89.69
Mansoor 41.22 77.39 77.39 83.82 92.64 89.94
Mitchell 47.43 76.18 85.66 85.66 90.11 93.90
Roszieg 51.97 77.78 77.78 88.68 88.68 93.34
Heskiaoff 54.83 79.63 79.63 88.68 92.62 95.16
Buxey 54.27 77.78 77.78 88.68 91.15 95.19
Sawyer 52.64 77.78 86.04 88.68 91.15 95.19
Lutz1 54.66 79.96 88.23 90.08 92.19 95.58
Gunther 58.48 79.63 86.94 88.68 91.90 94.63
Kilbridge 55.30 79.70 87.18 88.37 92.72 96.03
Hahn 43.94 76.74 87.26 89.44 91.67 96.18
Warnecke * 89.35 78.81 87.15 * 87.15 92.14 * 97.30
Tonge 75.69 79.86 87.02 89.02 92.64 96.04
Wee-mag 100.00 79.47 87.06 87.06 91.66 93.63
Arcus1 60.58 77.52 86.26 86.26 91.85 96.20
Lutz2 91.65 75.00 81.25 87.38 92.84 92.84
Lutz3 73.74 79.32 86.45 88.40 92.00 95.55
Mukherje 73.17 79.86 87.02 89.02 92.64 96.04
Arcus2 82.67 *83.24 90.81 90.81 97.80 97.80
Barthol2 93.29 *79.42 * 86.47 89.00 92.77 95.72
Barthold 59.50 79.71 87.38 89.36 92.78 96.06

EP1 58.98 78.16 83.14 87.87 91.84 94.61
EP2 54.90 78.16 83.14 87.87 91.84 94.61
EP3 58.36 78.16 83.14 87.87 91.84 94.61
EP4 52.86 78.16 83.14 87.87 91.84 94.61

Overall 56.27 78.16 83.14 87.87 91.84 94.61

Table 9: Time usage comparison of the reference RMS solution and the 5 dedicated lines .

dedicated lines in terms of number of stations and expected value of service level is predictably not
impacted by the cost profile . Table 9 allows the same conclusion to be drawn as to time usage.

The reconfigurable line RMS⋆ has in general (-2.13% on average over all cost profiles and instances) a
lower expected value of service level w.r.t. the line DL50%. The other dedicated lines have an expected
service level that is slightly better than DL50%. Again, this is not completely surprising, since the
dedicated lines are designed based on a service level guarantee, while RMS⋆ results from best-compromise
solutions over the three objective functions. Moreover, since the highest possible demand value of the
distribution is 25% greater than the median, it is easy to see that by construction even DL50% cannot
have an expected service level lower than 90%. This can further explain the seemingly unfavorable trend
of RMS⋆ as to service level. However, if we look attentively at Table 8, we notice that for most of the
instances (35 out of 43, considering the average values over cost profiles) RMS⋆ actually also outperforms
DL50% in terms of expected value of service level. In the remaining cases, the average design nearest
to the ideal point performs worse in terms of zsl, but the method has seemingly preferred to put zm and
zec, their improvement being much more dramatic than in other cases.

RMS⋆ behaves much better than DL50% in terms of expected per-produced-unit energy cost (up to
nearly 40% better for EP1, averaged over all instances), and also in terms of number of workstations
(up to nearly 35% better, again for EP1), which RMS⋆ seems to favor as opposed to the service level.
For what concerns this two aspects, it must be pointed out that RMS⋆ is also significantly better than
the other dedicated lines: while on the one hand this can be expected for the number of stations (which
can only worsen in dedicated lines DL75% to DL100% w.r.t. DL50%), on the other hand this once
again proves the effectiveness of reconfigurable systems, which –thanks to their flexibility– can afford
consistent energy cost savings, all with a consistent reduction in the number of workstations.

More generally, we can conclude that RMS⋆ can lose on average 2.13 to 4.03% (from DL50% to
DL100%) in terms of expected service level compared to dedicated lines, but can save on average 12.93
to 19.84% (from DL100% to DL50%) in the expected per-produced-unit energy cost, while using, on
average, 31.65 to 47.03% (from DL50% to DL100%) fewer workstations.

A joint analysis of Tables 8 and 9 highlights the fact that RMS⋆ can outperform dedicated lines so
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significantly because of the dramatic reduction in the time spent producing (on average -21.89 to -38.84%
from DL100% to DL50%), as already observed in the discussion of Figure 4. Reduced production time,
made possible by the flexibility provided by its set of configurations, is then a lever not only to increase
the service level, but also to avoid production as much as possible during the costlier periods of the TOU
profile, and as a consequence to reduce the per-produced-unit energy cost.

6. Managerial insights and practical implications

Several insights can be derived from the above results.
First, and probably most relevant given the motivations behind this study, the presented results show

that RMS can help achieve significant savings in terms of per-produced-unit energy cost. Compared to
dedicated lines, the average gain can range from almost 13% to nearly 20%. Obviously, the potential
gain can vary according to the considered energy cost profile but RMS always lead to more cost-efficient
solutions.

Another interesting aspect highlighted here is the variety of planning solutions made possible by RMS
to reduce production-related energy costs. Indeed, when the energy cost is considered in a production
system, the two most common levers are: overdimensioning the system (or reconfiguration to increase the
throughtput in the case of RMS); or deliberately choosing not to meet the demand entirely, in order to
avoid producing during the most expensive TOU periods. The results of this study show that a wide set
of trade-off solutions exist between these two options and can be found by the proposed approach. The
more complex the case (instance) under study, the greater the possibility for the decision maker to fine-
tune the main features –service level, per-unit energy cost, number of workstations– and choose the most
fitting solution. Incidentally, the matheuristic is capable of converging and finding a fitting solution set in
relatively short computation time, fully compatible with the needs of designing a production system. On
the other hand, the problem, which is by nature multi-objective, contemplates very few nondominated
solutions, and the decision maker can hopefully achieve consistent energy cost savings and the service
level at the same time.

As noted in the conclusion of Section 5.5, the general behavior of the RMS solutions yielded by the
proposed matheuristic is to reduce energy-related economic costs by cleverly using its configurations so as
to considerably reduce the time spent producing and to avoid costlier TOU periods. In doing so, the RMS
solutions rarely seem to need more than 2-3 configurations to face a generic demand scenario over a given
time horizon. This seems to be a reliable indicator of the small number of reconfigurations required over
the same timespan. Moreover, computational experiments suggest that although a balancing solution
has a wide set of possible configurations, the number of them actually used to meet all the considered
demand scenarios is also, in general, no larger than 2-3, potentially indicating that the same restricted
subset is always used regardless of the demand.

Some final conclusions can also be drawn concerning dedicated lines. The results have shown that if
such a line is designed based on worst-case demand, the gain in terms of service level compared to one
based on the median demand is only about 2%, at a cost of almost 30% more workstations. However,
opting for the former solution is still of interest if energy cost is the main driver, as the savings in that
respect can rise up to 26% in the event of an unbalanced TOU energy profile.

All these findings highlight the need for Product Lifecycle Management (PLM) systems to integrate
the capabilities of RMS to deal efficiently with energy concerns.

7. Conclusion and perspectives

In this article, we addressed a scenario-based bi-level optimization problem consisting of balancing
the operations and planning the configurations of Reconfigurable Manufacturing Systems (RMS), by
optimizing three objectives: the number of stations, the expected energy cost per produced unit and
the expected service level in the face of uncertain demands. This new problem corresponds to a chal-
lenge companies are more and more forced to cope with as the prices of energy and the volatility of
energy sources increase, and highlights an innovative way to use RMS. We developed a multi-objective
matheuristic, composed of a Multi-Objective Simulated Annealing (MOSA) for the balancing level and
a Linear Program (LP) for the planning level.
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Experiments were conducted to analyze the performances of the method and the characteristics of
the solutions. The results obtained prove the applicability of our approach with very low computational
times, although additional experiments on industrial cases would help to better assess its performances.

We also compared the RMS solutions generated with those corresponding to dedicated lines in order to
show the potential gain involved in using RMS. Though the solutions used for RMS were not necessarily
optimal and those for dedicated lines were, significant savings were observed. Managerial insights into
the use of RMS to optimize the three objectives can also be provided. In particular, they highlight the
large range of possible tradeoffs between overdimensioning the system and choosing to produce less when
aiming to reduce the energy cost of production. The results suggest that when a strategic decision is
made to use RMS, substantial gains can be achieved in terms of energy costs. Moreover, even already
implemented RMS (whether for scalability purposes in a mono-product setting, or for convertibility
reasons in view of a future multi-product evolution) can also be used to achieve consistent savings in
energy-related production costs.

Since the approach proposed in this paper is a metaheuristic, some improvements seem possible.
For example, the experiments have shown that only a small subset of the configurations generated are
used in the production plan: it would thus be interesting to filter configurations in the earliest steps
of the algorithm to better evaluate the different balancing solutions. In addition, the development of
an integrated model could yield an exact method for the studied bi-level problem. Such a model would
certainly involve a huge number of variables, which would prevent large instances from being solved,
but an approach based on Column Generation could work, allowing a better assessment of the gains
achievable with RMS by comparing optimal solutions for both types of systems.

Further works could investigate certain variations of the problem explored here. One future direction
could be the integration of an upper bound on the number of reconfigurations allowed during the planning
horizon. Also, we assumed that the decision maker at the planning level would prioritize the service
level over the energy cost, but it would be interesting to study cases where different trade-offs are
sought. Furthermore, situations where the uncertainty surrounding the demand remains at the planning
level would require the use of a reactive approach, which could take advantage of the low number of
configurations to consider. Finally, it would certainly be worth studying an extension of the proposed
problem and approach in a multi-product setting, be it mixed-model or multi-model, and assessing
whether RMS can also be beneficial in terms of energy-related cost savings also when reconfigurations
serve not only for scalability, but also for convertibility purposes. In this case, flexible manufacturing
systems would be used as comparison basis (taking the role of dedicated lines in this study).
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