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Abstract

This paper presents a novel approach for extrapolating DEM simulations

of heat transfer over a long period of time. This method is an extension of a

previously published algorithm for granular motion extrapolation, introducing

heat transfer. The main idea is to perform a short-term DEM simulation for one

period and then apply a conductive heat transfer extrapolation algorithm. This

strategy is tested over a pilot-scale rotating drum. The outcomes of standard

and extrapolated DEM simulations are compared. The results are very similar

while the computational time is reduced by a factor greater than 100.

Keywords: Granular system, DEM, heat transfer, long time extrapolation

1. Introduction

DEM1 is an effective simulation tool for granular systems Cundall & Strack

(1979). Powder rheology is guided through the contacts occurring between the

particles and it is the method that takes into account the physics of collisions

between particles. DEM can be applied to many industrial processes includ-5

ing those in the chemical, building and pharmaceutical industries Muzzio et al.

(2004). Even with the abundance of particles-containing systems in nature and

industrial processes, a fundamental understanding of heat transfer between the

particles during contact is missing Hartmanshenn et al. (2019). However, the
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comprehension of such phenomena is essential in order to predict the intrinsic

properties of the particles during collision Fry et al. (2019). Yet, due to the

complexity of the interactions between the solid particles, these models are dif-

ficult to be applied, particularly because simulating the mechanical behavior of

granular materials including heat transfer can be computationally expensive Liu15

et al. (2021). Many modeling methods are proposed in the literature for simulat-

ing heat transfer in granular media. One of them is to use coarse-graining as in

Saruwatari & Nakamura (2022) and De et al. (2022). This approach enables the

representation of a large number of small particles by a small number of macro-

scopic particles, explained in details in Peters et al. (2023). In Saruwatari &20

Nakamura (2022), the potency of the coarse-graining technique is demonstrated

for simulating heat transfer in rotary kiln reactor. Another option is to use a

multi-scale modeling approach that consists of coupling a continuum method

with DEM for the simulation of heat conduction in granular materials Zhang

et al. (2011). While Zhao et al. (2020) coupled FEM2 with DEM to simulate25

the thermo-mechanical response of a granular medium. A different strategy is

to employ a thermal DEM approach known in literature as TDEM3 as in Feng

et al. (2008, 2009). The TDEM is considered as a variation of the DEM applied

only for heat transfer problems. It enables the representation of a large granu-

lar system as a combination of different individual particles affected by different30

temperature boundary conditions. This enables the determination of the tem-

perature distribution of the particles in the system over time Kiani-Oshtorjani

& Jalali (2019) . However, all of the previously stated method share a major

limitation which is the high computational cost. Therefore, the aim of our work

is to challenge the limits especially those linked to the reduction of time scales35

Bertrand et al. (2005). For this paper, we will shed light on the reduction of time

of DEM for simulating heat transfer in granular media. Physical time is always

2Finite Element Method
3Thermal Discrete Element Method
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considered as the biggest challenge for numericians. Knowing that the paral-

lelizing can give a partial gain of computation for the high number of particles,

yet the time variable cannot be parallelized easily. Simulating one million of40

particles for one hour is still complicated. In order to face this challenge, many

research teams found that the idea of pseudo-periodicity for granular process

can decrease drastically the duration of numerical simulation. The first idea

concerning time extrapolation was proposed by Doucet et al. (2008) by using

a statistical approach based on Markov process. Then, the team of T. Licht-45

enegger has introduced the notion of recurrence CFD4 Pirker & Lichtenegger

(2018); Lichtenegger & Pirker (2016); Lichtenegger et al. (2019). It is a method

based on the Poincaré’s recurrence, which allows the long time extrapolation of

fluid/granular flows. Another solution based on an extrapolation algorithm has

been proposed previously by a research in our lab Bednarek et al. (2019), the50

major advantage of which is to be very simple. The latter method was repro-

duced by Siegmann et al. (2021) and Bauer et al. (2022). Siegmann et al. (2021)

applied this method for continuous processes to extrapolate DEM results in the

pharmaceutical industry and the extrapolated results showed a good agreement

with full DEM results. Whereas Bauer et al. (2022) used time extrapolation55

method for SPH5 flow simulations over twin screw extruders. This method led

to a CPU6 time gain of a factor of 105 with an accurate representation of mix-

ing kinetics. However, the main limit of the method is that it uses the pseudo

periodic behavior of processes, but since most of powder processes are pseudo

periodic, these models are still very useful and promising. Hence, it is possible60

today to extrapolate DEM simulation for long time but it concerns only pro-

cesses for which there is no need to model phenomena on physical particle scale.

Nevertheless, none of the approaches are able, up to now, to take into

account local phenomena on the real particle scale like heat conduc-

4Computational Fluid Dynamics
5Smoothed Particle Hydrodynamics
6Central Processing Unit
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tion. In his approach, Lichtenegger et al. (2016) proposes a newly first method65

that enables obtaining the transfers inside fluidized beds. However, his method

does not take into account collisions, indeed the particles are represented with

passive tracers Lichtenegger (2020). Therefore, in this paper we present a new

method which consists in an extension for the existing method developed by

Bednarek et al. (2019) to heat transfer by conduction in granular media, taking70

into account particle-particle collisions.

2. Materials and Method

In this part, the numerical method will be presented along with the heat

extrapolation algorithm. We need to mention that the novel method is simple

and straightforward; it consists as a foundation for further research about time75

extrapolation simulations.

2.1. DEM model

DEM is a technique that enables the simulation of the behavior of separate

particles in interaction under certain circumstances. Contrary to the continuum

approach, the DEM approach considers the system’s particle flow as discrete80

particles. It is used to calculate the behavior of the particles, their positions and

the forces of collisions between them Huang & Kuo (2018). Particle’s trajectory

is then obtained by Newton’s second law. The DEM model in this study is based

on the soft-sphere approach Yazdani & Hashemabadi (2020), which allows for

particles overlap as well as particles-boundary overlap. The contact forces due to85

collisions are calculated by the non-linear spring-dashpot Hertz-Mindlin model,

which is detailed in Zhu et al. (2007). The DEM with heat transport will be

described using the following steps in the algorithm 1.

A linear heat transfer model between two particles was used based on ap-

plying the one dimensional heat transfer equation by conduction. To obtain90

the heat transfer due to particle-particle conduction, the transport equation is

influenced by many parameters such as temperature of the material, the heat
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Algorithm 1: General algorithm for DEM along with heat transfer.

for t = 0→tmax do
Establish the contact list between the particles and detect changes

with previous one;

For each particle and each contact, compute the force using contact

law;

For each particle and each contact, compute the conductive heat

flux using Fourier’s law;

For each particle, sum all forces and heat fluxes;

Compute the new particles temperature through energy balance;

Compute the new particles position through Newton’s 2nd law;

capacity and the heat transfer coefficient. Heat flux Qij due to particle-particle

collision is calculated using Equation 1 where Ti and Tj are respectively the

temperatures of the particles and Hij is the conductance between the particles.95

Qij = Hij(Ti − Tj) (1)

Modeling granular material will be achieved with the use of LIGGGHTS,7

an open-source software package Kloss et al. (2012). Based on the heat equations

developed in the software, the heat transfer coefficient known as the conductance

between particle i and particle j will be obtained by the Equation 2 where Kij

is the thermal conductivity and aij is the area of contact between i and j:100

Hij =
4KiKj

Ki +Kj

√
(aij) (2)

And since the particles taken are identical Ki is equal to Kj , hence Equa-

tion 1 is simplified to Equation 3:

Qij = 2Kij

√
(aij)(Ti − Tj) (3)

7LAMMPS Improved for General Granular and Granular Heat Transfer Simulations
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On the other hand, the temperature change for a particle i can be calculated

using Equation 4 where
∑

(Qi) is the sum of all heat fluxes involving particle i

and ρiCiVi is the thermal capacity of particle i as in Peng et al. (2020).

dTi
dt

=

∑
(Qi)

ρiCiVi
(4)

The following simple ordinary differential equation represents the final equa-

tion that describes the evolution of the temperature for a given particle i in

contact with different particles j:

dTi
dt

=

∑
i 2Kij

√
(aij)(Ti − Tj)

ρiCiVi
(5)

For our case of study, Biot∗ =
2Kijrc

KijAp/rp
= 2rc

Πrp
, with rc is the contact radius

between the two particles, Ap is the cross-sectional area of the particle and rp

is the particle’s radius.The dimensionless group Biot∗ refers to the ratio of heat105

conduction transferred from one particle to the other over the heat conduction

inside the particle as in Gui et al. (2013) and Vargas & McCarthy (2001).

rc = rp − 0.5 ∗∆n is obtained using LIGGGHTS. Since Biot∗ << 1, thus the

heat conduction within the particle can be neglected in comparison with the

conduction between the particles Beaulieu et al. (2021); Kiani-Oshtorjani et al.110

(2022).

The newly presented approach is for heat transport extrapolation in granu-

lar systems. The approach is an extension of the pairing algorithm proposed by

Bednarek et al. (2019). More precisely, it consists of a combination between the

pairing algorithm along with an implementation of scalar transport for conduc-

tive heat transfer. The pairing algorithm enables the extrapolation of granular

motion for DEM results, at a very low computational cost, from one period of

time over a longer period for any pseudo-periodic process. The previous method

is explained in details in Bednarek et al. (2019). The new method is based on

the idea that whatever happening during a period will be reccuring. This mean

that using the data obtained from the normal DEM simulation for one period

on the microscopic level will enable the acquisition of what is happening over

a long period by the means of paired particles. The details to get the paired
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particles are found in Bednarek et al. (2019), but physically speaking the paired

particles refers to the particles connected by a relation which is, here, a bijective

function fext.

fext =

∣∣∣∣∣∣[1→ N ]→ [1→ N ]

j → i = fext(j)
(6)

The function fext minimizes the sum of the euclidean distance between the

paired particles. If particle i is paired with particle j then the position of i at

t2 is obtained by the following equation: ~xi(t2) = ~xj(t1).

Some assumptions are required for the implementation of this method:115

• The system studied should reach a state of pseudo-periodicity which is

described in Siegmann et al. (2021). However, since many processes are

pseudo-periodic, the application of the method is allowed for a wide range

of systems.

• The particle’s size is identical Bednarek et al. (2019)120

• The void between the particles which, in real systems, is filled with an

interstitial fluid mostly air is ignored Chaudhuri et al. (2006)

• The collisions are treated by apparition order which means that the si-

multaneous contacts of a particle are treated one after the other and the

collisions detected at the same time are also processed one after the other125

as in the output from the DEM simulation.

The first two previously stated conditions are common with the pairing al-

gorithm and this is due to the use of the same algorithm as a basis of our work.

However all of these conditions are soft conditions since they do not affect the

execution of the extrapolation algorithm. It should be noted that in this pre-130

liminary study, the aim is to show the ability of the new algorithm to speed-up

granular flow simulations. Hence for simplicity sake, collision area is taken as a

constant parameter aij but the code already includes the calculation of aij from

standard DEM results.

7



This section will be divided into 3 parts as in the flowchart Figure 1 that refers135

to the workflow.

Figure 1: Flowchart of heat extrapolation algorithm.

2.1.1. DEM data

DEM simulations are performed until t1. It is significant to point out that

the DEM simulation should reach a steady state at t0. In the framework of

the extrapolation, all the collisions between t0 and t1 are saved and sorted in140

apparition order. The list of contacts along with its duration and the area of

collisions are saved in a table. The final structure of the contact list table is

stocked as shown in Table 1.

Since the collision properties between t0 and t1 are stored, high memory is

required. To solve this limitation, collision sampling is employed. Two parame-145

ters are introduced; the first is ∆tmaxc , the maximum collision time in seconds,

which is a maximum imposed collision duration for two particles in contact.
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Table 1: Structure of the saved information of the extrapolation for the collisions.

Index Fixed ID Fixed ID tinit m
√

(aij)

1 5 8 t0 10. 8.8e−3

2 10 6 ... ... ...

... ... ... ... ... ...

x i j starts at tinit(ij) for ∆tc = 25 s for ∆tmaxc = 10 s

x i j tinit(ij) 10. 7.8e−5

x+ 1 i j tinit(ij) + 10 10. ...

x+ 2 i j tinit(ij) + 20 5. ...

x i j starts at tinit(ij) for ∆tc = 25 s for ∆tmaxc = 20 s

x i j tinit(ij) 20. 7.8e−5

x+ 1 i j tinit(ij) + 20 5. ...

... ... ... ... ... ...

nbcollisions-1 ... ... ... ... ...

nbcollisions ... ... t1 ... ...

And, the second is a sampling factor n, identified using statistical analysis by

showing how much time the collision pairs remain in contact. Both of the pre-

viously stated parameters aim to reduce the size of the collision table. ∆tmaxc is150

an optimization variable that enables us to adjust the size of the output file and

the times of operations executed. n enables us to conclude the timesteps’ fre-

quency, thus not saving every single timestep, instead saving every n timesteps

if the minimum collision duration is n timesteps. The two lines for xth collision

in the Table 1 in gray color represent the same phenomenon: a collision between155

particles i and j that lasts for ∆tc = 25 seconds. As it can be seen, this collision

can be interpreted in two ways: if ∆tmaxc = 10 seconds then the output will

divided in three rows (the collision will be seen as three different collisions that

last for 10 + 10 + 5), while if ∆tmaxc = 20 seconds, the output will be two rows

(two collisions 20 + 5). This will reduce the size of the output file and the time160

of operations for the numerical calculation. Note that the gray line in Table 1

will not be seen in the final output file, it only serves for detailed explanation.

The general algorithm for collision splitting is presented in algorithm 2. It is

considered as a refining method to improve the speed of the simulations. It
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takes an input, the total collision duration (∆tc), and compare it to the im-165

posed collision duration (∆tmaxc ). If ∆tc is less than ∆tmaxc then m, the single

collision duration in Table 1 is equal to ∆tc. Else if it is higher, the collision

is splitted into several lines. The number of lines is equal to the floor of ∆tc
∆tmax

c

(floor is the function that converts the floating number to the smaller integer

(2.7 to 2)) and the last line will be the remainder of the same fraction. Eventu-170

ally, the algorithm 2 is an external tool that shows how the input table for the

extrapolation was handled. It serves only for optimization purpose and for the

seek of bigger gain and reduction of the computational time. The extrapolation

algorithm can be performed without this algorithm but will need more memory

and computational time.175

Algorithm 2: Collision splitting algorithm .

for k = 1 → nbcollisions do

if ∆tc ≤ ∆tmaxc then

m = ∆tc;

else

for i = 1 → floor( ∆tc
∆tmax

c
) do

mi = ∆tmaxc ;

mi+1 = ∆tc modulo(∆t
max
c );

2.1.2. Granular motion extrapolation

In Table 1, the fixed ID, represents the identifier of the particles for which

the collisions were recorded between t0 and t1 during the DEM simulation.

These same collisions will be reproduced by the paired particles during the

extrapolation steps obtained using the extrapolation function fext. Figure 2a180

and Figure 2b illustrate the two states at t0 and t1 , which are subsequently

superposed to indicate the paired particles. The latter are shown inside the

dashed black circles in Figure 2c i.e. for a deeper explanation about fext refer to

Bednarek et al. (2019) article. For the example presented in Figure 2, the pairs

10



Table 2: List of paired particles.

Fixed ID Paired particle ID

Red Blue

Blue Orange

Orange Green

Green Red

of paired particles are shown in Table 2, and the new position (extrapolated) of185

the particles is shown in Figure 2d.

2.1.3. Heat transfer extrapolation

Based on the presented Equation 5, the newly developed algorithm will

calculate the new temperature for the particle i by calculating the sum of the

temperature change due to the particles in collisions with i.190

In other terms, the temperature of a given particle i at t2 will be obtained

through the heat conduction equation by using the history of the collisions

that particle i has experienced. The table of contacts is then traversed for

each extrapolation. The temperature of the particles paired with i and j are

updated as the collisions with i and j occur. It is simply a matter of numerically195

integrating the Equation 5.

The objective here is not to aim for extreme precision but to limit the number of

operations as much as possible. On the other hand, the stability of the scheme

must be guaranteed. The idea is therefore to use a single time step equal to the

duration of the collision. As used in the DEM software, an explicit numerical200

scheme is also employed. Hence, the condition of Courant–Friedrichs–Lewy

CFL8 less than 1 must be checked to assure the convergence of the explicit

scheme. This condition is respected if the m < ρiCiVi

2Kij
√
aij

indicating that m <

8Courant Friedrichs Lewy
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Figure 2: (a) Particles positions at t0 (b) Particles positions at t1 (c) Pairing algorithm concept

(d) Particles new extrapolated positions at t2(extrapolated) .
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∆tcritical .

Then, for a particle i in contact with a particle j, the temperature at the205

end of the collision {T fi , T
f
j } is obtained by solving the following system :

T fi = Ti
tini − Qijm

ρiCiVi
(7)

T fj = Tj
tini +

Qijm

ρiCiVi
(8)

It should be noted that the couple {T fi , T
f
j } is not physically equivalent to

the temperature of the particles i and j at the final instant of the collision

{T tini+m
i , T tini+m

j }.

Indeed, the collisions are treated by order of occurrence. The simultaneous210

contacts of a particle will be processed one after the other. The contacts detected

at the same time are also processed one after the other.

Finally, the conduction transfer extrapolation algorithm is given in the al-

gorithm 3.

Algorithm 3: General algorithm for the extrapolation of heat transfer

by conduction.

for p = 1→ nbcollisions do

Read i(p) in Table 1;

Read j(p) in Table 1;

Define k = fext(i) with respect to pairing algorithm;

Define l = fext(j) with respect to pairing algorithm;

Update by solving T fk , T
f
l by solving Equation 7 and Equation 8;

2.2. Rotative drum/Simulation Setup215

In granular material, heat transfer can be generated through three different

forms: conduction, convection and radiation Nguyen et al. (2014). In this paper,

only the heat transfer during particle-particle collisions by conduction will be

13



tinit

Figure 3: Two halves of particles in rotating drum.

taken into account Gui et al. (2013). Radiation and convection will be neglected

as in Chaudhuri et al. (2006). In a rotating kiln, there are two sorts of heating220

techniques: direct and indirect. Direct heating entails infusing a hot fluid that

has undergone a chemical reaction to raise its temperature Herz et al. (2012).

The indirect one is caused by increasing the temperature of the drum’s casing.

In our research, the example that will be employed is the one of a rotating drum

containing two halves of particles, with the first half being hot and the other225

half being cold as shown in Figure 3. Note that the new method works for any

heating type or application.

Table 3 and Table 4 show the characteristic parameters used for the simula-

tion. The code can be requested for free on the git repository: code source.

3. Results and discussion230

The previously proposed method has been applied over the mixing process

of particles in a rotating drum. Many scenarios are tested and the impact of

numerous parameters is investigated. Results from standard and extrapolated

14

https://gitlab.emse.fr/sylvain.martin/extrapolation_lib.git


Table 3: DEM Parameters.

Parameter Type Value

Number Particles 80000

Radius(r∗) Particles 0.005 mm

Friction coefficient Particle-Particle 0.3

Particle-Wall 0.5

Rolling Friction coefficient Particle-Particle 0.002

Particle-Wall 0.002

Restitution coefficient Particle-Particle 0.2

Particle-Wall 0.2

Poisson ratio Particle 0.3

Wall 0.3

Young Modulus Particle 1e7 Pa

Wall 1e7 Pa

Density (ρi) Particles 2500 Kg/m³

Rotational speed (ω) Drum 5 s per revolution

Table 4: Heat Transfer Parameters for half cold-half hot.

Parameter Value Unit

Initial Temperature of the right subdomain (T ) 10 K

Initial Temperature of the left subdomain (T ) 30 K

Thermal conductivity (Kij) 100 W/(m. K )

Thermal capacity (Ci) 840 J/K

15



DEM are compared and assessed. All the results shown as temperature profiles

are obtained using Paraview.235

3.1. Reference case

The reference case that will be presented here is described in details in

the preceding section while taking into account all what happens between the

two extrapolation instants (n = 1) in the Equation 7 and Equation 8. Note

that the maximum collision duration is fixed to ∆tmaxc = 0.001 seconds which240

corresponds to 10 DEM time steps. Considering the pairing, after packing

the particles, the drum rotates for one rotation before selecting the initial time

of the pairing t0. The initial time of extrapolation, t1, is then selected when

half a rotation has been completed as in Figure 4. Here τ , the extrapolation

period, is equal to a rotation. It should be mentioned that a pseudo-periodic245

state has already been seen by looking at the interface of the particles that is

not changing. The outcomes of the standard and extrapolated DEM are then

visualized as shown in Figure 5 and Figure 6. In Figure 7, in red, the average

temperature of the hot particles DEM Thot is compared with the extrapolated

average temperature of the same hot particles extra Thot as in Wang et al.250

(2019). Analogically, in blue, the standard average temperature DEM Tcold and

the extrapolated average temperature extra Tcold for the cold particles is also

evaluated. More quantitative comparisons are presented in order to compare

the standard to the extrapolated DEM. To do so, Voronoi diagram is used. It

is a diagram that divides the region into smaller regions, the voronoi cells. The255

cells are generated based on a number of random points, the seeds. The data,

temperature for this case, is affected to the closest seed forming the voronoi cell.

As it can be seen in Figure 8 the system was divided into v = 200 voronoi cells

and the error is calculated using the Equation 9 below:

εrel =
1

v

∑v
i=1 |TDEM (i) − Textra(i)|
|Thot − Tcold|

=
εabs

|Thot − Tcold|
(9)

The physical meaning of the absolute error is that for 200 random cells, the260

average temperature of the particles TDEM in a random cell for the DEM is

16



Table 5: Absolute and relative errors per extrapolation step.

Extrapolation step t2 t3 t4 t5 t6 t7

εabs (K) 0.241 0.126 0.083 0.062 0.042 0.03

εrel (%) 1.84 1.275 1.27 1.69 2.25 3.09

t0 t1

(a) (b)

Figure 4: Initial configuration for pairing algorithm.

compared with the extrapolated average temperature of the particles Textra in

the same cell and the sum of the difference of those temperature over the number

of cells is calculated. The maximum absolute error is of order of 0.2 Kelvin which

is small. Furthermore, the relative error is obtained by dividing the absolute265

error by the difference of the DEM Thot and DEM Tcold. The maximum relative

error is also smaller than 3% which is considered as an acceptable error as shown

in Table 5. This implies that the method is efficient and reliable. It is to be

noted that the Figure 7 represents a temporal comparison for the results whereas

the Figure 8 stands for the spacial comparison.270

As we can visualize, the extrapolated findings of DEM represents a realistic

reproduction of the results of standard DEM with a significant reduction of the

17



t2 t2−extra

(a) (b)

t3 t3−extra

(c) (d)

t4 t4−extra

(e) (f)

Figure 5: Comparison between standard and extrapolated DEM.

18



t5 t5−extra

(g) (h)

t6 t6−extra

(i) (j)

t7 t7−extra

(k) (l)

Figure 6: Comparison between standard and extrapolated DEM.
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Figure 7: Comparison between DEM results with extrapolated DEM results for heat transfer

for the reference case.

Figure 8: Repartition of 200 voronoi cells in the rotating drum for the study of efficiency.

20



Table 6: Simulations Performance for 100 τ of real time.

Case Complete DEM Extrapolated DEM

80000 particles

Until t1 (s) 8580 8580

Pairing (s) 0 551

Collision file (s) 0 7619

For one τ (s) 3900 6

Total simulation time for 100 τ(s) 398580 17350

computational time. All the simulations ran over the cluster centaure of Mines

Saint-Etienne with one node (one thread only) at 2.66 GHz to evenly compare

the computational time. Since they require high RAM9 , the node that was275

used is equipped with big memory that consits of 500 Gb. The extrapolated

DEM requires a CPU of just 6 seconds/ τ whereas the standard DEM takes

a CPU of 3900 seconds/ τ as in Table 6. This method is efficient if the results

required are for longer industrial time. The reduction of the CPU is of an order

of 650 per τ while illustrating accurately the results. The computational time280

can be changed by modifying other parameters and this will be presented in the

next sections.

3.2. Influence of the sampling parameters

The new method presented is really promising in terms of the gain of the

computational time and rapidity of the simulation. But it requires a high use of285

RAM due the obligation of saving the microscopic characteristic of the particles

as m and the
√

(aij) of collisions. Therefore, to solve the latter problem and to

reduce the computational time more, statistical approaches are done. These ap-

proaches study the effect of the parameter affecting the temperature evolution

as shown in Equation 5. The temperature term is proportional to the multipli-290

9Random Access Memory
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Figure 9: Cumulated density function for collision occurrence.

cation of m and the
√

(aij) of the particles. Therefore, the statistics show the

density of the collisions duration or how much time does the majority of the

collision lasts. The graph output’s can explicit if the omission of small duration

collision will affect highly the results or not. According to Figure 9, n can be

deduced. For this case, 97% of the collisions lasts more than 10 timesteps. This295

enables saving every n = 10 timesteps instead of every one timestep. Indeed the

results will be affected a little bit, but this can be explained by not aiming for

exact results instead for acceptable, fast and low cost results. Thus, the extrap-

olated heat transfer results are expected to loose about 3 % in comparison with

the normal DEM simulations’ values since the collisions with ∆tc < 10∆tDEM300

seconds will be neglected due to collision sampling as in Figure 9.

To study the impact of the sampling parameters on the results, n and ∆tmaxc

were modified. The Figure 10 shows the percentage error for the energy trans-

ferred from tn to tn+1 in standard DEM in comparison with the energy trans-

ferred from tn to tn+1 in extrapolated DEM as in Equation 10. This will show305
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Figure 10: Percentage error for different sampling parameters with saving every n timesteps

and each collision lasts a maximum of ∆tc seconds.

if the transfer for the extrapolated DEM is reliable.

ε =

∑
(|Tn+1 − Tn|)−

∑
(|Tn+1−extra − Tn−extra|)∑

(|Tn+1 − Tn|)
(10)

The difference between the results is not significant. The errors varies be-

tween 0.1 % and 4.5% as in Figure 10. The scenario that will be used for further

studies is that of n = 10 and m = 10 since it has the least computational time

with reasonable results.310

3.3. Influence of the setup parameters

Several setup parameters can be changed to evaluate the results. Some of

them are: the number of particles, the initial condition (adiabatic wall or not)),

the rotating velocity of the drum that affect the regime inside the drum and the

pairing period (half rotation or full rotation) and etc...This analysis is presented315

below.

23



Table 7: Testing several particles number.

Case Complete DEM Extrapolated DEM

400000 particles

Until t1 (s) 25620 25620

Pairing (s) 0 3060

Collision file (s) 0 19680

For one τ (s) 4860 24

Total simulation time for 100 τ(s) 493620 50760

3.3.1. The number of particles

The DEM simulations were performed for different particles’ number inside

the rotating drum. Many cases were simulated. The following section will

present another scenario with 400000 particles. All the physical parameters320

chosen are the same as of those in the reference case, it is only the number of

particles packed that changes. Here, n = 1 and τ is taken to be 0.1ω instead of

0.5ω as in the reference case since we are limited with the memory. It should be

noted that the higher the number of particles, the more the method is efficient

and the bigger the gain in the computational time Table 7. Also, if the particle’s325

number increases the CPU time increases as well. However, for the extrapolated

simulation, the pairing method is efficient when bigger system is employed as in

Bednarek et al. (2019). Then the time for the creation of the collision file can

be minimized easily by using the sampling; and finally each extrapolation step

takes no more than a minute.330

3.3.2. Regimes in rotating drum

An analysis for the previously described method is performed for different

regimes in the rotary drum. Six different regimes can identified in the rotary

drum. These regimes depend on a dimensionless group known as Froude number

which is proportional to the angular velocity of the drum and the percentage335

filling of the drum. This is explained in details by Mellmann (2001). By increas-
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(a) (b) (c)

Figure 11: Different regimes used for the extrapolation case: (a) Rolling regime: 15 sec-

onds/revolution; (b) Cascading regime: 5 seconds/revolution; (c) Centrifuging regime: 0.1

seconds/revolution.

ing or decreasing the angular velocity, the regimes can be visualized; the rolling

regime Figure 11a takes 15 seconds per rotation, the cascading Figure 11b takes

5 seconds per rotation and finally the centrifuging Figure 11c takes 0.1 seconds

per rotation. As shown in the sections before, the method is applied over a cas-340

cading regime, Figure 11b. To demonstrate that the used approach is general,

it was tested over other regimes. The following results presented in Figure 12

shows the extrapolation for the rolling regime is possible. The extrapolation

for Figure 11c was not performed since it does not present an interest specially

because the particles do not have a relative movement. Hence, the method is an345

accurate description of what is happening with a drastic reduction of computa-

tional time. It should be mentioned that the proposed new method is general

and may be used to a variety of pseudo-periodic granular systems.

3.3.3. The pairing period

The period for the pairing algorithm (initial time of period t0 and initial350

extrapolation time t1) is selected to be proportional to the time of the drum

rotational speed ω, i.e. α ∗ ω is equal to 0.1ω, 0.5ω, 1ω, 2ω, etc...

Various extrapolation periods were studied; quarter rotation, half rotation

and full rotation. In the previous section, results for full rotation’s extrapola-

tion were evoked and in this section we will present different τ values. Figure 14355

shows extrapolating every quarter turn and Figure 15 for half rotation extrap-

25



t0 t1

(a) (b)

t2 t2−extra

(c) (d)

t3 t3−extra

(e) (f)

t4 t4−extra

(g) (h)

Figure 12: Extrapolation for the rolling regime.
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olation. The method works effectively in all scenarios used as it can be seen in

Figure 13 describing the evolution of the temperature with the change of α a

constant proportional to the pairing period.

Figure 13: Comparison between DEM results and extrapolated DEM results for heat transfer

changing α for different pairing period.

It should be also noted that the bigger the extrapolation time, the bigger the360

output file, the higher the RAM used and the lower the computational time.

It is always a compromise between the computational time and the RAM. In

order to use higher extrapolation period with an acceptable memory usage, the

sampling should be higher, i.e. saving every 10 or 20 timesteps. Also, the speed

of the extrapolation is linked to the parameter alpha (the difference between t0365

and t1 ). Hence if the objective is to find what is happening for very long time in

the simulation, higher value of alpha will give the required results faster. This

can be seen in following comparative Table 8.
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t0 t1

(a) (b)

t2 t2−extra

(c) (d)

t3 t3−extra

(e) (f)

t4 t4−extra

(g) (h)

t5 t5−extra

(i) (j)

Figure 14: Extrapolation every quarter rotation.
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t0 t1

(a) (b)

t2 t2−extra

(c) (d)

t3 t3−extra

(e) (f)

t4 t4−extra

(g) (h)

t5 t5−extra

(i) (j)

Figure 15: Extrapolation every half rotation.
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Table 8: Comparative table for different pairing period with n = 10 and ∆tmax
c = 10.

Extrapolation period Collision file size (Mb) Time for one rotation(s)

quarter rotation 560 13

half rotation 1200 12

full rotation 2800 10

4. Conclusion

To understand the behavior of heat transfer due to particle-particle inter-370

actions in dry granular media, DEM simulations were performed. Those sim-

ulations require high computational time indicating the potency of developing

new methods to speed them up. The newly developed algorithm has proved its

efficacy and precision with a low computational time and cost. The results ob-

tained show that from one period of DEM simulations, information for longer375

periods can be revealed. The extrapolated findings agree with the complete

simulation results with less than 3% error and with a computational gain factor

of more than 100. This work is promising and serves as a foundation for future

researches on the topic as the extrapolation for a coupled granular flow simula-

tion using CFD-DEM while taking into account the influence of the interstitial380

fluid (convective heat transfer).

Acronyms

CFD Computational Fluid Dynamics 3, 30

CFL Courant Friedrichs Lewy 11

CPU Central Processing Unit 3, 21, 24385

DEM Discrete Element Method 1–8, 10, 11, 16, 17, 21–24, 30

FEM Finite Element Method 2
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LIGGGHTS LAMMPS Improved for General Granular and Granular Heat

Transfer Simulations 5

RAM Random Access Memory 21, 27390

SPH Smoothed Particle Hydrodynamics 3

TDEM Thermal Discrete Element Method 2

Nomenclature

Ap Particle’s cross sectional area (m²) 6

εabs Absolute error 16, 17395

α Constant 25, 27

aij Contact area (m²) 5–7, 9, 11, 21, 22

Biot∗ Quasi-Biot number for particle–particle conduction 6

Ci Particle’s specific thermal capacity J/(Kg.K) 6, 11, 13, 15

∆tc Real Collision Duration (s) 9, 10, 22, 23400

∆tcritical Critical duration (s) 13

∆tDEM DEM timestep (s) 22

ε Error 23

Hij Conductance between the particles (K/W) 5

i Particle i 5–7, 9, 11, 13405

j Particle j 5–7, 9, 11, 13
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k Particle k 13

Ki Thermal conductivity of particle i W/(K.m) 5

Kij Thermal conductivity W/(K.m) 5, 6, 11, 15

Kj Thermal conductivity of particle j W/(K.m) 5410

l Particle l 13

m Duration of a single collision in seconds 9–11, 13, 21–23

n Sampling factor 9, 16, 22–24, 30

ω Rotational speed (s/revolution) 15, 24, 25

∆n Overlap distance of two particles (m) 6415

~x Position vector for DEM particles 7

Qi Particle’s heat flux (W) 6

Qij Heat flux due to particle-particle collision (W) 5, 13

r∗ Mean particle radii (m) 15

rc Contact radius between two particles (m) 6420

rp Particle radius (m) 6

εrel Relative error 16, 17

ρ Particle’s density (Kg/m³) 6, 11, 13, 15

fext Extrapolation function 7, 10, 13

T Temperature (K) 15425

t0 First instant of the extrapolation period (s) 8–10, 12, 16, 17, 25–29
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t1 Final instant of the extrapolation period (s) 7–10, 12, 16, 17, 21, 24–29

t2 Instant of the first extrapolation step (s) 7, 11, 12

∆tmaxc Imposed maximum collision duration (s) 8–10, 16, 22, 30

Tcold Average temperature of the cold particles (K) 16, 17430

TDEM Average temperature of the particles for the DEM results (K) 16

Textra Average temperature of the particles for the extrapolated results (K) 16,

17

Thot Average temperature of the hot particles (K) 16, 17

tinit Initial time (s) 9, 14435

tmax Maximum collision duration (s) 5

τ Extrapolation period 16, 21, 24, 25

Ti Temperature of the particle i (K) 5, 6, 13

Tj Temperature of the particle j (K) 5, 6, 13

v Number of voronoi cells 16440

Vi Particle’s volume (m³) 6, 11, 13
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