
HAL Id: emse-04144829
https://hal-emse.ccsd.cnrs.fr/emse-04144829v1

Submitted on 3 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Modelling and solving approaches for scheduling
problems in reconfigurable manufacturing systems

Xavier Delorme, Gérard Fleury, Philippe Lacomme, Damien Lamy

To cite this version:
Xavier Delorme, Gérard Fleury, Philippe Lacomme, Damien Lamy. Modelling and solving approaches
for scheduling problems in reconfigurable manufacturing systems. International Journal of Production
Research, 2024, 62 (7), pp.2683-2704. �10.1080/00207543.2023.2224446�. �emse-04144829�

https://hal-emse.ccsd.cnrs.fr/emse-04144829v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

 1

Modelling and solving approaches for scheduling problems in

Reconfigurable Manufacturing Systems1

Xavier Delorme a, Gérard Fleury b, Philippe Lacomme b, Damien Lamy a*

a Mines Saint-Etienne, Univ Clermont Auvergne, INP Clermont Auvergne, CNRS, UMR

6158 LIMOS, F-42023 Saint-Etienne, France.

delorme@emse.fr, damien.lamy@emse.fr

b Université Clermont Auvergne, Clermont Auvergne INP, Mines Saint-Etienne, CNRS,

LIMOS, F-63000 Clermont–Ferrand, France.

gerard.fleury@isima.fr, philippe.lacomme@isima.fr

Reconfigurable manufacturing systems (RMS) intend to bridge the gap between dedicated and

flexible manufacturing systems. If the literature is mainly focused on the design step and tactical

planning of such systems, few research projects have addressed scheduling at the operational level.

While setup times may occur in flexible manufacturing systems, reconfiguration times considered

in RMS may affect several resources at once, and hence require specific modelling and solving

approaches to be considered. This paper first formalises the problem at hand through linear

programming. An iterative search method is then provided to obtain solutions to larger scale

instances. Results obtained on generated instances show that managing even few possible

configurations can yield significant improvements on solutions’ quality. Meanwhile, the extended

search space implied by the increase in available configurations hinders the convergence to a good

solution in a reasonable computation time, which suggests further investigations.

Keywords: Reconfigurable manufacturing systems; linear programming; metaheuristics;

scheduling

1 Introduction

Production systems are submitted to several external constraints including but not limited to

unpredictable events, and high-frequency market changes due to mass customisation (Yoram

Koren, Gu, and Guo 2018). To address such changes, the production systems must be adaptive

and able to evolve in order to integrate (i) modifications in parts of existing products, (ii)

fluctuations in demand, (iii) evolution in legal regulations and (iv) changes in process

technology. Initially introduced in Y Koren et al. (1999) Reconfigurable Manufacturing

Systems (RMS) have received a lot of attention during past years as an appropriate solution to

aforementioned issues. RMS are built around six key features, namely: modularity, scalability,

diagnosability, integrability, convertibility and customisation (Y. Koren 2006) that allow to

adjust their production functionalities and production capacities in accordance with market

demand (Bortolini, Galizia, and Mora 2018). Moreover, these systems intend to bridge the gap

between Dedicated Lines (DL), and Flexible Manufacturing Systems (FMS) (Y. Koren 2006).

In DLs, high production rates can be observed due to several tools processing operations

simultaneously implying lower costs per part. In FMS, variety of products can be achieved

thanks to multi-axis CNC machines, which are designed to use many different tools but only

one at a time, implying sequential processing as well as setup times and thus lower production

1 This is an Accepted Manuscript version of the following article, accepted for publication in International Journal

of Production Research: “Xavier Delorme, Gérard Fleury, Philippe Lacomme & Damien Lamy (2023) Modelling

and solving approaches for scheduling problems in reconfigurable manufacturing systems, International Journal

of Production Research, DOI: 10.1080/00207543.2023.2224446”. It is deposited under the terms of the Creative

Commons Attribution-Non Commercial License ©2023 CC-BY-NC 4.0 (http://creativecommons.org/licenses/by-

nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the

original work is properly cited.

mailto:delorme@emse.fr
mailto:damien.lamy@emse.fr
mailto:gerard.fleury@isima.fr
mailto:philippe.lacomme@isima.fr

 2

rates and expensive cost for parts. RMSs aim at reaching high throughput while preserving

flexibility, which is made possible by the concept of Reconfigurability.

Reconfigurability is the capacity of a set of resources to be reconfigured in a period of time

and both reconfigurable machine tools (RMT) and computer numerically controlled (CNC)

machines are the core components of any reconfigurable manufacturing system. Machine

switching delay from one configuration to another can include but is not limited to cleaning the

working zone, loading, positioning and unloading the parts and can imply extra costs coming

from energy expenditures, equipment maintenance and labour (Borgia, Matta, and Tolio 2013).

Several designs of RMSs can be found in the literature, such as Reconfigurable Flow Lines

(Yang et al. 2023), Reconfigurable Cellular Manufacturing Systems (RCMS) (Bortolini,

Galizia, and Mora 2018), or Rotary Machining Systems (Battaïa, Dolgui, and Guschinsky

2017). These last production systems include routing of parts, which could be seen as

Reconfigurable Job-shops (Yelles-Chaouche et al. 2021). If some features outlined above refer

to CNC machines and RMT, reconfigurations are not only about physical resources but can also

be related to assignment of operators to specific operations depending on their skills and

expertise. Indeed, production systems still require human resources in order to operate and to

match the competences and/or functionalities required by the operations to be performed

(Ferjani et al. 2017; Grosse et al. 2015). Considering reconfigurable workforce can make the

production system also considered as reconfigurable manufacturing system (Hashemi-Petroodi

et al. 2020). Actually, a specificity of configurations lies in the number of resources that can be

affected during a reconfiguration, such as hardware (machines, tools), software or operators.

If different research streams on RMS have emerged during past decades, it can also be

explained by the spread of industry 4.0 concepts, which act as enablers for features required by

RMS such as modularity. However, applied research is mainly directed towards product family

definition (Galan et al. 2007), design and line balancing (Essafi, Delorme, and Dolgui 2012),

layout problems (Yamada, Ookoudo, and Komura 2003) and configuration selections (Youssef

and ElMaraghy 2007). In these problems, objectives mainly concern the minimisation of a

number of machines or the cost minimisation of the designed production system including costs

related to reconfigurations. As stressed in the recent literature survey provided by Bortolini,

Galizia, and Mora (2018), production planning and scheduling in RMS environments still are

difficult tasks. If some research projects have addressed process planning at the tactical level

(Bensmaine, Dahane, and Benyoucef 2014; Touzout and Benyoucef 2019), very few consider

scheduling problems at the operational level whereas it is known to be a necessity since the

early 90s (Liles and Huff 1990). However, as integrated problems are among the hardest

problems, decisions taken at the operational level, such as schedules, are complementary to

decisions taken at the strategic level (such as line balancing, line design or configuration

selections at the conception phase), or tactical level such as process planning.

Hence, given a set of possible configurations, selected in prior stages under which the

production system can operate, scheduling operations in RMS requires to define both the

schedule of applied configurations and of operations that are processed according to these

configurations. It is expected that processing time of operations will depend on the chosen

configurations, and that reconfiguration delays may occur between two configurations. Once

configurations are selected, routing of product orders will highly depend on given processes

and on the shop floor’s structure. This structure can be very different from one RMS to another

(Yoram Koren, Gu, and Guo 2018). The objective of the problem consists in minimising the

completion time of the last operation (referred to as makespan). However, it should be

mentioned that reconfigurations are not just setups and may involve several resources at once

and they can have a larger impact on the production system. These observations, i.e. having

variable processing times, and reconfigurations that can affect several resources, may lead to

unpace production systems (Hillier 2013). Furthermore, due to the presence of operators

 3

mentioned before, such systems are better suited as human variables should be taken into

consideration (Ostermeier 2020).

As a step towards further integration of scheduling issues in RMS, this work focuses on the

mathematical formalisation of the problem and introduces results obtained using a linear solver

and a metaheuristic-based approach. This paper addresses the following contributions:

 We introduce a new Job-Shop Scheduling Problem with multiple configurations, named

Reconfigurable Job-Shop Scheduling Problem (RJSSP), which addresses the practical

case of unpace Reconfigurable Cellular Manufacturing Systems.

 We generalise the concept of setup times to consider reconfigurations which may affect

any subset of resources at once.

 The reconfigurations are a decision on their own, and not a consequence of the tasks to

be performed.

 We propose a MILP and a metaheuristic based on a Multi-Start Evolutionary Local

Search to deal with this problem.

 Test instances have been generated and computational experiments are reported.

The rest of the paper is as follows: in the next section, literature review is provided. Section

3 introduces the mathematical formalisation. Section 4 introduces the heuristic approach, and

section 5 presents first results. The paper ends on concluding remarks and a presentation of

future research directions.

2 Related works on Planning and scheduling for RMS

Moghaddam, Houshmand, and Fatahi Valilai (2018) observed that papers on RMS mainly focus

on analysing performances of various configurations and they concentrate on developing

approaches and mathematical models for design and configuration selections. According to

Bortolini, Galizia, and Mora (2018), planning and scheduling problems in RMS refer mostly to

production planning, process planning or integrated approaches considering both configuration

designs and sequencing problems. In the following, we review some of the works related to

planning, sequencing and scheduling of RMS.

Several papers of the literature are addressing both design and control of RMS. For instance, in

Moghaddam, Houshmand, and Fatahi Valilai (2018), the authors introduce a two phase method

in order to build the primary system configuration design and handle its necessary

reconfigurations by considering demand changes. A Mixed Integer Linear Programming

approach is used to rearrange the system design by selecting the best possible transformation

meeting demand level while minimising the additional cost due to purchasing new RMTs and

replacing modules. However, durations of reconfigurations are not considered in their work. In

Haddou Benderbal, Dahane, and Benyoucef (2017), machine selection for design of RMS and

process planning are addressed. In order to evaluate the performance of a process plan, the

authors introduce a new indicator, referred to as the flexibility index. Given a selection of

machines and a process plan, the flexibility index is the number of alternative solutions

available in case of machine unavailability. These alternative solutions can be obtained by using

another selected machine for processing operations, or by postponing the operations with

respect to precedencies. A bi-objective optimisation approach is provided where objectives are

the total completion time and the total flexibility.

Other research projects are focusing on production planning, as in Hees et al. (2017) who

provides a method using RMS which is validated in an application scenario. Reconfigurations

allow to adjust functionalities or capacities of the system, or both. The objective is to minimise

the total production cost, which consists in reconfigurations, processing, and inventory costs as

well as idle time related costs. In Touzout and Benyoucef (2019), different objectives are

 4

addressed in process planning optimisation, namely the total cost, the total completion time of

all products and the maximum machine exploitation time, in order to avoid reliability issues of

components. Delorme et al. (2023) investigate a scenario-based bi-level optimization problem

consisting of balancing the operations and planning the configurations of RMS. Three

objectives are considered: the number of stations, the expected energy cost per produced unit

and the expected service level facing uncertain demands.

As stressed by Azab and Naderi (2015), very few papers deal with scheduling of RMS. In their

research work, they addressed reconfigurations in the context of Flow-shop production systems.

When a change in configuration has to be considered, the whole production system is stopped.

In Yang et al. (2023), the authors address a real time reconfigurable permutation Flow-shop

scheduling problem. The objective is to minimise the total tardiness cost of jobs, that arrive

dynamically at the shop floor. The system operates under different production modes, each one

capable of processing a set of jobs. Such a specific situation can be seen as synchronicity in

Flow-shop problems, where a job can start its process on the following machine only after

completion of machine operations (Waldherr and Knust 2015). However, if several machines

may be inactive in order to operate a switch from a configuration to another, some of them may

not be affected, especially in multiple pathways production systems. Furthermore, the concept

of reconfiguration can be seen at the machine and production line level, but also at the factory

level, which requires adapted models, as in Renna (2013) where production departments are

considered. The manufacturing system is modelled as a Job-shop based on reconfigurable

machines. Machines can be reassigned to other departments according to workload. A

reconfiguration control policy is designed to cope with production fluctuations, mix change and

dynamicity level of the environment. Its performance is evaluated with a simulation-based

approach, through different indicators such as throughput, or tardiness.

In Doh et al. (2016), several policies are investigated through simulation in the context of a

flexible Job-shop production system with one reconfigurable manufacturing cell (RMC). The

production system can be divided into a Job-shop and the RMC. Parts can be processed by

either one or the other. The problem consists in determining the process routes of the different

parts, the sequence of parts that are processed in the RMC, and the sequence of parts assigned

to each machine. The objectives consist in minimising the makespan, the mean flow time and

the mean tardiness. However, no reconfiguration times, neither setup times are considered. In

Borisovsky, Delorme, and Dolgui (2014), balancing of reconfigurable machining lines is

addressed. Cycle times of workstations consider the processing of operations and sequence

dependent setup times. Hence, a sequencing problem is solved in addition to the assignment of

operations to stations. Nevertheless, the problem concerns the design of the initial configuration

under which the system is operating and the setup times concern operations within a station,

and not the reconfigurations applied at the operational level.

Prasad and Jayswal (2017) presented an approach for reconfiguration of a multi-products line

based on two consecutive phases: design and sequencing of products. In the design phase, the

number of machines is computed and all resources are arranged in the best possible way. In the

second phase, selection of the required reconfigurations is achieved in order to sequence

products efficiently. Selection of a transformation is based on the effort for switching from the

current configuration to the other one but no reconfiguration times are considered. In

Mahmoodjanloo et al. (2020), the authors investigate the use of reconfigurable machine tools

in the context of a flexible Job-shop. The specificity of the problem is to have setup times

between machine reconfigurations rather than classical sequence dependent setup times

between operations. Three decision levels are considered, namely assignments of operations to

machines, sequence of operations and configuration selections. In Dou et al. (2020), an

 5

integrated approach for configuration design and scheduling of operations is investigated. Two

conflicting objectives are considered: Total cost and Total tardiness. Two consecutive periods

are considered in this research project, and switching to multiple periods would require future

improvements. Once the number of machines is defined, the scheduling problem consists in

ordering multiple jobs using a priority rule, and the problem could be referred to a permutation

Flow-shop.

In Lamy, Schulz, and Zaeh (2020), a mathematical formalisation is provided for scheduling in

reconfigurable multiple path shop floors with consideration of energy efficient machine tools.

If setup times are considered for mounting machine tools, it only affects the receiving machine,

and not several machines at a time. Similarly, in Fan et al. (2022) the author address a Flexible

Job-shop Problem, with reconfigurable machines where modules can be mounted on the

machines while considering setup times. In a recent work, Vahedi-Nouri et al. (2022) address

a production scheduling and workforce planning problem in the context of a parallel machines

shop floor based on heterogeneous RMTs. The problem includes health consideration in the

assignment of workers to the machines. However, reconfigurations only affect one machine at

a time but not the whole system, and no routing of jobs is considered. In another work, Vahedi-

Nouri et al. (2023) investigate a production scheduling and workforce planning in a RMS

modelled as a Job-shop with RMT and cobots, with the objective of minimizing the makespan.

Operations can be handled at a machine by either an operator, a cobot alone, or both

collaboratively. If reconfigurations are operated at the machine level, the authors mention

system-level reconfigurations as perspectives. In Tang, Haddad, and Salonitis (2022), a grid-

shaped RMS is considered, where reconfigurable machine tools are given cells, and parts are

moved using Automated Guided Vehicles. Discrete event simulation and machine learning are

used to improve the performance of the system considering jobs with due dates.

As stressed by this short literature review, condensed in Table 1, some papers are considering

both design of RMS and sequencing of products at the station or at the system level. However,

reconfigurations require time because of addition or removal of resources, or modifications of

modules on workstations and this characteristic of RMS seems not to be largely addressed in

the reviewed literature. If these reconfigurations can be considered as setup-times,

reconfigurations may impact several machines or resources, when generally one machine is

affected at a time by a setup time in the scheduling literature. Also, the setup times are generally

sequence dependent and not machine dependent, which is closer to reconfiguration times.

In their review of setup times in Job-shop scheduling problems Sharma and Jain (2016) identify

two types of setup times: sequence dependent and sequence independent setup times, both in

the context of batch and non-batch (job) shop environments. If the authors identify several

perspectives in research among which sequence dependent setup times in the context of batch

scheduling problems, all the mentioned papers consider setups at one machine at a time, not on

a set of machines. Also, the setup times to which their research work refer to depend on the job

sequences on the machine, and not on machines consecutive states. Machine dependent setup

times have been addressed in Shen, Dauzère-Pérès, and Neufeld (2018), where a Flexible Job-

shop is addressed considering also sequence dependent setup times of operations. However,

these machine setup times do not require several machines to be stopped.

Considering the above literature, the current paper aims at addressing scheduling at the

operational level in multiple-path reconfigurable manufacturing environments where setup-

times (i.e. reconfigurations) can affect several machines simultaneously.

 6

Table 1. Synthesis of literature review

Reference
Problem

Type

Shop

Floor

Type

Reconfiguration

Type
Criteria Objectives

Solving

Approach

Renna (2013) Scheduling Job-shop
One Resource at a

Time (setup)

Throughput,

Tardiness
- Simulation

Borisovsky,

Delorme, and

Dolgui (2014)

Design &

Sequencing

Flexible

Flow-shop
n/a Cost Mono-Obj. CGA, MIP

Azab and Naderi

(2015)
Scheduling Flow-shop

All Resources at

Once
Makespan Mono-Obj. MILP

Doh et al. (2016) Scheduling
Flexible

Job-shop
n/a

Makespan, Mean

Flow Time,

Mean Tardiness

- Simulation

Haddou Benderbal,

Dahane, and

Benyoucef (2017)

Design &

Process

Planning

Flexible

Group-shop

(A)

One Resource at a

Time (setup)

Makespan (A),

Total Flexibility
Multi-Obj. NSGA-II

Hees et al. (2017)

Process

Planning &

Sequencing

Single

Machine

(A)

All Resources at

once

Total Production

Costs
Mono-Obj. MILP

Prasad and Jayswal

(2017)

Design &

Sequencing

Flow-shop

(A)

One Resource at a

Time (setup)

Cycle Time,

Reconfiguration

Effort, Profit

Over Cost,

Tardiness

Mono-Obj.

Shannon

Entropy,

RIM

Moghaddam,

Houshmand, and

Fatahi Valilai (2018)

Design &

Reconfiguration
Flow-shop

One Resource at a

Time (setup)
Total Cost Mono-Obj. MILP

Touzout and

Benyoucef (2019)

Process

Planning

Job-shop

(A)

One Resource at a

Time (setup)

Total Production

Costs, Makespan,

Exploitation

Time

Multi-Obj.

MOILP,

NSGA-II,

RSUPP,

ILSSUPP

Dou et al. (2020)
Design &

Scheduling

Permutation

Hybrid

Flow-shop

(A)

One Resource at a

Time (setup)

Total Cost, Total

Weighted

Tardiness

Multi-Obj. MoPSO

Lamy, Schulz, and

Zaeh (2020)
Scheduling Job-shop

One Resource at a

Time (setup)
Makespan Mono-Obj. ILP

Mahmoodjanloo et

al. (2020)
Scheduling

Flexible

Job-shop

One Resource at a

Time (setup)
Makespan Mono-Obj.

MILP,

SADE-

NMMS

Fan et al. (2022) Scheduling
Flexible

Job-shop

One Resource at a

Time (setup)

Total Weighted

Tardiness
Mono-Obj. IGA/MILP

Tang, Haddad, and

Salonitis (2022)
Scheduling

Parallel

Machines

(A)

One Resource at a

Time (setup)
Tardiness -

Simulation,

DDQN

Vahedi-Nouri et al.

(2022)

Scheduling &

Workforce

Planning

Parallel

Machines

One Resource at a

Time (setup)

Makespan,

Workers'

Preferences,

Vulnerability

Risks

Agreg. MILP/CPP

Delorme et al.

(2023)

Design &

Planning

Flexible

Flow-shop

(A)

All Resources at

Once

Stations’ number,

Electricity Cost,

Service Level

Multi-Obj.
Matheuristic

(MOSA+LP)

Vahedi-Nouri et al.

(2023)

Scheduling &

Workforce

Planning

Job-shop
One Resource at a

Time (setup)
Makespan Mono-Obj. MILP/CP

Yang et al. (2023) Scheduling Flow-shop
All Resources at

Once

Total Tardiness

Cost
Mono-Obj. EDQN

This paper Scheduling Job-shop
Any Subset of

Resources at Once
Makespan Mono-Obj.

MILP,

MS-ELS

(A) is for “Assimilated” when the problem is not referred to a shop-floor architecture.

 7

3 Formalisation

The problem under study considers reconfigurable manufacturing shop floors modelled as a

Job-shop, and is named Reconfigurable Job-Shop Scheduling Problem (RJSSP). In this

problem, a set 𝐽 of 𝑛 jobs has to be scheduled 𝐽 = {𝐽1, 𝐽2 … 𝐽𝑛} on a set 𝑀 of 𝑣 machines. Each

job 𝑗 ∈ 𝐽 consists in a set of 𝑙𝑗 ordered operations, noted 𝑂𝑗 = {𝑂1,𝑗, … , 𝑂𝑙𝑗,𝑗}. The whole system

operates under configurations 𝑘 ∈ 𝐾, which are similar to setup times in scheduling and impact

processing times. However, switching from a configuration to another can affect several

machines at once, and not necessarily all of them. Let us note 𝑀𝑘1,𝑘2
 the set of machines that

should be stopped when changing from 𝑘1 ∈ 𝐾 to 𝑘2 ∈ 𝐾. When a reconfiguration from 𝑘1 to

𝑘2 is triggered, each machine 𝑚 ∈ 𝑀𝑘1,𝑘2
 is made unavailable for a specific time windows

𝑅𝑇𝑘1,𝑘2

𝑚 , and this configuration switch can only be operated when the concerned machines are

idled. Processing times of operations also depend on the running configuration and each

operation 𝑂𝑖,𝑗 has a processing time 𝑃𝑖,𝑗
𝑘 where 𝑘 ∈ 𝐾. This processing time varies from one

configuration to another, because a configuration may be defined by different assignments of

resources (operators, materials, tools, etc.) to the machines. Therefore, the problem considers

modularity and convertibility of RMS. A reconfiguration time window is required when

switching from a configuration 𝑘1 to 𝑘2, modelling the operators, materials and tools

management. The objective is to schedule efficiently operations and configuration switches in

order to minimise the completion time of the last operation on the last machine (makespan). If

only one machine is concerned by a reconfiguration, then the problem lies in the field of setup

times, meanwhile, if all machines are concerned by a reconfiguration then the problem would

be close to the one of Azab and Naderi (2015), however it generalises it as we are focusing on

Job-shop floors. Other assumptions consider no pre-emption and availability of all resources

and jobs from beginning to end of scheduling time horizon.

These concepts are illustrated in Figure 1, where operations 𝑂1,1, 𝑂2,1 and 𝑂1,3 are operated

under configuration 𝐾1. Then a reconfiguration occurs from 𝐾1 to 𝐾2 (noted 𝑅𝑇1,2), requiring

both Machines 𝑀1 and 𝑀2 to be stopped. Next, operations 𝑂2,3 and 𝑂1,2 are processed under

configuration 𝐾2, until another reconfiguration occurs, switching to configuration 𝐾3. As can

be stressed from the Gantt chart, the operation 𝑂2,3 is still in process when switching from 𝐾2

to 𝐾3 and finishes at time 36, as the reconfiguration does not affect 𝑀1. Thanks to this

specificity, we could postpone both operations 𝑂2,3 and 𝑂3,3 by 3 time units without being

affected by the reconfiguration. In the following, a time indexed mathematical model is

introduced to formalise the different constraints of the problem.

O1,1

O2,1

O1,3

RT1,2

O2,3

O1,2

RT2,3

O3,3

O2,2 O3,1

RT3,1

O3,2

6 18 21 29 33 46 51 63

M.1

M.2

M.3

0 36 43414

Time

Config. K1 K2 K3 K1

Figure 1. Example of a solution, displaying several reconfigurations (𝑹𝑻) that affect different machines

Figure 1. alt. text: Gantt diagram of a schedule that illustrates reconfigurations that affect only specific

machines, allowing unaffected ones to continue processing their operations.

 8

Parameters:

𝑀 The set of machines;

𝐽 The set of jobs to schedule;

𝐾 Number of configurations;

𝑗, 𝑚, 𝑘, 𝑡 indices for, respectively, jobs, machines, configuration and time index;

𝑙𝑗 number of operations of job 𝑗;

𝑂𝑖,𝑗 Operation number 𝑖 of job 𝑗;

𝑀𝑖,𝑗 Machine required for the operation 𝑂𝑖,𝑗;

𝑅𝑘1,𝑘2

𝑚 Parameter equal to 1 if the machine 𝑚 must be switched off during a

reconfiguration from configuration 𝑘1 to 𝑘2and 0 elsewhere;

𝑅𝑇𝑘1,𝑘2
 Reconfiguration time for going from 𝑘1 to 𝑘2, i.e. reconfiguration time is

considered equal for each affected machine when switching from 𝑘1 to 𝑘2

𝑅𝑇𝑘1,𝑘2

𝑚 Reconfiguration time required on machine 𝑚 to switch from configuration 𝑘1 to

𝑘2 (𝑅𝑇𝑘1,𝑘2

𝑚 = 0 if 𝑅𝑘1,𝑘2

𝑚 = 0 𝑎𝑛𝑑 𝑅𝑇𝑘1,𝑘2

𝑚 = 𝑅𝑇𝑘1,𝑘2
 if 𝑅𝑘1,𝑘2

𝑚 = 1);

𝑃𝑖,𝑗
𝑘 Processing time of the 𝑖𝑡ℎ operation of job 𝑗 in the configuration 𝑘.

𝑃𝑖𝑗
̅̅ ̅ Maximum value of all 𝑃𝑖,𝑗

𝑘

𝑃𝑚𝑎𝑥 Largest processing time of all operations;

𝑇 Time horizon;

Variables:

𝑏𝑠𝑖,𝑗
𝑡 Binary variable equal to 1 if operation O𝑖,𝑗 starts at date 𝑡 and 0 otherwise;

𝑏𝑒𝑖,𝑗
𝑡 Binary variable equal to 1 if operation O𝑖,𝑗is under process at time 𝑡, 0 otherwise;

𝑏𝑐𝑘
𝑡 Binary variable equal to 1 if the configuration 𝑘 is used at time 𝑡 and 0 otherwise;

𝑏𝑟𝑘1,𝑘2

𝑡 Binary variable equal to 1 if at time 𝑡 configuration is switched from

configuration 𝑘1 to 𝑘2;

𝑐𝑚𝑎𝑥 integer variable corresponding to finishing time of the last operation on the last

machine (makespan).

The linear formalisation is a time based indexed formulation that avoids binary variables for

disjunctions and that has been proven to be efficient for numerous disjunctive problems

including Job-shop (Masmoudi, Delorme, and Gianessi 2019). This model is based on 14

constraints and assumes that the makespan is upper bounded by 𝑇, an upper bound obtained by

any constructive heuristic or by the sum of all processing time of operations considering the

worst case of configurations.

The objective is the minimisation of the makespan.

𝑀𝑖𝑛 𝑐𝑚𝑎𝑥 (0)

Constraints (1) ensure that one and only one configuration 𝑘 is used at any time 𝑡 i.e. at time 𝑡

only one variable 𝑏𝑐𝑘
𝑡 is valued 1.

∑ 𝑏𝑐𝑘
𝑡 = 1𝑘=1..𝐾 ∀𝑡 = 1. . 𝑇 (1)

Constraints (2) ensure that operation 𝑂𝑖,𝑗 has one starting time only meaning that 𝑏𝑠𝑖,𝑗
𝑡 is set to

1 at time 𝑡 if and only if the operation starts at 𝑡.

 9

∑ 𝑏𝑠𝑖,𝑗
𝑡 = 1𝑡=1..𝑇 ∀𝑗 = 1. . |𝐽|, ∀𝑖 = 1. . 𝑙𝑗 (2)

Constraints (3) and (4) define the makespan i.e. the finishing time of the last operation on the

last machine and ensure that this makespan is upper bounded by 𝑇.

𝑐𝑚𝑎𝑥 ≥ ∑ (𝑡 × 𝑏𝑠𝑖,𝑗
𝑡 + 𝑏𝑒𝑖,𝑗

𝑡)𝑡=1..𝑇 ∀𝑗 = 1. . |𝐽|, ∀𝑖 = 1. . 𝑙𝑗 (3)

𝑐𝑚𝑎𝑥 ≤ 𝑇 (4)

Given a time 𝑡, constraints (5) set variables 𝑏𝑒𝑖,𝑗
𝑡 to 1 if the operation starts its processing at

time 𝑡 (based on variable 𝑏𝑠𝑖,𝑗
𝑡).

𝑏𝑠𝑖,𝑗
𝑡 ≤ 𝑏𝑒𝑖,𝑗

𝑡 ∀𝑗 = 1. . |𝐽|, ∀𝑖 = 1. . 𝑙𝑗, ∀𝑡 = 1. . 𝑇 (5)

Considering the starting time of an operation, and the active configuration at time 𝑡, constraints

(6) ensure that the operation is under process at time 𝑡 + 𝑃𝑖,𝑗
𝑘 − 1 (i.e. ending date of the

operation) as stressed on the Figure 2 (A).

𝑏𝑠𝑖𝑗
𝑡 + ∑ 𝑏𝑐𝑘′

𝑡
𝑘′=1..𝐾:𝑃𝑖,𝑗

𝑘′
≥𝑃𝑖,𝑗

𝑘 − 1 ≤ 𝑏𝑒
𝑖𝑗

𝑡+𝑃𝑖𝑗
𝑘−1

∀𝑗 = 1. . |𝐽|, ∀𝑖 = 1. . 𝑙𝑗, ∀𝑘 ∈ 𝐾,

∀𝑡 = 1. . 𝑇 − 𝑃𝑖𝑗
𝑘

(6)

Constraints (7) ensure that a configuration is not selected for an operation if its required

processing time, starting from 𝑡, exceeds the remaining available time (i.e. 𝑇 − 𝑡).

𝑏𝑠𝑖,𝑗
𝑡 + 𝑏𝑐𝑘

𝑡 ≤ 1
∀𝑗 = 1. . |𝐽|, ∀𝑖 = 1. . 𝑙𝑗, ∀𝑘 ∈ 𝐾,

∀𝑡 = 1. . 𝑇, 𝑃[𝑖, 𝑗, 𝑘] > 𝑇 − 𝑡
(7)

Constraints (8) ensure that, given a duration 𝑑, if the operation is under process at time 𝑡 and

𝑡 + 𝑑, then all variables 𝑏𝑒𝑖,𝑗
𝑡 between these two dates are set to 1. This allows to have all 𝑏𝑒𝑖,𝑗

𝑡

set to 1 during the whole process of an operation, from start to finish.

(𝑑 − 1). (𝑏𝑒𝑖𝑗
𝑡 + 𝑏𝑒𝑖𝑗

𝑡+𝑑 − 1) ≤ ∑ 𝑏𝑒𝑖𝑗
𝑡′𝑡+𝑑−1

𝑡′=𝑡+1
∀𝑗 = 1. . |𝐽|, ∀𝑖 = 1. . 𝑙𝑗,

∀𝑡 ∈ 𝑇 − 2, ∀𝑑 ∈ 2. . min (𝑃𝑖𝑗
̅̅ ̅, 𝑇 − 𝑡)

(8)

Constraints (9) define the relative order of successive operations of jobs, respecting Flow-shop

and Job-shop conjunctive constraints. For all operations 𝑂𝑖−1,𝑗 and 𝑂𝑖,𝑗 the starting time of 𝑂𝑖,𝑗

is greater than the finishing time of operation 𝑂𝑖−1,𝑗.

 ∑ (𝑡 × 𝑏𝑠𝑖−1,𝑗
𝑡 + 𝑏𝑒𝑖−1,𝑗

𝑡)𝑡=1..𝑇 ≤ ∑ 𝑡 × 𝑏𝑠𝑖𝑗
𝑡

𝑡=1..𝑇 ∀𝑗 = 1. . |𝐽|, ∀𝑖 = 2. . 𝑙𝑗 (9)

Constraints (10) to (14) deal with reconfigurations and processing dates of operations (Figure

2 (B)). More specifically, constraints (10) ensure that (i) only one operation is processed on

each machine at any time 𝑡 (disjunctive constraints) and (ii) that 𝑂𝑖,𝑗 cannot be processed at

time 𝑡 if a change from configuration 𝑘1 to 𝑘2 is operated at this moment and if this change

implies machine 𝑚 to be idle during 𝑅𝑇𝑘1,𝑘2

𝑚 time units.

∑ ∑ 𝑏𝑒𝑖,𝑗
𝑡

𝑖=1..𝑙𝑗:𝑀𝑖,𝑗=𝑚𝑗∈𝐽

+ ∑ ∑ 𝑏𝑟𝑘1,𝑘2

𝑡′

𝑡′=𝑡..𝑇:
𝑡′<𝑡+𝑅𝑇𝑘1,𝑘2

𝑚
𝑘1=1..𝐾,𝑘2=1..𝐾:

𝑅𝑘1,𝑘2
𝑚 =1

≤ 1 ∀𝑚 ∈ 𝑀, ∀𝑡 = 1. . 𝑇 (10)

Constraints (11) ensure that a reconfiguration must be finished, before another reconfiguration

starts. Each step time of a reconfiguration is modelled through 𝑏𝑟𝑘2,𝑘2

𝑡′ .

 10

∑ 𝑏𝑟𝑘2,𝑘2

𝑡′𝑡+𝑅𝑇𝑘1,𝑘2
𝑚

𝑡′=𝑡+1
≥ (𝑅𝑇𝑘1,𝑘2

𝑚 − 1) ∗ 𝑏𝑟𝑘1,𝑘2

𝑡
∀𝑡 = 1. . 𝑇, ∀𝑚 ∈ 𝑀, ∀𝑘1 = 1. . 𝐾,

∀𝑘2 = 1. . 𝐾, 𝑘1 ≠ 𝑘2
(11)

Constraints (12) ensure that binary variables 𝑏𝑟𝑘1,𝑘2

𝑡 are set to 1 if a switch from configuration

𝑘1 to 𝑘2 is processed at time 𝑡.

(𝑏𝑐𝑘1

𝑡−1 + 𝑏𝑐𝑘2

𝑡 − 1) ≤ 𝑏𝑟𝑘1,𝑘2

𝑡 ∀𝑡 = 2. . 𝑇, ∀𝑘1 = 1. . 𝐾, ∀𝑘2 = 1. . 𝐾 (12)

Constraints (13) ensure that if the system does not operate under configuration 𝑘2 (𝑏𝑐𝑘2

𝑡 = 0)

at time 𝑡, then no change in configuration from any other configuration to 𝑘2 is possible. If

𝑏𝑐𝑘2

𝑡 = 1, then 𝑏𝑟𝑘1,𝑘2

𝑡 can be equal to 1 if the switch into configuration 𝑘2 has been achieved,

or 0. If 𝑘2 = 𝑘1 the configuration time from 𝑘1 to 𝑘1is null.

𝑏𝑐𝑘2

𝑡 ≥ ∑ 𝑏𝑟𝑘1,𝑘2

𝑡
𝑘1=1..𝐾 ∀𝑡 = 2. . 𝑇, ∀𝑘2 = 1. . 𝐾 (13)

Constraints (14) state that if the system is not operating under configuration 𝑘1 (𝑏𝑐𝑘1

𝑡 = 0) at

time 𝑡 − 1, then no change in configuration from 𝑘1 to any other configuration remains

possible. If 𝑏𝑐𝑘1

𝑡−1 = 1, then 𝑏𝑟𝑘1,𝑘2

𝑡 can be equal to 1 if the switch in configuration 𝑘2 has just

been processed, or 0.

𝑏𝑐𝑘1

𝑡−1 ≥ ∑ 𝑏𝑟𝑘1,𝑘2

𝑡
𝑘2=1..𝐾 ∀𝑡 = 2. . 𝑇, ∀𝑘1 = 1. . 𝐾 (14)

Oi j Idle

Idle Oi,j

IdleOi-1,j

Machines

Ma-1

Ma

Ma+1

...

...

bsi,j=1
t

bei,j=1
t bei,j =1

t+Pi,j-1

k1
...

k1

bc =1
t

k1

(A) (B)

Oi j Idle

Idle Oi,j

IdleOi-1,j

Machines

Ma-1

Ma

Ma+1

...

...

k1

bc =1t
k1

RT Oi",j"

k2
...

Switch from
configuration k1 to k2

...
k1,k2

br k1,k2

bc =1t'
k2

=1t

Figure 2. Illustration of values for variables and parameters related to an operation 𝑂𝑖,𝑗 (A) and

reconfigurations (B)

Figure 2. alt. text: two figures displaying Gantt diagrams with illustrations of variables used in

mathematical formulation.

Considering all these constraints, and because only one configuration is active at time 𝑡, the

time horizon, for good solutions, will be divided into periods. Each one of these periods consists

in a time window where the same configuration is applied for all the machines. Once all periods

are defined, the problem consists in scheduling efficiently operations within the time windows

of the different periods.

4 Heuristic based approach

Because the problem is NP-Hard, finding an optimal solution in a reasonable computational

time is intractable using the linear formulation. To address this issue, other optimisation

methods such as heuristic and metaheuristic approaches, can provide solutions in acceptable

computational time. In this paper a multi-start evolutionary local search is designed to address

the problem. Evolutionary local search (ELS) has been proposed first by Wolf and Merz (2007)

 11

for the super peer selection problem, and applied successfully in several scheduling problems

(Chassaing et al. 2014; Palacio and Rivera 2020; Ben-Said, El-Hajj, and Moukrim 2019). It is

based on several key elements including a representation of solutions that considers the

schedule and the configuration assignment, an evaluation method of these schedules, mutation

operators, and a local search procedure.

To illustrate these elements, let us consider a scheduling problem with three jobs, each one

having three operations, and let us assume that one operation has to be processed on a machine,

with a predetermined duration that depends on the configuration the system operates under.

Assume that three configurations are available and let us consider that processing times of

operations depend on these configurations as stressed in Table 2, where each cell contains

information 𝑀𝑚(𝑘1, 𝑘2, 𝑘3), where 𝑀𝑚 refers to the required machine to perform the operation,

and the following triplet corresponds to 𝑃𝑖𝑗
𝑘 (i.e. the processing time of each operation 𝑂𝑖,𝑗

depending on the selected configuration). Table 3 reports reconfiguration durations on

machines while switching from a reconfiguration to another, and (𝑥; 𝑦; 𝑧) is a vector where

𝑥 > 0 enforces that machine 𝑚 = 𝑀1 is concerned by the reconfiguration (𝑀1 has to be idle

during 𝑥 units of time) and 𝑥 = 0 means that the machine is not concerned and could remain

busy until processing another job. Similar remarks hold for 𝑦 that refers to machine 𝑀2 and 𝑧

that refers to machine 𝑀3. For example, (3; 3; 0) at the line 1 and column 2 in the Table 3,

enforces that machine 𝑀3 is not concerned by a reconfiguration from configuration 1 to 2,

whereas machine 𝑀1 and 𝑀2 have to be idle for 3 time units.

Table 2. Jobs sequence, and configuration dependent processing times

 Operations
Job

1 2 3

𝑱𝟏 𝑀1(4;12;12) 𝑀2(14;13;3) 𝑀3(30;30;5)

𝑱𝟐 𝑀2(5;8;2) 𝑀3(4;4;8) 𝑀1(12;11;11)

𝑱𝟑 𝑀3(6;6;26) 𝑀1(7;15;15) 𝑀2(4;2;7)

Table 3. Definition of reconfiguration times (𝑹𝑻𝒌𝟏,𝒌𝟐

𝒎) that affect specific machines

 1 2 3

1 (3;3;0) (5;5;5)

2 (3;3;0) (0;4;4)

3 (5;5;5) (0;4;4)

A problem as introduced in Tables 2-3 can be modelled as a conjunctive-disjunctive graph

𝐺 = (𝑉, 𝐴, 𝐸), where 𝑉 refers to the operations, 𝐴 refers to the conjunctive arcs (i.e. arcs that

correspond to the technological order of operations inside a job sequence) and 𝐸 refers to the

disjunctive arcs that should be oriented. Following this representation, the aforementioned

problem can be represented as the graph in Figure 3, based on the disjunctive graph model

introduced first in 1964 (Roy and Sussmann 1964). For instance, at the top of the Figure 3, 𝑂1,1,

𝑂2,1, and 𝑂3,1 are represented consecutively (conjunctive arcs), modelling the sequence of

operations in Job 𝐽1.

 12

O1,1

M1

O3,1

M3

O2,1

M2

O1,2

M2

O3,2

M1

O2,2

M3

O1,3

M3

O3,3

M2

O2,3

M1

O *

Figure 3. Modelling of a problem as a graph, where no configurations are considered.

Figure 3. alt. text: initial graph of a scheduling problem, displaying sequences of operations for jobs,

and edges related to machine disjunctions.

In the problem at hand, each operation should be processed considering a configuration, and

processing times depend on selected configurations and are not yet included in the graph of

Figure 3.

As stipulated in Table 3, reconfiguration times will affect machines 𝑀1 and 𝑀2 when

changing from configuration 𝐾1 to 𝐾2; all machines are affected by a switch from 𝐾1 to 𝐾3; and

only machines 𝑀2 and 𝑀3 are concerned with a switch from 𝐾2 to 𝐾3. All these constraints can

be modelled with edges in the graph, that are not included in the figure to avoid non-readability.

However, when a configuration is assigned to one operation, the graph can be updated with this

new information as stated in Figure 4, where only edges related to configurations are revealed.

 4

 5

 14

 8 12 8

 6

 7

 15

 0

0

0

O

 K1-K2

K1-K3

K2-K3

Affected machines by a change from :

O1,1

M1-K1

O3,1

M3-K3

O2,1

M2-K1

O1,2

M2-K2

O3,2

M1-K1

O2,2

M3-K3

O1,3

M3-K1

O3,3

M2-K3

O2,3

M1-K2

*

Figure 4. Modelling of a problem that includes configurations assigned to each operation. (edges

related to machine disjunctions are withdrawn for readability).

Figure 4. alt. text: Extension of Figure 3, with the graph now displaying selected configurations for

operations and edges related to configurations’ switches.

In Figure 4, conjunctive arcs are now weighted with the processing times that depend on

configurations. Non-solid edges connect operations that are processed with different

configurations, if their machines could require a reconfiguration. For instance, dashed arrows

connect operations processed under configurations 𝐾1 or 𝐾2, and performed with machines

 13

𝑀1 or 𝑀2 since 𝑀3 is the only machine that is not affected by a change from the first to the

second configuration, or reversely. Finally, an orientation of these edges should be made, to

define the starting dates of operations. Such an orientation could be as in Figure 5, where plain

grey arcs are modelling precedencies on machines, and dotted arcs are representing remaining

reconfigurations that should be respected. Arcs are weighted with the duration of operations

plus the reconfiguration time to be considered.

4

5

14+5

 8+4

8+4

128+4

6

6+5

7

15

0

0

0

O *

4+3

4+3

14+34+5

8

5+5

7+5

14+5

14+3
4+5

O1,1

M1-K1

O3,1

M3-K3

O2,1

M2-K1

O1,2

M2-K2

O3,2

M1-K1

O2,2

M3-K3

O1,3

M3-K1

O3,3

M2-K3

O2,3

M1-K2

Figure 5 graph with oriented edges and weighted with duration of operations and reconfiguration times

Figure 5. alt. text: Extension of Figure 4, with the graph now displaying oriented edges of operations

on machines. An operation is coloured dark grey to illustrates the necessary waiting time due to the

reconfiguration.

To move from Figure 3 to Figure 5, a representation of solutions is used and further defined

in the following subsection.

4.1 Solution representations

In scheduling problems, a classical representation of solution consists in a list of operations,

or jobs, referred to as repetition vector (𝜋) (Bierwirth 1995). In the studied problem, this vector

must be extended with another vector (𝜎) for assignment of configurations to the machines. If

such a vector is similar to an assignment vector, as in Flexible Job-shop, it is not assigning a

machine to an operation but a configuration, which can affect several machines when a switch

is performed. A solution of such a problem can be written with two vectors as in Figure 6.

Reading vector 𝜋 from left to right, the first operation scheduled is the first operation of job 1,

in configuration 𝐾1 (read from 𝜎). Next operations to schedule are 𝑂2,1 and 𝑂1,3 still under

configuration 𝐾1. All these operations are represented with a node in Figure 5 (same light grey)

The next job in the sequence 𝜋 is the job 2 = 𝜋[4] and as it is its first occurrence, it leads to

operation 𝑂1,2 being scheduled in configuration 𝐾2 (darker grey in Fig.5), and so on.

 14

1 1 3 2 3 2 3 1 2

O1,1 O2,1 O3,1 O1,2 O2,2 O3,2 O1,3 O2,3 O3,3

1 1 3 2 3 1 1 2 3

π

σ

Operations

Figure 6. Matching between values in π and σ with operations.

Figure 6. alt. text: illustration of vectors 𝜋 and 𝜎 used in metaheuristic to represent a solution of a

problem. Arrows show the correspondence of vector values with operation numbers, which are listed

in a third vector.

Once a couple (𝜋, 𝜎) is selected, the transformation of this solution into an evaluated graph

(having a starting date to all operations) is achieved using an evaluation function.

4.2 Evaluation function

The evaluation function consists in scanning the π vector from the left to the right and

assigning a starting date to each operation according to an iterative scheme. Considering the

vector π in Figure 6, the first operation read (𝑂1,1) starts at 0 on machine 𝑀1. Next operation to

schedule is 𝑂2,1, which starts at 4 on machine 𝑀2 as it must wait until the end of 𝑂1,1. The next

operation, 𝑂1,3, that is processed on machine 𝑀3 starts at 0 in configuration 1. Next operation

is 𝑂1,2 that has to be scheduled on machine 𝑀2 in configuration 𝐾2. As there is a switch in

configuration from 𝐾1 to 𝐾2, and as this switch affects machines 𝑀1 and 𝑀2, a delay is added

on these machines to model the reconfiguration, and the starting time of 𝑂1,2 must be greater

than the finishing time of all operations previously scheduled in configuration 1 (i.e. operation

𝑂1,1 and operation 𝑂2,1 in this specific situation). Consequently, a disjunctive arc is added from

𝑂1,1→𝑂1,2 and 𝑂2,1→𝑂1,2 respectively weighted with the sum of processing time of operations

𝑂1,1 and reconfiguration time from 𝐾1 to 𝐾2 (i.e. 4 + 3 = 7), and the processing time of 𝑂2,1

and reconfiguration time (i.e. 14 + 3 = 17). The starting time of operation 𝑂1,2 is henceforth

fixed at 21, which corresponds to the end of 𝑂2,1 plus the reconfiguration time. Finally, the

complete evaluation of the solution leads to the Gantt diagram presented in Figure 1.

The evaluation procedure is given in Algorithm 1 and is composed of one main loop to scan

all the positions in 𝜋 and at each iteration one operation is scheduled. At step 9, the conjunctive

constraints are addressed and the starting time of the operation is updated depending on the

finishing time of the previous operation of the job (𝑓𝑡𝑗). At step 13, the available time for the

machine (𝑓𝑡𝑚) is updated with the finishing time of the previously scheduled operation. Steps

17 to 26 are dedicated to the consideration of delays for machines that are concerned by a

configuration switch. If the condition holds at step 17, it means that a switch is applied from

configuration 𝑐𝑜𝑛𝑓[𝑚] and the new configuration 𝑐, and two information are computed: the

finishing time of the last operation for the machine that must now operate in configuration 𝑐 -

if concerned by a reconfiguration: 𝑓𝑡𝑐 = max(𝑠𝑡[𝑗𝑜𝑏][𝑛[𝑗𝑜𝑏]]). Steps 23-25 delay the starting

time of all operations scheduled at a machine concerned with the new configuration by

𝑅𝑇𝑐𝑜𝑛𝑓(𝑚),𝑐
𝑚 units of time. 𝑠𝑡[𝑗𝑜𝑏][𝑛[𝑗𝑜𝑏]] at step 27 is updated with the largest value between

𝑓𝑡𝑐, 𝑓𝑡𝑗 (the end of the previous operation of the job 𝑖), and the end of the previous operation

schedule at machine 𝑚 (𝑓𝑡𝑚).

 15

Algorithm 1: evaluate_solution

Input:

 (𝜋, 𝜎) vectors representing a solution

Output:

 𝑠𝑡[𝑖][𝑗], 𝑐[𝑖][𝑗] starting time and completion time of all operations 𝑂𝑖,𝑗

 𝑐𝑚𝑎𝑥 makespan, initialised to 0

Local parameters:

 𝑛[𝑗𝑜𝑏] number of operations scheduled for the 𝑗𝑜𝑏

 𝑝𝑚[𝑚][] stores last operation scheduled on the machine 𝑚

 𝑐𝑜𝑛𝑓[𝑚] configuration under process for the machine 𝑚

 𝑓𝑡𝑐 finishing time of the previous configuration

 𝑓𝑡𝑗 finishing time of the previous operation of the 𝑗𝑜𝑏

 𝑓𝑡𝑚 finishing time of the previous operation on a machine

Begin

1. 𝑛[𝑗𝑜𝑏] = 0 for all 𝑗𝑜𝑏 = 1. . 𝑛;

2. 𝑝𝑚[𝑚] = 𝑂0,0 for all 𝑚 = 1. . 𝑣;

3. For all 𝑥 in 𝜋 Do

4. 𝑗𝑜𝑏 = 𝜋[𝑥];
5. 𝑛[𝑗𝑜𝑏] = 𝑛[𝑗𝑜𝑏] + 1;

6. 𝑂 = 𝑂[𝑗𝑜𝑏][𝑛[𝑗𝑜𝑏]]; // the operation to schedule

7. 𝑚 = 𝑀[𝑗𝑜𝑏][𝑛[𝑗𝑜𝑏]]; // the machine used for the operation

8. 𝑘 = 𝜎[𝑂]; // selected configuration for the operation

9. IF (𝑛[𝑗𝑜𝑏] > 1) THEN //Part 1: get conjunctive date

10. // finishing time of the previous operation of the job

11. 𝑓𝑡𝑗 = 𝑐[𝑗𝑜𝑏][𝑛[𝑗𝑜𝑏] − 1];
12. ELSE 𝑓𝑡𝑗 = 0 END IF

13. IF (𝑝𝑚[𝑚][0] ≠ 0) Then //Part 2: get disjunctive date

14. // finishing time of the previous operation on the machine m

15. 𝑓𝑡𝑚 = 𝑐[𝑝𝑚[𝑚][0]][𝑝𝑚[𝑚][1]];
16. ELSE 𝑓𝑡𝑚 = 0 END IF

17. IF 𝑐𝑜𝑛𝑓[𝑚] ≠ 𝑐 THEN //Part 3: get configuration date

18. 𝑝𝑟𝑒𝑣𝐶 = 𝑐𝑜𝑛𝑓[𝑚]; 𝐸 = ∅; 𝑓𝑡𝑐 = 0;

19. FORALL 𝑚 concerned by a reconfiguration from 𝑝𝑟𝑒𝑣𝐶 to 𝑐 DO

20. 𝑓𝑡𝑐 = max(𝑐[𝑝𝑚[𝑚][0]][𝑝𝑚[𝑚][1]])
21. 𝐸+= {𝑚} // 𝑚 is concerned by the reconfiguration

22. ENDFORALL

23. FOR 𝑚 ∈ 𝐸 DO

24. 𝑐[𝑝𝑚[𝑚][0]][𝑝𝑚[𝑚][1]] = 𝑓𝑡𝑐 + 𝑅𝑇𝑐𝑜𝑛𝑓(𝑚),𝑘
𝑚

25. END FOR

26. ELSE 𝑓𝑡𝑐 = 0 END IF

27. 𝑠𝑡[𝑗𝑜𝑏][𝑛[𝑗𝑜𝑏]] = 𝑚𝑎𝑥(𝑓𝑡𝑐, 𝑓𝑡𝑗, 𝑓𝑡𝑚);

28. 𝑐[𝑗𝑜𝑏][𝑛[𝑗𝑜𝑏]] = 𝑠𝑡[𝑗𝑜𝑏][𝑛[𝑗𝑜𝑏]] + 𝑃[𝑗𝑜𝑏][𝑛[𝑗𝑜𝑏]][𝑘] //the duration 𝑃 depends on the configuration 𝑐

29. 𝑝𝑚[𝑚][0] = 𝑖; 𝑝𝑚[𝑚][1] = 𝑛[𝑗𝑜𝑏];
30. IF 𝑐[𝑗𝑜𝑏][𝑛[𝑗𝑜𝑏]] > 𝑐𝑚𝑎𝑥 THEN 𝑐𝑚𝑎𝑥 = 𝑐[𝑗𝑜𝑏][𝑛[𝑗𝑜𝑏]]
31. END FOR

End

4.3 Multi-start Evolutionary Local Search

The global scheme of the metaheuristic is given in Figure 7. Three procedures are required in

this metaheuristic: (i) a random generation of solutions, (ii) diversification of solutions i.e.

mutation operator that avoids premature convergence and favours search space investigation,

and (iii) intensification through a local search scheme that takes advantages of the solution

representation to avoid costly useless modifications and make intensive search into the

promising direction. Connecting these components lead to the multi-start ELS presented in

Figure 7. At each iteration, a new couple (𝜋, 𝜎) is generated (bloc A1) and evaluated to obtain

a new solution 𝑆 (𝑆 = Evaluate (𝜋, 𝜎)) that is next improved by a local search (A2). The

following blocs implement the ELS part of the algorithm: the first blocs (B1 to B3) correspond

to the neighbours generation. A neighbour 𝑆′ is obtained by a mutation applied on the couple

(𝜋, 𝜎) leading to a new couple (𝜋′, 𝜎′) ((𝜋′, 𝜎′) ≔Mutation(𝜋, 𝜎)) that is improved through the

local search procedure, if 𝑆’ has never been visited yet (clone detection). The exploration of

neighbourhood during B1-B3 yields best found neighbour 𝑏𝑆. The parameters of the

metaheuristic are: (i) 𝑛𝑏𝑠𝑡𝑎𝑟𝑡, which defines the number of initial solutions that will be explored,

(ii) 𝑛𝑏𝑛 which is the number of neighbours that are obtained through mutation at each step, and

 16

(iii) 𝑛𝑏𝐸𝐿𝑆 which corresponds to the number of layers of the evolutionary local search

procedure. Finally, the algorithm returns the best-found solution 𝑆∗.

S = Randomised heuristic
S = Evaluate(π,σ)

Improve S using
local search procedure

 Get S' by applying mutation on S

If S' hasn't been visited yet
(clone detection) then
apply local search on S'

If S' is better than bS
then bS:=S'

S := bS

If S is better than S* then S*:=S

k < nbn?

j < nbELS?

noi < nbstart?

Return S*

A1

A2

B1

B2

B3

No Yes

Yes

No

Start
i=0

Set S* quality to

j=0

k=0
Set bS quality to

j=j+1

k=k+1

i=i+1

Yes

No

End

Figure 7 Flow chart of Multi-Start Evolutionary Local Search (MS-ELS)

Figure 7. alt. text: Flow chart of the designed metaheuristic, displaying sequence of applied procedures

including solution generation, local search phase and mutation procedure.

4.3.1 Generating solutions

Initial solutions are built using a randomised heuristic based on the composite rule

FDD/MWKR proposed by Sels, Gheysen, and Vanhoucke (2012), as it has shown good

performances for Job-shop problems under Makespan objective. FDD stands for Flow Due

Date, which corresponds to the sum of durations of already processed operations of a job, while

MWKR corresponds to remaining work on this job. At each new generation step, the same

configuration is assigned to all operations, and the composite rule is applied to determine a new

solution, one operation at a time, favouring operations with lowest value of FDD/MWKR.

Possible ties are addressed randomly. The best solution is kept as the starting point of the

remaining steps.

4.3.2 Mutation

In order to diversify solutions during the ELS phase, a mutation procedure is used. This

procedure is based on two different neighbourhoods and consists in modifying randomly

 17

sequence and configuration of operations, namely 𝜋 and 𝜎. The first neighbourhood is based

on a swap operator that is used to move from a vector 𝜋 to a vector 𝜋’, meaning that two jobs

in vector 𝜋 are randomly exchanged in the sequence. For instance, 𝜋′ = [1 1 2 2 3 2 3 1 3] can

be obtained from 𝜋 in Figure 6 by exchanging third and last values of the vector. The second

neighbourhood consists in changing 𝜎 by assigning randomly another configuration to an

operation. To favour diversity of solutions obtained during the mutation phase, and increase

chances of extracting from a local minimum, these two neighbourhoods are applied several

times (e.g. 𝑥 swaps and 𝑦 reassignments) in order to move from a solution 𝑆 to a mutated

solution 𝑆′,

4.3.3 Local Search

In this first study, a stochastic local search is used (Hoos and Stützle 2005). Starting from a

given solution 𝑆, the local search mainspring is based on a main loop which randomly changes

order of operations in π or assigns a new configuration to an operation in σ. Each modification

in 𝜋 and/or 𝜎 requires a new evaluation by the procedure introduced in section 4.2. If one of

these modifications lead to a better solution 𝑆′, then this new solution overwrites 𝑆 (i.e. first

improvement), and the local search continues from this solution. The local search stops when a

maximal number of iterations (𝑖𝑚𝑎𝑥) is achieved.

For instance, changing configuration of 𝑂2,3 (in Figure 1) from 𝐾1 to 𝐾3, would make the

makespan evolve from 63 to 49. Or, changing configuration of 𝑂2,1 from 𝐾2 to 𝐾1, would

improve the makespan to 62, and a following swap between 𝑂2 and 𝑂4 on 𝑀2 would change

makespan to 58. Hence, the local search relies on the same neighbourhoods as in the mutation

phase, however, it is used differently, as only one change at a time, whether in 𝜋 or in 𝜎, is

allowed to favour intensification.

5 Computational experiments

5.1 Data generation

In order to evaluate the proposed approaches, two datasets have been generated2, considering

1, 3 or 5 configurations, and containing 120 medium (M) and 39 small (S) instances

respectively. Instances are labelled RJSSP_𝐼_𝐽_𝐾 with 𝐼 the data type (M or S), 𝐽 the instance

number, and 𝐾 the number of possible configurations.

 The first dataset (RJSSP_M) relies on small and medium scale instances which are named

RJSSP_M_1_1 to RJSSP_M_40_5. The processing times of first configuration (𝑝𝑖) are equal

to the processing times of JSP instances taken from the literature (Lawrence, 1984), hence,

each optimal solution of JSP’s instances are upper bounds for the problem that considers

configurations. Then, machines that will not be affected by reconfigurations are randomly

defined. Machines are supposed to be affected by a reconfiguration with a probability of 2/3.

Next step consists in generating processing times of operations running under second and

third configurations. These durations belong to one of four different intervals: [1.6𝑝𝑖; 1.8𝑝𝑖],
[1.4𝑝𝑖; 1.6𝑝𝑖], [0.7𝑝𝑖; 1.2𝑝𝑖] or [0.7𝑝𝑖; 0.8𝑝𝑖]. Probabilities of an operation to have its

processing time taken in one of these intervals are respectively {0.2; 0.2; 0.2; 0.4}. Once an

interval is selected, the processing time of the operation is randomly generated according to

the intervals’ bounds. Similarly, the fourth and fifth configurations have processing times

taken in [1.8𝑝𝑖; 2𝑝𝑖], [1.5𝑝𝑖; 1.8𝑝𝑖], [0.3𝑝𝑖; 1.5𝑝𝑖], [0.3𝑝𝑖; 0.7𝑝𝑖]. If no reconfiguration time

is to be considered between two configurations on a given machine, processing times are

2 To favour fair future research comparisons, all these instances are available online at

https://github.com/damienLamy/RMS-Sched

 18

updated to be equal on these configurations. Finally, the reconfiguration times are randomly

generated and ensure triangular inequality. Size of problems ranges from 50 to 300

operations.

 The second dataset (RJSSP_S) is composed by 39 small instances named RJSSP_S_1 to

RJSSP_S_13, ranging from 3 to 10 jobs, 3 to 5 machines (i.e. 9 to 50 operations), and a

number of configurations taken in {1, 3, 5} in order to apply the exact approach on smaller

instances. The jobs and processing routes are taken from second instance RJSSP_M_2_5.

Processing times (𝑝𝑖) are divided by 5 for the first 10 instances of the dataset (in order to

avoid being penalised due to high time horizon) and equal to the original data in the last 3

instances.

5.2 Parameter Settings

All experiments have been carried out on a computer running Windows Server 2016, and

embedding two E5-2667 Xeon processors (3.2GHz) and 256 Go RAM. For exact solving, a

time limit is set to 7200 seconds. Considering the metaheuristic, 50 runs are applied for each

instance of the datasets. Parameters of the metaheuristic have been empirically set as follows:

𝑛𝑏𝑠𝑡𝑎𝑟𝑡 ≔ 2000. To avoid large design experiments, 𝑛𝑏𝑒𝑙𝑠 and 𝑛𝑏𝑛 are randomly selected at

each loop in [75; 100] and [5; 20] respectively. The total number of modifications allowed in

the mutation phase varies from 1 to 3 (𝑥 + 𝑦 in section 4.3.2), in order to avoid a large

modification of the solution. The mutation procedure favours configuration changings

(probability of being chosen is equal to 0.6), while the stochastic local search favours schedule

modifications (probability equal to 0.6). For the local search, 𝑖𝑚𝑎𝑥 is set to 50 ∗ 𝑠𝑖𝑧𝑒, to have

iterations depending on size of instances. A time limit criterion of 300 seconds is also

considered in the metaheuristic to avoid large computation times in instances with hundreds of

operations.

5.3 Results and discussion

5.3.1 Results computed with exact approach on RJSSP_S

At first, results were computed on RJSSP_S using CPLEX 12.8 solver and the results are

presented in Table 4. In this table, #J., #M. and #op consist in the number of jobs, machines and

operations of the instance. LB and UB refer to the lower and upper bound (an asterisk denotes

an optimal solution), and Gap% refers to the deviation between the two in percent. CPU

displays the computational time in seconds.

Results synthesis: As can be stressed from this first table, optimal solutions can be obtained

on small instances with 1 configuration (Job-shop scenario), with up to 24 operations, in less

than twenty minutes. It appears that two reasons may hinders the solver to find solutions: (i) the

size of instances, with large observed gaps, or no upper bound when the number of operations

increases above 24 operations, or (ii) the duration of the operations. Indeed, whereas instances

RJSSP_S_2 and RJSSP_S_3 were solved optimally, the solver is unable to yield solutions for

instances RJSSP_S_12 and RJSSP_S_13, whose operation times are 5 times longer than those

of RJSSP_S_2 and RJSSP_S_3. Obtaining optimal solutions seems to become even more

difficult when the number of available configurations increases, while the maximum time

horizon 𝑇 is decreased. For example, when 3 configurations are considered, no solutions are

found for RJSSP_S_7_3, to RJSSP_S_13_3 in the allowed computation time. Furthermore, as

shown in these first results, improvements on UB can be achieved between instances with 3

configurations compared to 1 only (~2% on optimal solutions), and the gap is much larger when

comparing 3 configurations and 5 (~22.5%). As can be stressed from LB columns, a potential

for improvement exists for obtaining better bounds on problems with 3 and 5 configurations.

Drawbacks: While the time horizon 𝑇 decreases when considering 3, or 5 configurations,

which should help problem solving, the solver is unable to give optimal solutions when

 19

exceeding 12 operations. The CPU also increases, since it is 120 times more important when

considering 5 configurations compared to 1. Visualisation of this CPU evolution over instance

size is given in Figure 8. This figure shows the time used to reach the first solution, the best-

known solution, the time to solve the problem to optimality and the time to end when optimality

is not proven. Columns are grouped by three, in order to display number of available

configurations. As can be stressed, above 20 operations (i.e. more than 5 jobs/4 machines), the

solver usually spends all the available time searching for an initial solution without succeeding.

HD refers to instances with higher durations of operations.

Table 4 results using an exact approach (CPLEX) on RJSSP_S

 #J. #M. #op 1 Configuration 3 Configurations 5 Configurations

 LB UB Gap% CPU LB UB Gap% CPU LB UB Gap% CPU

RJSSP_S_1 3 3 9 29 29* 0 1 28 28* 0 8 19 19* 0 1

RJSSP _S_2 3 4 12 56 56* 0 4 56 56* 0 340 45 45* 0 2568

RJSSP _S_3 4 3 12 45 45* 0 20 44 44* 0 88 37 37* 0 392

RJSSP _S_4 6 3 18 60 60* 0 190 43 60 28.33 / 23 / ∞ /

RJSSP _S_5 5 4 20 83 83* 0 191 24 / ∞ / 32 / ∞ /

RJSSP _S_6 6 4 24 88 88* 0 774 12 / ∞ / 11 / ∞ /

RJSSP _S_7 8 3 24 74 89 16.85 / 21 / ∞ / 10 / ∞ /

RJSSP _S_8 6 5 30 93 96 3.13 / 13 / ∞ / 14 / ∞ /

RJSSP _S_9 9 4 36 31 / ∞ / 12 / ∞ / 11 / ∞ /

RJSSP _S_10 10 5 50 30 / ∞ / 14 / ∞ / 13 / ∞ /

RJSSP _S_11 3 3 9 153 153* 0 1145 43 / ∞ / 15 / ∞ /

RJSSP _S_12 3 4 12 109 / ∞ / 14 / ∞ / 10 / ∞ /

RJSSP _S_13 4 3 12 52 / ∞ / 10 / ∞ / 9 / ∞ /

/: no solution found, *: optimal solutions

Figure 8. CPU repartition during exact solving

Figure 8. alt. text: Stacked diagram displaying CPU time allocated by the solver for reaching first

solution, for reaching best-known solution, the time to convergence if optimal solution is proven, and

remaining time to stop if not.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

3J./3M. 3J./4M. 4J./3M. 6J./3M. 5J./4M. 6J./4M. 8J./3M. 6J./5M. 9J./4M. 10J./5M. 3J./3M.
HD

3J./4M.
HD

4J./3M.
HD

C
P

U
 t

im
e

in
 s

ec
o

n
d

s

Instances and number of available configurations

Solving allocation time

Time to first solution time to best found solution time to convergence Time to end

 20

Obviously, these results should not be considered as granted, as they only consider few

optimal solutions and other data could lead to different results if processing time of operations

are very low on newly added configurations.

5.3.2 Results computed with metaheuristic approach on RJSSP_S

In Tables 5 and 6, results are obtained using the metaheuristic on RJSSP_S and RJSSP_M

respectively. In these tables, 𝑆∗ refers to the best-known solution (for future comparisons),

which corresponds to the minimum value between the best-found solution over 50 runs for a

given number of configurations and the best-known solution on instances with less available

configurations. 𝑆̅ corresponds to the average value of the makespan over the 50 runs, and 𝜎

corresponds to the average standard deviation. We also compute 𝑆1%, the percentage of

solutions that are below 1% increase of 𝑆∗, representing success rate of reaching solutions close

to 𝑆∗. Finally, 𝑐̅ corresponds to the average configuration changes per solution, and T̅ is the

average computation time to reach the best-found solution on each run (Computation times near

0 are noted “<1” in the table). Bold values represent results that are strictly better depending on

number of reconfigurations (i.e. 3 configurations compared to 1, 5 configurations compared to

3).

Synthesis of obtained solutions for RJSSP_S:

 As can be stressed, the metaheuristic is capable of returning several previously found

optimal solutions on this dataset. For instances with one configuration the

metaheuristic reaches the 7 optimal solutions, improves the upper bound in one

instance, and yields 4 upper bounds on instances where CPLEX did not returned

solutions. When only one configuration is considered, the metaheuristic always

converges towards the same solution (𝜎 = 0 and 𝑆1% = 100%). When the number of

configurations is increasing (3 & 5 configurations) the metaheuristic is capable of

finding rapidly solutions, and allows to define 18 new upper bounds on RJSSP_S (9

solutions for 3 configurations, 9 solutions for 5 configurations). However, it can be

stressed that the criterion 𝑆1% is slightly decreasing when the number of

configurations increases, which can be explained by the size of the search space that

also increases. Meanwhile, it can be seen that if the average number of

reconfigurations increases, the ratio between 𝑐̅ and the number of available

configurations decreases. This may be explained by the achievable performance of

operations running under configurations 4 and 5, allowing less reconfigurations,

which is also shown by improvements of solutions between 1 configuration and 3

(2.8% improvements on makespan) and between 3 configurations and 5 (16.1%

improvements).

 Standard deviation on this dataset remains low when the number of configuration

increases (below 0.15% in average when 5 configurations are considered), yet it

seems that it becomes challenging to reach the same best-found solution over the

different runs on some instances (RJSSP _S_7 and RJSSP _S_10). This is also

attested by 𝑆1% on these instances, with only 34% of solutions below a 1% increase

of 𝑆∗ for RJSSP _S_7, and 4% for RJSSP _S_10 which suggests that the frequency

of reaching a valuable solution decreases on these instances.

 As for the average computation times to best found solution, it remains low, below

15 seconds when considering 5 configurations. Considering the 39 instances of

RJSSP_S, �̅� remained below 75 seconds, and is below 1 second for 30 instances.

These results show that small size problems are efficiently addressed with the metaheuristic,

having almost all optimal solutions reached at least one time, and a low deviation 𝜎.

 21

5.3.3 Results computed with metaheuristic approach on RJSSP_M

On larger instances (Table 6), results show that finding stable solutions seems to be harder when

the number of configurations increases. In this table UB refers to optimal solutions of the

literature, on instances with one configuration, which gives information on upper bound for

problems with higher number of configurations. Cells in grey display solutions that equal the

literature on these instances, which shows that the metaheuristic is capable of finding good

solutions in this dataset (deviation to UB of 0.23% on average solutions 𝑆̅) while it has been

tuned for problems with higher number of configurations.

Synthesis of obtained solutions for RJSSP_M:

 Allowing three configurations, 22 instances display average results (𝑆̅) strictly better

than best-known solutions with one configuration, and 8 instances display results equal

to the best-known-solution over the 40 instances, while it is known by construction that

solutions of problems with one configuration are feasible for problems with three

configurations. This observation remains true for instances with five configurations:

Only 12 instances display average results that are better that the best-known solution

obtained with 3 configurations. For instance, it can be observed that average makespan

on some problems (e.g. RJSSP_M_28, RJSSP_M_35) when considering five

configurations, is worse than results having three configurations, whereas the first three

configurations are similar between these datasets. However, average computed

makespan (𝑆̅) decreases when considering five configurations, which suggests that

better solutions can be achieved having two more configurations, even though

processing times may have a wider dispersion (see section 5.1). When considering best-

known solutions, 75% of instances could be improved considering 5 configurations,

compared to instances with one configuration.

 If average solutions of 29 instances with 3 and 5 configurations are better or equal than

the optimal solutions with one configuration, the global deviation of the whole dataset

is larger than the one obtained with one configuration. For instance, average 𝜎 is equal

to 0.94 with one configuration, while it attains 4.51 with three configurations. Also, it

appears that three instances have deviations higher than 10%, while having better

solutions in average than problems with 1 configuration only. These results can be

explained by the extended search space implied by the increase in configurations

number, while the allowed computation time remains the same, which shows the

metaheuristic is capable of taking advantage of a larger space but at the cost of greater

variability. This observation remains true for instances with five configurations.

Considering 𝜎, it increases on these instances (6.84), which underlines the difficulty for

the metaheuristic to find close solutions, and manage the diversity of configurations in

the allowed computation time.

 As can be stressed, the percentage of solutions below a 1% increase of 𝑆∗ rapidly

decreases when the number of configurations is rising. Actually, 10 instances have a

𝑆1% value strictly below 10% when 5 configurations are considered, which shows that

few obtained solutions are closed to the best achieved one over the different replications,

and thus accessing valuable solutions while exploring the search space is harder with

the number of configurations that increases.

 Another interesting point is the average number of applied reconfigurations. While only

two configurations separate instances with three and five configurations, solutions from

this last one display 4 more reconfigurations in average. It seems that several better

solutions require lot of reconfigurations, as is the case with RJSSP_M_7, which requires

more than 7 reconfigurations in average to reach the average makespan 𝑆̅ valued 790,

which is approximately 6.5% better than the average makespan 𝑆̅ obtained with three

configurations. However, the resources required to carry out these various

 22

reconfigurations on a daily basis could become a challenge. On some instances, the

obtained solution considers several reconfigurations without reaching same quality as

the problem with lower available configurations (see for example RJSSP_M_28). On

this instance, this is explained by the presence of several machines that are not affected

by some reconfigurations, leading the solving approach to allow reconfigurations while

some machines are idle, without interfering with machining operations. These

reconfigurations could be easily discarded with a post processing. Hence, it is difficult

to conclude at this stage on whether or not the number of reconfigurations would

decrease while improving the solution quality.

 Finally, quartiles of solutions were computed in order to have better knowledge of

dispersion of solutions. In Figure 9, average quartiles are presented as box-plots on

normalised values of solutions yield by the metaheuristic approach (𝐻𝑁𝑆𝑖,𝑟,𝑐), over the

different replications. The normalised values are computed as follows:

S𝑖,𝑐
∗ = min

𝑐′≤𝑐
{𝑂𝑃𝑇𝑖, min

𝑟=1..50
{𝑆𝑖,𝑟,𝑐′}} , ∀𝑖 ∈ 𝑅𝐽𝑆𝑆𝑃_𝑀, ∀𝑐 ∈ {1,3,5}

𝐻𝑁𝑆𝑖,𝑟,𝑐 = 100.
𝑆𝑖,𝑟,𝑐 − 𝑆𝑖,𝑐

∗

𝑆𝑖,𝑐
∗ , ∀𝑖 ∈ 𝑅𝐽𝑆𝑆𝑃𝑀, ∀𝑟 ∈ [1; 50], ∀𝑐 ∈ {1,3,5}

Where 𝑆𝑖,𝑟,𝑐 corresponds to the 𝑟𝑡ℎ solution for instance 𝑖 with 𝑐 configurations, S𝑖,𝑐
∗ is

the best-found solution obtained by considering lower configuration numbers and the

optimal solution for problems with one configuration (𝑂𝑃𝑇𝑖). Then, quartiles are

computed on 𝐻𝑁𝑆𝑖,𝑟,𝑐 and aggregated according to instances characteristics (i.e. number

of jobs/machines). In Figure 9, it can be shown that for problems with 1 configuration

(Job-shop scenario) worst solutions (higher whisker) are under 1.05% distance of the

best-known normalised solutions (which is optimal). When observing instances with 3

configurations, this number rises to 2.13% (with 15 Jobs and 15 Machines), while 75%

of solutions are below 1.2% increase and maximum value is below 1.5% increase, which

shows that solutions are more scattered. When considering 5 configurations, 25% of

solutions are below 1.41% increase of best-known normalised solutions which shows

the difficulty of finding solutions close to 𝑆∗ over the different runs. This is strengthened

by the average value of 𝑆1% on instances with 5 configurations (~34% of solutions are

below a 1% increase of 𝑆∗). However, as the stopping criterion is based on both iteration

numbers and a time limit, results could benefit from extending computation times,

especially when large available configuration numbers are considered.

An interesting managerial insight can be derived from above results. Some decision makers

may think they should avoid unnecessary reconfigurations since they generate non-productive

time, even when using a reconfigurable manufacturing system. Such a situation might appear

in a shop floor whose flexibility corridor allow to produce all required parts (Job-shop).

However, even though the basis production system running only one configuration already

embeds enough flexibility to process all jobs, our experiments show that using different

configurations can further improve its performance. Actually, we achieved more than 4.5%

gains on total completion time when comparing the optimal solution of a single configuration

system with the solution obtained using up to five configurations. Furthermore, no additional

investment is required here, as the system is already designed to be reconfigured. Moreover, as

solutions with multiple configurations are not proven optima, the potential gains could be even

greater.

 23

Table 5 results with metaheuristic approach on RJSSP_S

 1 configuration 3 configurations 5 configurations
 #op LB 𝑆∗ 𝑆̅ 𝜎 𝑆1% �̅� LB 𝑆∗ 𝑆̅ 𝜎 𝑆1% 𝑐̅ �̅� LB 𝑆∗ 𝑆̅ 𝜎 𝑆1% 𝑐̅ �̅�

RJSSP_S_1 9 29 29* 29 0 100 <1 28 28* 28 0 100 1.58 <1 19 19* 19 0 100 1.08 <1

RJSSP_S_2 12 56 56* 56 0 100 <1 56 56* 56 0 100 0 <1 45 45* 45 0 100 2.14 <1

RJSSP_S_3 12 45 45* 45 0 100 <1 44 44* 44 0 100 1.72 <1 37 37* 37 0 100 0.34 <1

RJSSP_S_4 18 60 60* 60 0 100 <1 43 60 60 0 100 2.14 <1 23 55 55 0 100 3.34 <1

RJSSP_S_5 20 83 83* 83 0 100 <1 24 80 80 0 100 2 <1 32 64 64 0 100 2 21

RJSSP_S_6 24 88 88* 88 0 100 <1 12 86 86 0 100 2 6 11 67 67 0 100 1.2 <1

RJSSP_S_7 24 74 89 89 0 100 <1 21 85 85.7 0.76 46 1.96 42 10 83 83.6 0.57 44 4.6 71

RJSSP_S_8 30 93 95 95 0 100 <1 13 95 95 0 100 0 <1 14 89 89 0 100 3.04 9

RJSSP_S_9 36 31 114 114 0 100 <1 12 114 114 0 100 0.46 2 11 106 106.1 0.42 96 2.84 49

RJSSP_S_10 50 30 127 127 0 100 <1 14 122 122.06 0.31 98 1 17 13 114 116.74 0.60 4 1.28 23

RJSSP_S_11 9 153 153* 153 0 100 <1 43 147 147 0 100 3.64 <1 15 106 106 0 100 2.74 <1

RJSSP_S_12 12 109 287 287 0 100 <1 14 257 257 0 100 3.48 <1 10 207 207 0 100 2.46 <1

RJSSP_S_13 12 52 236 236 0 100 <1 10 230 230 0 100 2.74 <1 9 175 175 0 100 2.42 <1

Average: 0 100 <1 0.08 95.69 1.75 6 0.12 88.00 2.27 14

*:optimal solutions

 24

Table 6 results with metaheuristic approach on RJSSP_M with 1, 3 and 5 configurations

 1 configuration 3 configurations 5 configurations
 #op UB 𝑆∗ 𝑆̅ 𝜎 𝑆1% �̅� 𝑆∗ 𝑆̅ 𝜎 𝑆1% 𝑐̅ T̅ 𝑆∗ 𝑆̅ 𝜎 𝑆1% 𝑐̅ �̅�

RJSSP_M_1 50 666 666 666 0 100 <1 609 609 0.00 100 2.26 14 609 609 0 100 7.4 10
RJSSP_M_2 50 655 655 655 0 100 <1 606 612.38 3.29 30 3.58 59 551 563.82 6.30 16 6.16 128
RJSSP_M_3 50 597 597 597 0 100 5 595 595.2 0.61 100 2.26 50 571 579.82 4.94 26 12.18 92
RJSSP_M_4 50 590 590 590 0 100 <1 578 579.96 2.44 100 1 81 563 573.76 5.59 26 5.98 88
RJSSP_M_5 50 593 593 593 0 100 <1 578 578 0.00 100 1 2 532 532 0 100 9.32 <1
RJSSP_M_6 75 926 926 926 0 100 <1 926 926 0.00 100 8.8 <1 783 793.16 6.24 34 8.1 97
RJSSP_M_7 75 890 890 890 0 100 <1 832 846.14 6.79 24 3.14 97 750 790.04 13.90 2 7.52 91
RJSSP_M_8 75 863 863 863 0 100 <1 809 818.9 4.29 40 2.88 94 750 773.14 6.75 4 4.52 80
RJSSP_M_9 75 951 951 951 0 100 <1 894 911.68 7.00 10 3.84 77 885 905.14 9.08 12 5.56 58

RJSSP_M_10 75 958 958 958 0 100 <1 958 958 0.00 100 4.28 <1 958 958 0 100 5.42 <1
RJSSP_M_11 100 1222 1222 1222 0 100 <1 1079 1103.24 9.65 6 3.92 75 1077 1111.48 12.19 4 12.32 72
RJSSP_M_12 100 1039 1039 1039 0 100 <1 1039 1039 0.00 100 6.9 <1 1039 1039 0 100 7.72 <1
RJSSP_M_13 100 1150 1150 1150 0 100 <1 1080 1094.26 7.15 30 5.26 105 1061 1061.72 2.76 96 9.78 84
RJSSP_M_14 100 1292 1292 1292 0 100 <1 1123 1151.8 10.93 10 4.5 56 1123

1148.78 8.56 8 20.9 80

RJSSP_M_15 100 1207 1207 1207 0 100 <1 1207 1207 0.00 100 2.78 2 1207 1207 0 100 3.24 2
RJSSP_M_16 100 945 945 945 0 100 36 922 925.02 3.50 90 2.16 88 918 930.84 10.88 56 5.7 119
RJSSP_M_17 100 784 784 784 0 100 4 761 768.92 7.28 56 1.56 97 690 713.96 17.04 22 3.86 148
RJSSP_M_18 100 848 848 848 0 100 3 848 848 0.00 100 0 9 793 804.48 6.00 14 8.62 132
RJSSP_M_19 100 842 842 842 0 100 10 835 836 2.19 100 1.1 50 809 815.1 3.74 72 2.74 108
RJSSP_M_20 100 902 902 902.1 0.71 100 109 886 897.08 4.05 14 2.28 143 861 875.94 6.36 10 11.9 103
RJSSP_M_21 150 1046 1046 1050.18 3.03 100 112 1036 1054.06 4.46 4 0.76 82 1019 1037.94 9.05 30 2.46 115
RJSSP_M_22 150 927 927 928.24 2.20 100 119 925 933.3 3.49 38 1.12 94 925 939.88 4.98 2 3.46 98
RJSSP_M_23 150 1032 1032 1032 0 100 <1 1005 1022.68 6.97 22 1.24 146 989 1014.1 8.89 10 2.48 138
RJSSP_M_24 150 935 935 940.4 1.18 100 101 935 943.48 2.95 90 0.02 74 931 946.94 6.76 8 0.6 115
RJSSP_M_25 150 977 977 981.24 2.72 100 94 977 985.44 3.26 72 0.04 68 962 980.56 9.00 10 1.56 84
RJSSP_M_26 200 1218 1218 1218 0 100 4 1204 1215.82 3.87 30 0.38 56 1204 1217.46 1.76 10 0.38 27
RJSSP_M_27 200 1235 1235 1253.06 4.08 66 127 1235 1257.68 4.43 30 0.14 100 1235 1258.46 5.14 24 0.12 84
RJSSP_M_28 200 1216 1216 1217.26 1.93 100 111 1216 1226.58 8.23 68 1.32 124 1216 1234.48 10.25 30 38.42 162
RJSSP_M_29 200 1152 1152 1178.56 5.91 56 122 1152 1186.54 8.55 26 3.26 95 1152 1178.68 10.94 6 8.1 91
RJSSP_M_30 200 1355 1355 1355 0 100 <1 1355 1355 0.00 100 0.06 5 1355 1355 0 100 0.16 6
RJSSP_M_31 300 1784 1784 1784 0 100 <1 1717 1753.14 11.88 6 2.5 158 1717

1754.44 10.73 2 3.74 154

RJSSP_M_32 300 1850 1850 1850 0 100 <1 1794 1819.54 10.54 26 2.9 157 1794 1824.1 10.08 14 5.44 137
RJSSP_M_33 300 1719 1719 1719 0 100 <1 1696 1707.1 6.42 80 3.64 139 1696 1718.06 3.32 8 2.9 8
RJSSP_M_34 300 1721 1721 1721 0 100 <1 1678 1696.9 8.64 38 2.52 179 1671 1694.24 9.09 18 7.5 192
RJSSP_M_35 300 1888 1888 1888 0 100 <1 1839 1839.04 0.28 100 4.1 104 1800 1861.68 17.90 2 19.74 172
RJSSP_M_36 300 1268 1268 1278.14 2.36 98 150 1268 1288.48 7.83 40 1.96 145 1268 1292.7 10.36 28 3.1 140
RJSSP_M_37 225 1397 1397 1408.68 5.32 50 146 1397 1416.9 6.66 10 0.16 130 1392 1409.14 7.28 52 1.3 103
RJSSP_M_38 225 1196 1196 1205.72 3.34 70 128 1196 1212 5.67 16 0.1 138 1196 1210.92 8.07 40 1.16 128
RJSSP_M_39 225 1233 1233 1244.64 3.69 46 127 1233 1248.8 1.59 6 0.06 95 1233 1243.02 4.38 68 0.96 131
RJSSP_M_40 225 1222 1222 1228.3 1.30 100 112 1212 1230.94 5.63 6 0.16 144 1212 1230.46 5.45 10 0.3 114

Average: 1110.04 0.94 94.65 41.05 1092.48 4.51 53 2.25 83.85 1079.71 6.84 34.4 6.57 92.8

 25

Figure 9. Box-plots of solutions (normalised) aggregated by jobs and machines numbers.

Figure 9. alt. text: The figure shows quartiles of solutions aggregated by instances’ structures (i.e. job and machine numbers) and by number of configurations.

0

0,5

1

1,5

2

2,5

3

3,5

4

1
0

 J
. /

 5
 M

.

1
5

 J
. /

 5
 M

.

2
0

 J
. /

 5
 M

.

1
0

 J
. /

 1
0

 M
.

1
5

 J
. /

 1
0

 M
.

2
0

 J
. /

 1
0

 M
.

3
0

 J
. /

 1
0

 M
.

1
5

 J
. /

 1
5

 M
.

1
0

 J
. /

 5
 M

.

1
5

 J
. /

 5
 M

.

2
0

 J
. /

 5
 M

.

1
0

 J
. /

 1
0

 M
.

1
5

 J
. /

 1
0

 M
.

2
0

 J
. /

 1
0

 M
.

3
0

 J
. /

 1
0

 M
.

1
5

 J
. /

 1
5

 M
.

1
0

 J
. /

 5
 M

.

1
5

 J
. /

 5
 M

.

2
0

 J
. /

 5
 M

.

1
0

 J
. /

 1
0

 M
.

1
5

 J
. /

 1
0

 M
.

2
0

 J
. /

 1
0

 M
.

3
0

 J
. /

 1
0

 M
.

1
5

 J
. /

 1
5

 M
.

1 Config. 3 Config. 5 Config.

G
ap

 in
 p

er
ce

n
ta

ge

Instances agregated by job and machines numbers

First to second quartiles

Second to third quartiles

 26

6 Conclusion

This work consists in the first formalisation of scheduling problems in Reconfigurable Cellular

Manufacturing Systems. In this problem, reconfigurations can affect several machines at once,

and are considered at the operational level. An exact method and a metaheuristic based one are

provided to tackle different size instances. Results show that the problem as formulated is

rapidly intractable using a linear solver (CPLEX). Other exact approaches or formulations and

valid inequalities could be included to reduce computation time, as well as warm starts to

improve the initial upper bound. Meanwhile, the metaheuristic provides good results on several

instances, but it could be improved to have a more reliable behaviour. In order to strengthen

quality of solutions from the perspective of average values and standard deviation it could be

interesting to investigate other local search strategies, embedding specific features, such as

critical path improvements strategies, or instance-based knowledge. The use of Constraint

Programming in the local search phase could also be explored, and reducing the search space

using machine learning approaches could be a promising direction (Laurent et al. 2021). Also,

as optimal solutions of a dataset with few configurations are upper bounds of another dataset

with more configurations, the search process could be derived in several steps increasing

number of configurations from one step to another, and using the solution found at a prior step

as a start point for the new one.

If the problem considers resources related setup times, it could also be interesting to address

some other specific features of production systems including, for instance, two types of setup

times (between operations on machines, or for reconfigurations) or transportation times because

of the conveyors generally connecting different machines. The consideration of costs adjoined

with configuration changes or usage could also be interesting, leading to bi-objective problems.

In addition, and as stressed by computational experiments, the number of reconfigurations can

become difficult to manage in some cases and it could be interesting to study the problem with

limits on the number of reconfigurations within a schedule. As operators with variable skills

may be present in RMS, it could also be interesting to address the problem with stochastic

processing times, as reconfigurations may be postponed because of the constraint on inactivity

of all machines concerned with reconfigurations. Finally, RMS are particularly suited to

dynamic environments (new product orders to process or machine failures) that require to

change configurations, and hence future designs of dynamic optimisation approaches are of

great interest for practical industrial situations.

Data availability statement

The data that support the findings of this study are openly available at

https://github.com/damienLamy/RMS-Sched and from authors, upon reasonable request.

References

Azab, Ahmed, and Bahman Naderi. 2015. “Modelling the Problem of Production Scheduling

for Reconfigurable Manufacturing Systems.” Procedia CIRP 33: 76–80.

doi:10.1016/j.procir.2015.06.015.

Battaïa, Olga, Alexandre Dolgui, and Nikolai Guschinsky. 2017. “Decision Support for Design

of Reconfigurable Rotary Machining Systems for Family Part Production.”

International Journal of Production Research 55 (5): 1368–1385.

doi:10.1080/00207543.2016.1213451.

https://github.com/damienLamy/RMS-Sched

 27

Ben-Said, Asma, Racha El-Hajj, and Aziz Moukrim. 2019. “A Variable Space Search Heuristic

for the Capacitated Team Orienteering Problem.” Journal of Heuristics 25 (2): 273–

303. doi:10.1007/s10732-018-9395-8.

Bensmaine, A., M. Dahane, and L. Benyoucef. 2014. “A New Heuristic for Integrated Process

Planning and Scheduling in Reconfigurable Manufacturing Systems.” International

Journal of Production Research 52 (12): 3583–3594.

doi:10.1080/00207543.2013.878056.

Bierwirth, Christian. 1995. “A Generalized Permutation Approach to Job Shop Scheduling with

Genetic Algorithms.” Operations-Research-Spektrum 17 (2–3): 87–92.

Borgia, Stefano, Andrea Matta, and Tullio Tolio. 2013. “STEP-NC Compliant Approach for

Setup Planning Problem on Multiple Fixture Pallets.” Journal of Manufacturing

Systems 32 (4): 781–791. doi:10.1016/j.jmsy.2013.09.002.

Borisovsky, Pavel A., Xavier Delorme, and Alexandre Dolgui. 2014. “Balancing

Reconfigurable Machining Lines via a Set Partitioning Model.” International Journal

of Production Research 52 (13): 4026–4036. doi:10.1080/00207543.2013.849857.

Bortolini, Marco, Francesco Gabriele Galizia, and Cristina Mora. 2018. “Reconfigurable

Manufacturing Systems: Literature Review and Research Trend.” Journal of

Manufacturing Systems 49 (October): 93–106. doi:10.1016/j.jmsy.2018.09.005.

Chassaing, Maxime, Jonathan Fontanel, Philippe Lacomme, Libo Ren, Nikolay Tchernev, and

Pierre Villechenon. 2014. “A GRASP×ELS Approach for the Job-Shop with a Web

Service Paradigm Packaging.” Expert Systems with Applications 41 (2): 544–562.

doi:10.1016/j.eswa.2013.07.080.

Delorme, Xavier, Audrey Cerqueus, Paolo Gianessi, and Damien Lamy. 2023. “RMS

Balancing and Planning under Uncertain Demand and Energy Cost Considerations.”

International Journal of Production Economics, April, 108873.

doi:10.1016/j.ijpe.2023.108873.

Doh, Hyoung-Ho, Jae-Min Yu, Yong-Ju Kwon, Dong-Ho Lee, and Min-Suk Suh. 2016.

“Priority Scheduling for a Flexible Job Shop with a Reconfigurable Manufacturing

Cell.” Industrial Engineering and Management Systems 15 (1): 11–18.

doi:10.7232/iems.2016.15.1.011.

Dou, Jianping, Jun Li, Dan Xia, and Xia Zhao. 2020. “A Multi-Objective Particle Swarm

Optimisation for Integrated Configuration Design and Scheduling in Reconfigurable

Manufacturing System.” International Journal of Production Research, May, 1–21.

doi:10.1080/00207543.2020.1756507.

Essafi, Mohamed, Xavier Delorme, and Alexandre Dolgui. 2012. “A Reactive GRASP and Path

Relinking for Balancing Reconfigurable Transfer Lines.” International Journal of

Production Research 50 (18): 5213–5238. doi:10.1080/00207543.2012.677864.

Fan, Jiaxin, Chunjiang Zhang, Qihao Liu, Weiming Shen, and Liang Gao. 2022. “An Improved

Genetic Algorithm for Flexible Job Shop Scheduling Problem Considering

Reconfigurable Machine Tools with Limited Auxiliary Modules.” Journal of

Manufacturing Systems 62 (January): 650–667. doi:10.1016/j.jmsy.2022.01.014.

Ferjani, Aicha, Achraf Ammar, Henri Pierreval, and Sabeur Elkosantini. 2017. “A Simulation-

Optimization Based Heuristic for the Online Assignment of Multi-Skilled Workers

Subjected to Fatigue in Manufacturing Systems.” Computers & Industrial Engineering

112 (October): 663–674. doi:10.1016/j.cie.2017.02.008.

Galan, R., J. Racero, I. Eguia, and J.M. Garcia. 2007. “A Systematic Approach for Product

Families Formation in Reconfigurable Manufacturing Systems.” Robotics and

Computer-Integrated Manufacturing 23 (5): 489–502. doi:10.1016/j.rcim.2006.06.001.

Grosse, Eric H., Christoph H. Glock, Mohamad Y. Jaber, and W. Patrick Neumann. 2015.

“Incorporating Human Factors in Order Picking Planning Models: Framework and

 28

Research Opportunities.” International Journal of Production Research 53 (3): 695–

717. doi:10.1080/00207543.2014.919424.

Haddou Benderbal, Hichem, Mohammed Dahane, and Lyes Benyoucef. 2017. “Flexibility-

Based Multi-Objective Approach for Machines Selection in Reconfigurable

Manufacturing System (RMS) Design under Unavailability Constraints.” International

Journal of Production Research 55 (20): 6033–6051.

doi:10.1080/00207543.2017.1321802.

Hashemi-Petroodi, S. Ehsan, Alexandre Dolgui, Sergey Kovalev, Mikhail Y. Kovalyov, and

Simon Thevenin. 2020. “Workforce Reconfiguration Strategies in Manufacturing

Systems: A State of the Art.” International Journal of Production Research, October,

1–24. doi:10.1080/00207543.2020.1823028.

Hees, Andreas, Christina Bayerl, Brian Van Vuuren, Corné S.L. Schutte, Stefan Braunreuther,

and Gunther Reinhart. 2017. “A Production Planning Method to Optimally Exploit the

Potential of Reconfigurable Manufacturing Systems.” Procedia CIRP 62: 181–186.

doi:10.1016/j.procir.2016.06.001.

Hillier, Mark. 2013. “Designing Unpaced Production Lines to Optimize Throughput and Work-

in-Process Inventory.” IIE Transactions 45 (5): 516–527.

doi:10.1080/0740817X.2012.706733.

Hoos, Holger H., and Thomas Stützle. 2005. Stochastic Local Search: Foundations and

Applications. San Francisco, CA: Morgan Kaufmann Publishers.

Koren, Y. 2006. “General RMS Characteristics. Comparison with Dedicated and Flexible

Systems.” In Reconfigurable Manufacturing Systems and Transformable Factories,

edited by Anatoli I. Dashchenko, 27–45. Berlin, Heidelberg: Springer Berlin

Heidelberg. doi:10.1007/3-540-29397-3_3.

Koren, Y, U. Heisel, F. Jovan, T. Moriwaki, G. Pritschow, G. Ulsoy, and H. Van Brussel. 1999.

“Reconfigurable Manufacturing Systems.” CIRP Annals 48 (2): 527–540.

Koren, Yoram, Xi Gu, and Weihong Guo. 2018. “Reconfigurable Manufacturing Systems:

Principles, Design, and Future Trends.” Frontiers of Mechanical Engineering 13 (2):

121–136. doi:10.1007/s11465-018-0483-0.

Lamy, Damien, Julia Schulz, and Michael F. Zaeh. 2020. “Energy-Aware Scheduling in

Reconfigurable Multiple Path Shop Floors.” Procedia CIRP 93: 1007–1012.

doi:10.1016/j.procir.2020.04.020.

Laurent, Arnaud, Damien Lamy, Benjamin Dalmas, and Vincent Clerc. 2021. “Pattern Mining‐

based Pruning Strategies in Stochastic Local Searches for Scheduling Problems.”

International Transactions in Operational Research, April, itor.12984.

doi:10.1111/itor.12984.

Lawrence, S. 1984. “Resource Constrained Project Scheduling: An Experimental Investigation

of Heuristic Scheduling Techniques (Supplement).” Graduate School of Industrial

Administration, Carnegie-Mellon University.

Liles, Donald H, and Brian L Huff. 1990. “A Computer Based Production Scheduling

Architecture Suitable for Driving a Reconfigurable Manufacturing System.” Computers

& Industrial Engineering 19 (1–4): 1–5.

Mahmoodjanloo, Mehdi, Reza Tavakkoli-Moghaddam, Armand Baboli, and Ali Bozorgi-

Amiri. 2020. “Flexible Job Shop Scheduling Problem with Reconfigurable Machine

Tools: An Improved Differential Evolution Algorithm.” Applied Soft Computing 94

(September): 106416. doi:10.1016/j.asoc.2020.106416.

Masmoudi, Oussama, Xavier Delorme, and Paolo Gianessi. 2019. “Job-Shop Scheduling

Problem with Energy Consideration.” International Journal of Production Economics

216 (October): 12–22. doi:10.1016/j.ijpe.2019.03.021.

 29

Moghaddam, Shokraneh K., Mahmoud Houshmand, and Omid Fatahi Valilai. 2018.

“Configuration Design in Scalable Reconfigurable Manufacturing Systems (RMS); a

Case of Single-Product Flow Line (SPFL).” International Journal of Production

Research 56 (11): 3932–3954. doi:10.1080/00207543.2017.1412531.

Ostermeier, Frederik Ferid. 2020. “The Impact of Human Consideration, Schedule Types and

Product Mix on Scheduling Objectives for Unpaced Mixed-Model Assembly Lines.”

International Journal of Production Research 58 (14): 4386–4405.

doi:10.1080/00207543.2019.1652780.

Palacio, Juan D., and Juan Carlos Rivera. 2020. “A Multi-Start Evolutionary Local Search for

the One-Commodity Pickup and Delivery Traveling Salesman Problem.” Annals of

Operations Research, September. doi:10.1007/s10479-020-03789-0.

Prasad, Durga, and S. C. Jayswal. 2017. “Reconfigurability Consideration and Scheduling of

Products in a Manufacturing Industry.” International Journal of Production Research

56 (19): 6430–6449. doi:10.1080/00207543.2017.1334979.

Renna, Paolo. 2013. “Virtual Job Shop Approach Based on Reconfigurable Machines.”

International Journal of Services and Operations Management 14 (4): 445.

doi:10.1504/IJSOM.2013.052838.

Roy, Bernard, and Bernard Sussmann. 1964. Les Problemes d’ordonnancement Avec

Contraintes Disjonctives. SEMA, Rapport de recherche n°9.

Sels, Veronique, Nele Gheysen, and Mario Vanhoucke. 2012. “A Comparison of Priority Rules

for the Job Shop Scheduling Problem under Different Flow Time- and Tardiness-

Related Objective Functions.” International Journal of Production Research 50 (15):

4255–4270. doi:10.1080/00207543.2011.611539.

Sharma, Pankaj, and Ajai Jain. 2016. “A Review on Job Shop Scheduling with Setup Times.”

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering

Manufacture 230 (3): 517–533. doi:10.1177/0954405414560617.

Shen, Liji, Stéphane Dauzère-Pérès, and Janis S. Neufeld. 2018. “Solving the Flexible Job Shop

Scheduling Problem with Sequence-Dependent Setup Times.” European Journal of

Operational Research 265 (2): 503–516. doi:10.1016/j.ejor.2017.08.021.

Tang, Jiecheng, Yousef Haddad, and Konstantinos Salonitis. 2022. “Reconfigurable

Manufacturing System Scheduling: A Deep Reinforcement Learning Approach.”

Procedia CIRP 107: 1198–1203. doi:10.1016/j.procir.2022.05.131.

Touzout, Faycal A., and Lyes Benyoucef. 2019. “Multi-Objective Multi-Unit Process Plan

Generation in a Reconfigurable Manufacturing Environment: A Comparative Study of

Three Hybrid Metaheuristics.” International Journal of Production Research, July, 1–

16. doi:10.1080/00207543.2019.1635277.

Vahedi-Nouri, Behdin, Reza Tavakkoli-Moghaddam, Zdeněk Hanzálek, and Alexandre

Dolgui. 2022. “Workforce Planning and Production Scheduling in a Reconfigurable

Manufacturing System Facing the COVID-19 Pandemic.” Journal of Manufacturing

Systems 63 (April): 563–574. doi:10.1016/j.jmsy.2022.04.018.

Vahedi-Nouri, Behdin, Reza Tavakkoli-Moghaddam, Zdeněk Hanzálek, and Alexandre

Dolgui. 2023. “Production Scheduling in a Reconfigurable Manufacturing System

Benefiting from Human-Robot Collaboration.” International Journal of Production

Research, February, 1–17. doi:10.1080/00207543.2023.2173503.

Waldherr, Stefan, and Sigrid Knust. 2015. “Complexity Results for Flow Shop Problems with

Synchronous Movement.” European Journal of Operational Research 242 (1): 34–44.

doi:10.1016/j.ejor.2014.09.053.

Wolf, Steffen, and Peter Merz. 2007. “Evolutionary Local Search for the Super-Peer Selection

Problem and the p-Hub Median Problem.” Lecture Notes in Computer Science, Lecture

notes in computer science, 4771: 1–15.

 30

Yamada, Y., K. Ookoudo, and Y. Komura. 2003. “Layout Optimization of Manufacturing Cells

and Allocation Optimization of Transport Robots in Reconfigurable Manufacturing

Systems Using Particle Swarm Optimization.” In Proceedings 2003 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2003) (Cat.

No.03CH37453), 2:2049–2054. Las Vegas, NV, USA: IEEE.

doi:10.1109/IROS.2003.1248968.

Yang, Shengluo, Junyi Wang, Liming Xin, and Zhigang Xu. 2023. “Real-Time and Concurrent

Optimization of Scheduling and Reconfiguration for Dynamic Reconfigurable Flow

Shop Using Deep Reinforcement Learning.” CIRP Journal of Manufacturing Science

and Technology 40 (February): 243–252. doi:10.1016/j.cirpj.2022.12.001.

Yelles-Chaouche, Abdelkrim R., Evgeny Gurevsky, Nadjib Brahimi, and Alexandre Dolgui.

2021. “Reconfigurable Manufacturing Systems from an Optimisation Perspective: A

Focused Review of Literature.” International Journal of Production Research 59 (21):

6400–6418. doi:10.1080/00207543.2020.1813913.

Youssef, Ayman M. A., and Hoda A. ElMaraghy. 2007. “Optimal Configuration Selection for

Reconfigurable Manufacturing Systems.” International Journal of Flexible

Manufacturing Systems 19 (2): 67–106. doi:10.1007/s10696-007-9020-x.

