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Résumé. Pour planifier la transition énergétique, les décideurs ont besoin d’une con-
naissance approfondie de leur territoire. Pour cela, des données sont collectées de sources
multiples, à plusieurs échelles, avec des contraintes comme les politiques de confidentialité.
De telles données fournissent des informations sur des zones spatiales mais sans localisa-
tion spécifique. C’est le cas du Diagnostic de Performance Energétique (DPE). Les bases
de données des DPE réalisés sont publiées sous des contraintes spécifiques : anonymisa-
tion, géolocalisation avec adresse postale, détails manquants. Ce document montre que
l’apprentissage des DPE observés pour prédire les DPE manquants peut être considéré comme
un problème d’interpolation spatiale. Il présente une manière de traiter le DPE en tant
qu’information géolocalisée et de prédire sa valeur au niveau du bâtiment. La méthodologie
du krigeage est appliquée à des champs aléatoires observés à des emplacements aléatoires
pour trouver le meilleur prédicteur linéaire non biaisé (BLUP). Ce nouveau modèle est ap-
pelé krigeage de mixtures. Bien que le cadre gaussien habituel soit perdu, nous montrons que
la moyenne conditionnelle, la variance et la covariance peuvent être calculées. Ce nouveau
modèle donne des résultats intéressants dans la prédiction du DPE au niveau du bâtiment, ce
qui est une condition préalable pour que les décideurs ciblent les efforts de rénovation. Le cas
spécifique d’une ville française est pris comme exemple. Le modèle présenté inclut également
le co-krigeage de mixtures de sorte que les covariables puissent être utilisées pour améliorer
le résultat. Il est également suggéré que le krigeage de mixtures puisse être utilement mis en
oeuvre pour contrôler la propagation de l’incertitude. Nous présentons des applications en
ce sens sur des données simulées.

Mots-clés. Processus multi-échelle, régression de surface à points, données surfaciques,
krigeage par blocs, changement d’échelle, transition énergétique.

Abstract. Planning the energy transition requires decision makers to have an in-depth
knowledge about a given territory. To achieve this, data is collected from multiple sources, at
multiple scales, with constraints such as privacy policies. Resulting data informs about given
areas of space without a specific point location. Such is the case of Energy Performance
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Certificate (EPC). EPC databases are released under specific constraints: anonymization,
geo-localization with postal address, missing details. This paper shows that learning the
observed EPCs to predict missing ones can also be seen as a spatial interpolation problem. It
presents a way to treat EPC as a geo-localized information and predict its value at building
level. Kriging methodology is applied to random fields observed at random locations to
find a Best Linear Unbiased Predictor (BLUP). This new model is referred to as Mixture
Kriging. While the usual Gaussian setting is lost, we show that conditional mean, variance
and covariance can be derived. This new model gives interesting results in EPC prediction
at building level which is a prerequisite for decision maker to target renovation efforts. The
specific case of a city in France is taken as an example. The presented model includes
Mixture co-Kriging so that covariates can be used to improve the result. It is also suggested
that Mixture Kriging can be usefully implemented to control uncertainty propagation. We
present potential applications on simulated data.

Keywords. Multi-scale processes, area-to-point regression, areal data, block Kriging,
change of support, energy transition.

1 Introduction

Figure 1: Prescribed vignette ap-
pearing on the French energy cer-
tificate up to 2021. Top left: effi-
cient dwelling; Top right: dwelling;
Bottom: energy intensive dwelling.

Figure 2: Map of inventoried EPCs in Paris. Screen
capture of the French National Observatory of Build-
ings (Observatoire National des Bâtiments)

An Energy Performance Certificate (EPC) is given in France as an energy consumption
associated with a qualitative labelling letter ranging from A to G as shown in Figure 1 . The
labels are inventoried in a database along with the addresses of the dwellings and can be
matched with a land plot in a second database. However, the exact location of each dwelling
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on the land plot is uncertain. Decision-makers want to infer the energy consumption and
label of buildings that have not been observed to identify targets for energy retrofit incentives.
We call this problem the EPC prediction problem. The smallest unit of information for a
table with one EPC per row is a part of a building, which is not clearly defined as an object
in a 3D space but has features that describe it.

From a geostatistics perspective, among other issues, the irreducible uncertainty about
granules’ positions (dwellings, buildings...) in their underlying space restricts the use of
traditional spatial interpolation models such as Kriging. This work aims to overcome the
latter limitation and develop a comprehensive framework capable of handling data with
uncertainty about the position of observed objects while still allowing for the definition of an
optimal linear predictor for spatial interpolation of EPC values.

Spatial interpolation is a technique that uses known geographical point samples to esti-
mate values at unknown points. It mostly relies on the assumption that points close to each
other in the input space are more likely to have similar output values. Gaussian Process Re-
gression, also known as Kriging, is a major spatial interpolation approach based on a linear
weighted combination of observation values that produces the Best Linear Unbiased Predic-
tor (BLUP) for point spatial interpolation. However, the EPC prediction problem does not
deal with points but with areal observations that involve the transformation of data from one
set of boundaries to another. Areal interpolation research assumes that areas, also known as
blocks, that are close to each other in the input space are more likely to have similar output
values. Block Kriging is a derivative of Kriging that is designed for handling areal data.
It assumes that feature at block level is an average value over the block. This averaging
heavily influences the correlations between output variables in areal Kriging models, causing
a family of problems described by Gotway and Young (2002), called the change of support
problems among which is the Modifiable Areal Unit Problem (MAUP) and the ecological
inference problem. Despite its limitations, the averaging method has proven to be effective
for interpolating areal data, as demonstrated by several successful applications.

A new data model has been proposed by Godoy et al. (2022) to address change of support
problems by defining a Gaussian random field on the class of closed subsets of a domain using
the Hausdorff distance and a Matérn kernel. However, this model lacks interpretability and
consistency between the output at the areal level and the point level. Additionally, it does
not solve the input data uncertainty problem in the EPC prediction problem.

This paper proposes a new model that can handle both aggregated and point support
data, introducing an object category called grain to express this approach. The model ad-
dresses issues related to determining a consistent covariance model for points and blocks,
and proposes a method of incorporating a mixture distribution to account for stochastic
dependence between blocks resulting from uncertainty on the input values. The approach
effectively manages input uncertainty, but mixtures of Gaussian random variables are gen-
erally not Gaussian, so the usual Gaussian process interpretations and conditioning will no
longer hold. The present document is a summary of a more detailed article of the same
authors Grossouvre and Rullière (2023). It focuses on the problem of EPC prediction.
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2 Optimal linear interpolation of mixture distributions

This approach assumes that the output variables, such as sociological variables, can be defined
and observed for both points in the input space and for geographic areas, such as cities,
regions, or countries. These areas are referred to as “grains”. The model predicts output
variables for new inputs, whether they be points or grains, based on the assumption that there
is dependence between outputs based on the relative positions of the inputs. No assumption
is made regarding the shape of the grains, which can even overlap partially or completely.

2.1 Data model

Let now us define the structure of the input space.

Definition 1 (Inputs). Let d be a positive integer. A territory and grains inside this territory
are defined as follows: A territory is a subset χ of Rd ; A point is any element x ∈ χ ; A
grain is any non-empty subset g ⊆ χ ; A granularity G = {g1, g2, ...} of a territory χ is a
finite set of grains of χ .

Definition 2 (Outputs). Let G be a granularity. Outputs are defined over points and grains
of G as follows:

� Y is a p-dimensional multivariate random field over χ denoted: ∀x ∈ χ, Y(x) :=
(Y1(x), . . . , Yp(x))

⊤ ∈ Rp

� For each g ∈ G, a p-dimensional real random vector Y(g) is defined to be the value of
Y at a random location Xg ∈ g: ∀g ∈ G, Y(g) := Y(Xg) ∈ Rp

For a given granularity G, we assume that the set of random variables {Xg : g ∈ G}, is
defined and known, and that the dependence structure between those random variables is also
known. We assume furthermore that these random variables are independent from Y.

We assume that the output is partially known on a set of grains: For (i1, . . . , in) ∈
{1, . . . , p}n and g1, . . . , gn ∈ G we know n random variables:

Y = (Y 1, . . . , Y n)
⊤
with Y j = Yij(gj) for j ∈ {1, . . . , n}

As an example, if k observations of the whole random vector Y(gj) are conducted for
j ∈ {1, . . . , k}, then n = k · p and the vector of observations is:

Y = (Y1(Xg1), . . . , Yp(Xg1), . . . , Y1(Xgj), . . . , Yp(Xgj), . . . , Y1(Xgk), . . . , Yp(Xgk))
⊤ . (1)

If some observations are incomplete, that is to say some components of Ygj are missing
for some j, then Y will be a subvector of Y given in Equation (1). It means that there may
be missing data in the output observations.
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2.2 Best unbiased linear predictor

The originality of the present work is that for a grain g, Y(g) is defined to be equal to Y(Xg)
the value ofY at a random location Xg ∈ g. If the random field {Y(x) : x ∈ χ} and the joint
distribution of {Xg ∈ χ : g ∈ G} are known, then the joint distribution of {Y(g) : g ∈ G}
can be deduced. Now, if one only knows the moments of order one and cross moments of
order two of {Y (x) :x ∈ χ} together with the joint distribution of {Xg ∈ χ : g ∈ G}, then
one can expect to be able to deduce expectation and cross covariances of {Y(g) : g ∈ G}. In
the rest of the paper, we assume that first two moments of {Y(x) :x ∈ χ}, {Xg ∈ χ : g ∈ G}
and {Y(g) : g ∈ G} exist. In the following proposition, we show that we can indeed deduce
those moments.

Proposition 1 (Mean and covariances of Y(g)). From Definition 2, we derive:

(i) For any grain g ∈ G and any index i ∈ {1, . . . , p} , assuming that for all x ∈ g we know
µi(x) := E [Yi(x)], we have:

µi(g) := E [Yi(g)] = E [µi(Xg)]

(ii) For any two grains g, g′ in G and any two indices i, j ∈ {1, . . . , p}, assuming that for
all x ∈ g, x′ ∈ g′ we know ki,j(x, x

′) := Cov [Yi(x), Yj(x
′)], we have:

ki,j(g, g
′) := Cov [Yi(g), Yj(g

′)] = E [ki,j(Xg, Xg′)] + Cov [µi(Xg), µj(Xg′)]

In particular, ki,i(g, g) = Cov [Yi(g), Yi(g)] = V [Yi(g)] = E [ki,i(Xg, Xg)] + V [µi(Xg)].

Proof. (i) is a direct application of the conditional expectation formula where Yi(g) is the re-
sult of conditioning Yi(x) withXg. And (ii) derives from the conditional covariance (variance)
formula, after conditioning by the joint random vector (Xg, Xg′) (random variable Xg).

Note that Cov [µi(Xg), µj(Xg′)] = 0 in the case where µi(x) is constant over any one of
the grains g or g′ or in the case where Xg and Xg′ are independent. Also note that this
framework yields the expected result that if a grain is restricted to a point, then the output
of this grain is the same as the output of the underlying point. In this section, it is proved
that there exists a best linear predictor to predict the output associated with a new grain
g ⊂ χ given a learning set of observations.

Let Y be the vector of observations forming the learning set, g ⊂ χ a grain such
that for some i ∈ {1, . . . , p}, Yi(g) is to be predicted. For a given set of weights α(g) =
(α1(g), . . . , αn(g)) ∈ Rn, we define a linear predictor Mα(g):

Mα(g) =
n∑

j=1

αj(g)Y j = α(g)⊤Y .

Provided that those weights exist and are unique, the optimal weights αi(g) are defined

5



to be those minimizing a quadratic error, αi(g) ∈ argminα∈Rn E
[(
Yi(g)−α⊤Y

)2]
, over all

unbiased linear predictors. The following proposition gives an optimal predictor that can be
computed under the minimal assumptions of Proposition 1 . It is valid to predict a single
component Yi(g) of the output Y(g). But it can be extended to the prediction of Y(g): given
the set of p best predictors, we define the matrix A(g) = (αj

i (g))i∈{1,...,p}, j∈{1,...,n} so that the

predictor MA(g) = AY is the best linear unbiased predictor of Y(g) = (Y1(g) . . . Yp(g))
⊤ for

the total quadratic error E [||Y(g)− AY||22].

Proposition 2 (Simple Mixture Kriging prediction). Given a set of observations Y, for any
g ⊂ χ, and in particular for a single point g = {x}, for any i ∈ {1, . . . , p}, the weights αi(g)
yielding the best linear unbiased predictor (BLUP) of Yi(g) and the associated cross errors
are as follows: If µ = (0, . . . , 0)⊤ and µi(g) = 0 then{

αi(g) = K−1hi(g)

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)
⊤K−1hj(g

′)

Where µ := E [Y] ∈ Rn, K :=
(
Cov

[
Y j, Y j′

])
j,j′∈{1,...,n} ∈ S+

n (R) (semi-definite positive

n× n matrix), hi(g) := (Cov [Y j, Yi(g)])j∈{1,...,n} ∈ Rn, ϵi(g) := Yi(g)−Mi(g),
vi(g) := ci,i(g, g) and ci,j(g, g

′) := E [ϵi(g) ϵj(g
′)].

K is assumed to be invertible. Note that if the expectations of Yi(x) and covariances
between Yi(x) and Yj(x

′) are known for all i, j ∈ {1, . . . , p}, x, x′ ∈ χ, µ, K and hi(g) can be
computed using Proposition 1 . Similar results are available for Ordinary Mixture Kriging in
Grossouvre and Rullière (2023).

3 Energy Performance Certificate (EPC) prediction

Let us now address the EPC prediction problem in a more detailed manner. EPC is
given as a numeric energy consumption per square meter and per year which is associ-
ated with a letter ranging from A to G. A and B label the most energy saving dwellings
(less that 90kWh/m2/year). F and G label the most consuming dwellings (more than
330kWh/m2/year). We want to model a situation where on the one hand we observe EPC
with an uncertainty on the location of the observed dwelling on the land plot where it lies.
The observed dwelling can not be identified among all the known dwellings of this land plot.
And we want to predict an EPC at the whole land plot level, that is to say for the set of
dwellings it contains.

As can be seen in Figure 3, observations are strongly unbalanced, meaning that labels A,
B, F, G are rarely observed while labels C, D, E are very common. As a result, labels A, B, F,
G a difficult to predict although they are more interesting for decision makers. Therefore we
introduce the Balanced Accuracy (BA) criterion. It is an asymmetric performance measure
that focuses on good results Gösgens et al. (2021) and it gives the same weight to each class.
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Figure 3: Bar plot of EPC labels frequencies among all EPCs collected in France between
20214 and 2021. Classes are highly heterogeneous.

Denoting TL the number of true observations with label L and TPL the number of good
predictions with label L, the balanced accuracy is given by the formula:

BA =
1

7

∑
L∈{A,...,G}

TPL

TL

Consider the following model M1:

� χ is the territory of an urban area in Angers city in France in a 3 dimensional space
where coordinates represent construction year, latitude and longitude.

� A random field Y (x) is defined on χ. It represents the image through H of the energy
consumption per square meter and per year at x.

� A grain g is defined as a set of point in a 3 dimensional space χ. A grain represents
a land plot. Each point represents a square meter of living area. It has 3 coordinates.
The set of all grains form the granularity G. Variables are normalized based on standard
normal Gaussian quantiles associated with ranks so that χ = R3.

� For any grain g ∈ G, the random variable Xg is the uniform law on the points of g. It
represents the uncertainty on the location of observations. On g, the output variable
is defined as: Y (g) = Y (Xg).

� A vector of observations of n distinct grains is given and denoted Y.

Note that grains seem to be disjoint on Figure 4 but they are not due to overlaps on the
3rd dimension. Moreover, by construction, Y is centred. For this model, the following
assumptions are made: For any two distinct grains g, g′, random variable Xg is independent
from Xg′ ; For any two points x, x′, the covariance between Y (x) and Y (x′) is following a
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Construction	year	(percentiles)
	0%	–	10%
	10%	–	20%
	20%	–	30%
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Leaflet	|	©	OpenStreetMap	contributors,	CC-BY-SA

Figure 4: Construction year of an urban area
in Angers. The side of the square is 1km.
Construction years range from 1340 (first per-
centile) to 2019 (last percentile).

Observed	EPC	labels
	A
	B
	C
	D
	E
	F
	G

Leaflet	|	©	OpenStreetMap	contributors,	CC-BY-SA

Figure 5: Map of the 365 observations. Each
colour represents a label associated with the
numeric value. See Figure 1 .

EPC int. EPC num.

Model BA MAE RMSE MAE RMSE Variance

Mixture Kriging (M1) 0.26 0.93 1.37 78.93 106.16 6,66
Kriging (M2) 0.19 0.85 1.22 72.22 92.98 2,59

EPC int.: Energy Performance Certificate treated as an integer: 1 for label A, ..., 7 for G.

EPC num.: energy consumption expressed in kWh/m2/year.

BA: Balanced Accuracy; MAE: Mean Absolute Error; RMSE: Root Mean Squared Error.

Table 1: Optimal performances achieved by M1 and M2 and respective overall variance of
numeric predictions.

Matérn 3/2 model. σ2 is called the variance coefficient and Θ = (θ1, θ2, θ3) the length scale
coefficients. Note that no nugget effect is required because the model takes into account the
spatial uncertainty of the input by construction. Mixture Kriging predictor is used to predict
energy consumption a plot level. Without nugget effect the mean prediction, in the case of
a one dimensional output, does not depend on σ2. σ2 is therefore set to 1. Θ is chosen so
as to maximize the BA criterion of the predicted labels derived from the predicted energy
consumptions. BA is computed using leave-one-out cross validation.

Let us now consider a Kriging model M2 to compare performances with Mixture Kriging
model M1. M2 has same properties as M1 presented above except that:

� Grains are singletons. A grain g = {x1, ..., xq} is replaced by a point x of coordinates
the minimum construction year and the mean latitude and longitude values. Note that
is assumed that the year of construction of the eldest building portion is the most
meaningful information for prediction. This makes sense especially because the eldest
part of a building is usually also the largest one.
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True
labels

Predicted labels

A B C D E F G

A 2 1 1 2 2 0 0

B 1 3 3 9 2 2 0

C 1 3 3 26 15 4 0

D 3 5 5 80 33 5 1

E 4 2 2 36 36 5 1

F 0 3 3 4 5 3 0

G 0 0 0 1 1 0 0

Table 2: Confusion matrix of M1 predictions

True
labels

Predicted labels

A B C D E F G

A 1 0 0 5 1 0 0

B 0 2 2 11 4 0 0

C 0 1 1 48 12 0 0

D 2 1 1 94 32 0 0

E 0 1 1 56 30 0 0

F 1 0 0 11 3 0 0

G 0 0 0 1 0 0 0

Table 3: Confusion matrix of M2 predictions

� A nugget effect has to be introduced so as to avoid oscillation since Kriging predictor
is otherwise interpolating: V [Y (x)] = σ2 + ϵ2 where ϵ2 ∈ [0, 1].

Kriging predictor is used. V = (σ2, θ1, θ2, θ3, ϵ
2) is chosen so as to maximize BA, the same

way as for M1. The standard R package DiceKriging is used for prediction. Both models
M1 and M2 are optimized with a genetic algorithm provided by R package ga parametrized
with population size 50, elitism 5, maximum number of iterations 100, maximum number of
iterations without improvement 100. Other parameters are left to default. The percentage
of true labels A and B that are predicted as A or B is 25% with M1 (Mixture Kriging) and
10% with M2 (Kriging). For labels F and G, these figures are 16% and 0% respectively. This
information is valuable for decision makers seeking to identify energy-intensive dwellings.

These results suggest that Mixture Kriging (M1) predictions have an improved variability
compared to Kriging (M2). Despite having fewer parameters, Mixture Kriging significantly
improves the BA although it leads to more frequent large errors. Kriging accounts for un-
certainty in the input data eliminating the need to add uncertainty to the output. In this
example it avoids grouping predictions near the mean value and yields a better BA as com-
pared with Kriging which requires the introduction of a nugget effect.

4 Discussion and conclusion

Mixture Kriging is a new model that is consistent with Kriging, but it generates mean pre-
dictions that are not impacted by the size or shape of the grains. This means that there
is no prediction shrinkage due to these factors. Mixture Kriging also has no measurable
Modifiable Areal Unit Problem (MAUP) effect, and its predictions are smooth without in-
troducing a nugget effect, which tends to shrink the mean predictions in Kriging models.
Mixture Kriging is designed to handle data with uncertainty on input values without intro-
ducing a nugget effect. The main difference between block-to-block Kriging and Mixture
Kriging is in the method of computing the observations variance and covariance between
covariates associated with the same grain. This results in a higher diagonal value in the
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observations covariance matrix than what is found with Kriging, which makes the model
predictions smoother, which is the sought effect of introducing a nugget effect in Kriging.
However, Mixture Kriging has a higher computational cost than Kriging, which increases
with the squared value of the density of points in the grains.

This new approach opens the way for feeding Mixture Kriging models with new datasets
that have been impossible to fit in the usual Kriging framework. In particular, datasets
that inform about granules that are uncertainly defined such as dwellings, buildings, streets,
human persons, households. It can also be used for datasets informing about granules which
should have deterministic shapes or position in the input space but come with a numeric
uncertainty such as measure precision, rounding effect, observations’ aggregations or obser-
vations’ anonymization. Moreover, the model can handle multivariate outputs, even if some
output components are missing in the observations. Encouraging results have been found
studying the prediction of Energy Performance Certificates (EPC). Results show that Mix-
ture Kriging can be useful to improve the prediction of values far from the average, and in
our case to improve the detection of energy saving homes. Future studies should test the
upscaling feasibility of the already developed model and test the benefits of using covariates.
We also study the possibility to develop a similar model with Universal Kriging.

Acknowledgements

This research was jointly supported by Mines Saint-Etienne graduate engineering school
and research institute (https://www.mines-stetienne.fr/en/), URBS enterprise (https:
//www.imope.fr/) and French National Agency for Research and Technology (https://
www.anrt.asso.fr/fr).

Bibliographie

Godoy, L. da C., Oliveira Prates, M. and Yan J. (2022), An unified framework for point-
level, areal, and mixed spatial data: the Hausdorff-Gaussian Process, http://arxiv.org/
abs/2208.07900 (preprint).

Gotway, C. and Young L. (2002), Combining Incompatible Saptial Sata, Journal of the
American Statistical Association, 97, pp. 632-648.
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